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ABSTRACT

D’Arcy Thompson was a true pioneer, applying mathematical
concepts and analyses to the question of morphogenesis over
100 years ago. The centenary of his famous book, On Growth and
Form, is therefore a great occasion on which to review the types
of computer modeling now being pursued to understand the
development of organs and organisms. Here, | present some of the
latest modeling projects in the field, covering a wide range of
developmental biology concepts, from molecular patterning to tissue
morphogenesis. Rather than classifying them according to scientific
question, or scale of problem, | focus instead on the different ways
that modeling contributes to the scientific process and discuss the
likely future of modeling in developmental biology.
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Introduction

D’Arcy Thompson’s combination of mathematics, physics and
biology allowed him to articulate the parallels between forms seen in
living organisms and shapes generated by non-living physical
processes. He described the similarities between jellyfishes and
drops of liquid, between shells and geometric series, and how the
collection of tensile and compressive elements that make up the
vertebrate skeleton parallels the tensile and compressive elements that
comprise bridges (cables and girders, respectively). He illustrated his
ideas with simple computations, but he was acutely aware of the
limitations of what could be achieved in the early twentieth century,
writing that: ‘This book of mine has little need of preface, for indeed it
is “all preface’ from beginning to end’ [Thompson (1942), prefatory
note]. With the power of computers, the sophistication of biological
data has changed beyond recognition during the intervening century,
and it is thus an opportune moment to consider how the
computational modeling of developmental biology is poised to
influence the field over the next decade.

There are many different formalisms and types of computer
modeling (from very detailed to very abstract, as briefly summarized
in Boxes 1 and 2), but here I wish to draw attention to a different
distinction. Science is essentially about the interplay between ideas
and reality. Until recently, our ability to explore either side of the
equation was limited. Mathematical and computer modeling could
help explore non-trivial ideas, but the lack of high-quality data with
which to constrain the models hampered our ability to distinguish
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plausible hypotheses from correct hypotheses. Indeed, for many
decades modeling was rightly seen as theoretical biology, with the
emphasis on ‘theoretical’. Recently, however, our ability to probe
and monitor the natural world has been revolutionized by a slew of
new experimental technologies (high-resolution 3D time-lapse
imaging, precise genetic manipulations, single-cell transcriptomics,
optogenetics, to mention just a few). Rather than rendering theory less
important, this flood of high-quality experimental data lends new
urgency to the task of computational modeling. Although modeling
alone cannot prove a hypothesis to be true (a point we will return to in
the discussion), the dynamic complexity of real biological systems
means that experimental approaches alone will also be insufficient to
truly understand them.

Ata particularly deep level, computer modeling may be considered
to always serve the same basic purpose: to treat mechanistic ideas in a
more rigorous manner than we are capable of with our own minds.
Much as a microscope is a tool to help us see things that are too small
for our own eyes, computer modeling is a tool that can help reveal the
dynamics and predictions of an idea that is too complex for our own
brains. Nevertheless, it can be useful and interesting to explore how
the role of modeling differs for different projects. In this Review, I
have chosen four informal qualitative categories within which to
highlight some recently published modeling projects: exploration of
concepts, hypothesis testing, reverse-engineering, and multi-scale
integrative modeling. The key distinctions between these categories
concern the interplay between theory and experiment: how well
developed are the ideas in the field? Are there rough ideas which need
exploring or concrete hypotheses that need challenging? Or perhaps
no clear hypothesis exists at all, and the modeling seeks to find one.
This is not an in-depth discussion on the roles of modeling in biology
— a large topic on which some excellent articles have been written
(Gunawardena, 2014; Brodland, 2015) — nor should these categories
be considered definitive or rigorously mutually exclusive; in some
studies, modeling takes on multiple roles (and could be assigned
to more than one of these categories). Instead, they represent a
necessarily subjective, but I think meaningful, way to distinguish the
primary role of modeling in each case.

Worth noting is the role of prediction. Rather than giving
prediction its own category, I consider that making predictions is a
universal outcome of all models, and therefore applies to all
categories. For example, in the first category (concept exploration)
qualitative predictions may emerge about the impact of increasing
versus decreasing a given parameter. Conversely, in the second
category (testing concrete hypotheses) predictions will be the
optimal values of parameters that best explain the data.

Hypothesis generation via the exploration of concepts and
plausibility testing

A very common and productive use for computer modeling is to
explore informal or qualitative ideas. At one level this might be
considered a kind of ‘sanity checking’ — reassuring the researcher
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Box 1. Commonly used methods to represent tissues in computer models

This list of four common modeling frameworks starts with the most abstract and works towards more detailed representations. Note that only the
black/gray parts of the diagrams below represent the formal models. The green shapes have only been added as a rough annotation to illustrate
the relationship between the models and the cells that they represent.

Meshes to represent tissue as a continuum

Various methods aim to consider tissue like a continuous material, rather than explicitly representing

individual cells. In these cases, the equations that define the dynamics of the variables (such as O
forces, cell proliferation rates, gene expression levels, protein concentrations) are called partial
differential equations (PDEs). In practice, the methods for solving PDEs — such as the finite
element method (FEM) or the simpler finite volume method (FVM) — still require the continuous
space of the tissue to be discretized into a collection of small elements, which together create a
mesh. Each element (usually triangles or quadrilaterals in 2D, and tetrahedra or hexahedra in
3D) represents a small region of tissue with multiple cells. The brain modeling by Tallinen et al.
(2016) described in the main text (Fig. 2A) is an example of this approach.

|

Vertex models

These have similarities with the meshes above, but the structure explicitly represents individual
cell boundaries, and thus the effects of changing cell shapes can be considered in the model.
Each vertex represents a cell boundary point, and the segments connecting them represent the
cell membrane or wall. This model is convenient for modeling 2D epithelial sheets, but almost
intractable for 3D mesenchyme due to the complexity of the 3D cellular geometry. Cell division is
captured explicitly in the model by the insertion of new cell membrane across the dividing cell. A
good discussion of this approach for modeling epithelial sheets is given by Fletcheretal. (2014).

MORE ABSTRACT

Centroid models

These can be considered the inverse of vertex models — instead of representing the boundaries,
they represent the cells themselves. Specifically, each point represents the approximate
location (centroid) of a cell. Two cells only interact with each other if they are close enough
(within each other’s radius of influence). So, unlike the relative stability of the meshes described
above, in a centroid model the graph of cell-cell interactions (dashed gray lines) is very dynamic
and must be constantly updated. However, avoiding the need to maintain a formal mesh
structure makes the model flexible and more convenient for simulating 3D tissues. The two
models shown in Fig. 4 are both centroid models.

Cellular Potts models

Cellular Potts models (CPMs) are fundamentally different from those described above. All the
previous models involve elements that track the movement of the tissue, i.e. the positions of the
elements, vertices or centroids can change over time. In a CPM, by contrast, space is
discretized into a fixed lattice. The lattice never moves, but instead the state of each site in the
lattice can switch between different values. A cell is represented as a contiguous collection of
sites containing the same cell identification value. As such, a CPM can model the impact of quite
v complex cell shapes, but is computationally slower than the previous methods. The model used
by Vroomans et al. (2015) to explore intercalation (Fig. 1C) is a CPM.

MORE DETAILED

that an idea that seems reasonable is indeed theoretically plausible.
At a deeper level, it might be a useful way to develop an intuitive
feeling of how the parameters of a system influence the result. For
example: what would be the effect of increasing proliferation rates
on the shape of a tissue, or of reducing the expression level of a
particular gene in a circuit? These results can be considered a
qualitative type of prediction, helping to propose concrete
experiments. Within this category, there is a spectrum of how
much information from the real system is incorporated into the
model. The model may indeed be very abstract, and might not
represent a particular species but rather explore the basic principles
of a general developmental process. These models ask the question:
if my system were driven by the following set of rules could the
behavior I am interested in emerge, or, what range of behaviors
could emerge? These questions may be at the level of cellular
activities or molecular patterning, or both.

A recent example of this exploratory approach at the molecular
level is the work of Dhillon et al. (2017), who wished to understand
the control of skin patterning in lizards. A common idea is that the
mechanism underlying skin patterning involves some form of
reaction-diffusion system, in which two or more diffusible

molecules take part in dynamic reactions and spontaneously cause
spatial symmetry-breaking to create periodic patterns of
concentration — a phenomenon first discovered by Alan Turing
(Turing, 1952). Such systems are believed to underlie a variety of
developmental patterning processes, including the specification of
digits, feather buds, hair follicles, ruggae and others (Sheth et al.,
2012; Raspopovic et al., 2014; Economou et al., 2012; Marcon and
Sharpe, 2012; Glover et al., 2017). The goal of modeling in Dhillon
et al. (2017) was not to seek a basic understanding of how Turing
patterns arise, or how external influences can alter the pattern — such
an understanding already exists. Instead, the authors set out to
explore how the specific 3D curvature of the lizard skin would
impact these patterns, and whether this would lead to realistic
lizard patterns. They developed a numerical simulation allowing
them to explore the equations on variously shaped abstract
surfaces (Fig. 1A), and were able to show the theoretical
plausibility of the model on a realistic lizard shape (Fig. 1B).
Furthermore, their approach revealed that subtle asymmetries in
3D curvatures could influence the pattern dramatically, thus
revealing a feature that is impossible to explore without a computer
simulation.
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Box 2. Modeling cell states and molecular circuits

In addition to choosing a formalism to represent the dynamically changing shape of the tissue (Box 1), many models also address questions
about changes in cell state (for example, differentiation or patterning). Again, a wide range of abstractions is possible, from models that skip over
the molecular details of how cell states are controlled, to detailed models of the molecular circuitry. Importantly, there is no required
correspondence between levels in Box 2 with Box 1. A CPM that has high detail about cell shapes may use very abstract rules about cell type,
and vice versa; a course-grained mesh representation of tissue could be coupled with a very detailed biochemical model of molecular
interactions.

Cell state rules

A The most abstract level to model cell state changes is simply to list the different possible states
(e.g. cell types) and define rules that govern the probabilities of switching from one to another
(p1-p4). Inthis case, each cell only has one variable representing its entire state. There are no
‘sub-variables’ representing the states of parts of the cell (e.g. molecular states). The dashed
arrows indicate that cells in one state may feedback to influence the probabilities for an earlier
fate choice. An interesting recent example of this approach can be seen in Kunche et al.
(2016).

Boolean circuits

If the model should capture some molecular states within a cell, a first level of abstraction is to
consider each variable as Boolean, i.e. only ON or OFF (1 or 0). This may represent the
presence or absence of a molecule, or the active versus inactive state. An example of this
approach for modeling pattering of the early Drosophila embryo can be seen in Cheng et al.
(2013).

MORE ABSTRACT

Gene regulatory circuits (GRNs)

An intermediate level of circuit description is known as a GRN. The expression level of each
gene in the circuit is represented as a continuous variable. The regulatory impact of each gene
on another is captured by regulatory parameters (r;-r7), and differential equations calculate
the updated levels at each time point. Importantly, the arrows in such a model do not represent
single biochemical interactions, but are typically abstract representations of a chain of
molecular events. For example, a single arrow may represent how the expression of one
transcription factor influences the expression of another, even though, biochemically, this
involves processes such as transcription, splicing, nuclear export, translation and nuclear
import. This category of model is widely used, and can be seen in Fig. 1E, Fig. 2D, Fig. 3A-C
and Fig. 4B,C.

Biochemical reactions

The least abstract models of molecular circuitry treat all interactions as true biochemical reactions. EI

In this case, conservation of mass is respected and the rate constants (k;-k,) describe + RN n ks N
simple mass-action kinetics. This approach is often used to model signal transduction Nk Nk
pathways, and can also be used to model the binding of a transcription factor to a DNA 17

v sequence.

MORE DETAILED

Vroomans et al. (2015) provides another example of this
approach, this time exploring both molecular patterning and active
cellular intercalations taking place during convergent extension — a
morphogenetic process that drives tissue elongation. A number of
known cases of convergent extension occur in tissues that already
exhibit alternating stripes of gene expression, and an unresolved
question is how the intercalation movements avoid disturbing this
pattern. To explore this, the authors used a 2D cellular Potts model
(see Box 1) to ask whether an oriented cell intercalation process
would tend to disrupt a molecular pre-pattern of segments (Fig. 1C).
Their purely theoretical study did not focus on a particular species,
but rather explored the general principles. They showed that if
patterning and intercalation were not linked in any way, then
convergent extension could indeed disrupt the pattern. However, the
model also allowed the authors to explore another set of rules: what
would happen if cells exhibited segment-specific adhesion
preferences? Not only did this solve the problem, but it also
showed that such cell adhesion patterns could act as a driving force
for the intercalation itself.

Ronellenfitsch and Katifori (2016) used a slightly more abstract
model to explore a very different type of patterning question: how
do vasculatures develop such that they are highly organized,
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hierarchically ordered, and optimally efficient in distributing
nutrients? The hypothesis they wished to test was that growth of
the tissue domain might be the key to forming networks with the
desired characteristics. Again, their goal was to explore this idea as a
potential universal mechanism that might explain a wide variety of
cases, from the veins of plant leaves to the capillaries of mammalian
eye balls, not to study it in a specific species. Their model ‘coarse-
grained’ the tissue, i.e. rather than considering the tissue cell-by-
cell, they modeled it as a roughly uniform hexagonal 2D network of
small vessels, each of which can grow, shrink or be pruned away
(Fig. 1D). Blood flow was simulated through the graph, and rules
were then explored for (1) how the growth of each graph segment is
controlled by the flow it experiences, and also (2) how the tissue as a
whole grows over time. They were able to confirm that growth of the
tissue domain is one mechanism by which the network can be
shaped into a more efficient hierarchical arrangement — the gradual,
progressive nature of patterning (provided by the growth)
apparently helping to avoid suboptimal arrangements. Although
this does not prove that the model is correct for a given species, its
value is in adding to our ‘repertoire’ of potential organizational
phenomena and giving us theoretical ‘building blocks” with which
to explain future experimental observations.

DEVELOPMENT
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Fig. 1. Models to explore concepts and
generate hypotheses. (A) Subtle
changes in curvature (represented by
gray shading on the spheres) can alter
the pattern (red-purple shading) formed
by a reaction-diffusion system in non-
obvious ways. (B) Applying this model to
realistic curved surfaces of gecko shapes
reveals how skin patterns may be
influenced and aligned by the local
curvature of the body. Images (A,B)
reproduced with permission from Dhillon
et al. (2017). (C) A cellular Potts model
was used to explore the impact of cell
adhesion in maintaining a molecular pre-
pattern (stripes of green and red) during
the process of convergent extension.
Without segment-specific adhesion the
pattern is disrupted (left), whereas
including this behavior maintains the
pattern (right). Images reproduced with
permission from Vroomans et al. (2015).
(D) A very different and abstract graph-
based model of vascular networks
explored the impact of tissue growth on
the final branching pattern of a
vasculature. In this model, the whole
potential space of the vascular network is
represented as a regular hexagonal
graph and an abstract blood flow is
simulated through the graph [L and F,
are the length and flow of element e, a;
and S; are the area and net current of
node i; see Ronellenfitsch and Katifori
(2016) for more details]. Using this
model (a-d), it was shown that growth
causes the simulated networks to exhibit
the hierarchal characteristics seen in real
networks. Images reproduced, with
permission, from Ronellenfitsch and
Katifori (2016). (E) A BMP-Sox9-Wnt
(BSW) network is thought to generate the
stripe-like gene expression patterns that
drive digit formation in mice. A simulation
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The recent study by Onimaru et al. (2016) provides another
example of this exploratory approach, this time with an evolutionary
angle, addressing how developmental patterns may evolve between
species. Previous studies had proposed that a Turing system could
explain the patterning of digits during mouse limb development
(Raspopovic et al., 2014). Specifically, that a molecular circuit
comprising one cell-autonomous transcription factor, Sox9, and two
signaling pathways, BMP and Wnt, could represent the feedback
loops capable of spontaneously producing the stripe-like pattern of
the mouse digits (Fig. 1E). Onimaru et al. (2016) sought to explore

of the BSW model in a growing domain
representing the developing fin bud of the
catshark Scyliorhinus canicula reveals
that it can produce spot-like expression
patterns that are similar to those seen

in vivo. Images reproduced, with
permission, from Onimaru et al. (2016).
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whether this same basic model could be modified to produce the
rather different expression patterns seen in the fin bud of the catshark
Scyliorhinus canicula — a row of spots. In some senses, this model
could be seen as moving towards the second category — hypothesis
testing — but there was no tuning of parameters to produce the correct
number of spots, nor was the comparison with data quantitative, so
the project is still best described as ‘exploratory’, or testing the
plausibility of the idea. It did however (as with all modeling) provide
some qualitative predictions. In particular, it predicted that spots of
Sox9 expression should disappear upon repression of the BMP
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signaling pathway, and that the opposite would occur in response to
inhibiting the Wnt pathway. Both of these predictions were
subsequently tested experimentally and found to be correct.

It should be emphasized that although computer modeling played
a similar role in all four studies discussed above — that of hypothesis
exploration — the models themselves were of very different types,
covering (respectively) a mesh-based finite element model, a
cellular Potts model, a graph-based model, and a finite volume
model. The distinctions between these common modeling
formalisms are discussed in Box 1.

Hypothesis testing against quantitative data

A natural extension to testing the theoretical plausibility of an idea is
to gather accurate or quantitative data to challenge a specific
hypothesis in a more rigorous manner. A model can often be seen as
an input-output function. A quantitative test of the model simply
asks: if I accurately measure both the known input and known
output (which may be data at the molecular, cellular or tissue level)
does my proposed function make a good prediction of output when I
give it the correct input? The distinction between this approach and
that discussed in the previous section is largely that the hypotheses
are already well defined (i.e. so the approach is not so exploratory),
some degree of quantitative data are used, and the comparison is
fairly rigorous. For this reason, such studies tend to focus on
specific, named species, rather than universal principles. A good
example of this distinction can be seen in the question of limb bud
elongation. Two earlier computer models had explored the
‘proliferation gradient hypothesis’ — the idea that elongation of the
bud could be achieved simply by having higher rates of tissue
growth in the distal tip than in the rest of the bud (Poplawski et al.,
2007; Morishita and Iwasa, 2008). Both models supported the
theoretical plausibility of the idea, thereby lending further weight to
this hypothesis, but being exploratory they were not focused on
measurements from a particular species. Later, the hypothesis was
scrutinized against quantitative data from mouse limb buds (Boehm
et al., 2010) by quantifying both the input data (the 3D distribution
of proliferation rates) and the output data (the 3D shape change over
6 h of growth), and attempting to use the former to explain the latter.
In fact, the exercise produced the opposite conclusion, i.e. that the
simple hypothesis was not compatible with the data. Thus, while the
earlier papers had shown that the idea was theoretically plausible,
performing this additional step of hypothesis testing against
quantitative data proved that it was not actually true, at least for
the mouse. This example highlights the important role of
falsification. A fit between model and data is never a proof that
the model is correct, while, conversely, a model that fails does in
fact provide concrete proof that something is missing from the
model (or at least from that version of the model).

Even a predefined conceptual model will usually contain some
parameters with unknown values and so, in practice, hypothesis
testing usually requires some form of parameter fitting (i.e.
exploring whether a combination of parameter values exists that
allows the model to fit the data). Simple models may have few
unknown parameters, which can be explored manually or even
found by mathematical analysis. This is the case for the next two
examples described here. By contrast, more complex hypotheses
may have many parameters, which interact in non-linear and non-
intuitive manners, and thus require very different parameter
optimization techniques (as described later).

Tallinen et al. (2016) tackled a mechanics-based question regarding
the development of the human brain. They addressed the question of
how the shapes of the convoluted gyrifications of the cortex are
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controlled. A few distinct ideas have been put forward over the years to
explain this process of gyrification. One of the oldest proposals
suggests that the convolutions are a mechanical buckling effect of
differential growth rates in the different cortical layers. However, the
complexity and reproducibility of these convolutions had also led to
alternative suggestions; for example, that the process was driven by
specific axonal tensions or by more direct biochemical/genetic control
(van Essen, 1997; Sun and Hevner, 2014). Earlier mathematical
modeling supported the differential growth hypothesis, but due to
technical challenges these studies were either focused on individual
folds or were unable to reproduce a realistic whole-brain morphology
(Richman et al., 1975; Nie et al., 2010). Tallinen et al. (2016), taking
advantage of accurate 3D brain imaging and sophisticated computer
modeling, were able to ask the question: to what extent can this simple
but specific mechanical hypothesis explain the known morphology?
The input data were an MRI scan of a fetal brain at gestational week
22, and the output data were similar scans for older fetal brains or adult
brains. By developing a finite element model with suitable material
properties for the different cortical layers, and then estimating the
relative growth rates from morphometric analyses of the real brains,
the authors were able to test the hypothesis. Their results showed that a
large part of the morphology could indeed be explained by this simple
idea (Fig. 2A). The model also took them a little further, indicating
that the alignment of some of the folds may be controlled by the local
curvature of the tissue.

Another recent case of systematic and quantitative hypothesis
testing concerns how a growing tissue controls its final size.
Vollmer et al. (2016) sought to explore the molecular mechanisms
that could control the known progressive decrease in growth rates
during Drosophila imaginal eye disc development. In particular,
they wished to test a few simple distinct hypotheses against
quantitative data to see which were compatible with reality. Unlike
the studies described above, the authors were able to simplify the
problem to a small set of differential equations, such that the spatial
coordinates of the tissue did not have to be represented explicitly.
Instead, the equations represent the areas of two different growing
regions of the disc (the regions anterior and posterior of the
morphogenetic furrow — a dynamic furrow that moves across the
disc) and the changing growth rates over time. As such, this case is
best described as a mathematical model, rather than a computational
model. The simplest hypotheses explored were purely time-
dependent models in which a cell-autonomous growth factor is
degraded over time, either at a fixed rate or following a power law. A
third model was that the growth factor does not degrade appreciably,
but rather is diluted as a direct consequence of the increasing size of
the imaginal disc over time.

To test these simple models, Vollmer et al. (2016) performed
extensive quantitative measurements of the increasing disc area and
the changing growth rates over time. Remarkably, all three models
were able to fit the data very well; in other words, the data thus far
could not distinguish between these very different molecular
mechanisms, i.e. it could not falsify any of them (Fig. 2B). The
modeling, however, helped to define which experiments might be
more powerful at distinguishing between the hypotheses, and
revealed that the measured robustness to various perturbations (e.g.
temperature shifts and grafting experiments) should be more
informative. Performing equivalent virtual perturbations to the
mathematical models was indeed able to argue strongly against the
power law model, and to favor the area-dependent growth law.
However, even with these extra data, at least one version of each
model (growth factor decay versus growth factor dilution) could still
fit the data well. It was noted that the dilution model made a specific

DEVELOPMENT



REVIEW

Development (2017) 144, 4214-4225 doi:10.1242/dev.151274

A B
o
Q £8
GW 22 =8
- <<
g
20 60 100 140
Lp [um]
C
*.” Upd molecules
D WT Nkx2.2 -/- Olig2 -/- Pax6 -/- Irx3 -/-
1 1 1
rx3 D
<
Pax 6 5
/ \ “{Ej 0 q’ —I 0 — 0 — 0 1
- ﬂ € 1 1 1 1
— \__I=vv/ B 3 —_ — —_—
Nkx2.2 V) Olig2 - m m 5 {
\ / Floor Plate ] |
Shh / Gli Activit: L‘ L — \— L'
e Notochord. 0 ' 0 0 0 0 1

Distance from source A.U.

Fig. 2. Testing hypotheses. (A) A finite element model of the growth of the human brain, and the buckling and folding of the cortex. By starting from an accurate
initial 3D shape, and using estimated values for the real growth rates, the simulation was able to verify that a simple buckling model (i.e. following tangential
expansion) fits the observed morphology very well. GW, gestational weeks. Images reproduced, with permission, from Tallinen et al. (2016). (B) A plot of the
posterior length of the Drosophila eye disc (Lp) against its area (A), and the best-fit predictions of four different models. The gray line (constant growth rate) clearly
does not fit the data, but the remaining three models (colored lines) all fit similarly well, indicating that the wild-type data alone are insufficient to distinguish
between the three alternative hypotheses (Vollmer et al., 2016). (C) The final best model (Volimer et al., 2017) proposes that the diffusible cytokine Upd (red dots)
has a fixed total amount at the start of the process. The growth rate in the anterior region [the dark gray zone to the left of the morphogenetic furrow (MF); yellow] is
proportional to the Upd concentration. As growth proceeds and the area increases, Upd is diluted and thus the growth rate is continually decreasing. During this
time, the MF moves through the tissue from posterior to anterior (right to left), until it has eventually covered the whole eye disc and growth then ceases.

(D) Zagorski et al. (2017) tested a specific circuit (left) for its ability to explain dorsoventral (DV) patterning in the neural tube (center). Data on the DV expression
patterns of genes in both wild type and mutants (top graphs) were used to fit parameter values for the binding constants in the model. The final optimized version of
the model was able to calculate expressions patterns (bottom graphs) that fitted well to the real data. Images reproduced, with permission, from Cohen et al.

(2014).

prediction — that the growth factor should be very stable and
diffusible because although growth rates decline uniformly, the
actual rates of growth (and thus dilution) are non-uniform. Diffusion
(or active transport) would thus be necessary to ensure that the rate
of growth rate decrease was integrated across the whole tissue. In a
follow-up study (Vollmer et al., 2017), the authors therefore chose
one of the hypotheses — growth factor dilution — and tested it
experimentally. They focused on the cytokine Unpaired (Upd),
which had previously been suggested to behave appropriately for
the dilution model (very stable and diffusible), and performed

experiments in which the levels of this protein were genetically
manipulated. Again, modeling entered the study, but this time was
used to test just this one specific hypothesis, rather than comparing a
collection of alternatives. In this study, the model and the data fitted
very well, so although the simpler time-dependent model had not
strictly been ruled out, the study was able to provide very strong
evidence in favor of the dilution model (Fig. 2C).

The two examples of hypothesis testing described above involve
very few unknown parameters. However, testing a specific model
that contains many unknown parameters is also possible. For
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instance, Cohen et al. (2014) provided an example in which a
specific regulatory circuit involving five different molecular factors
was fitted to quantitative data on the patterning of these factors
along the dorsoventral (DV) axis of the mouse neural tube (Fig. 2D).
A collection of these factors with restricted DV expression patterns
are known to be under the control of the GLI1 transcription factor,
which itself is regulated by the sonic hedgehog (Shh) morphogen. A
simple idea called the ‘affinity threshold model” had proposed that
the targets that were only expressed close to the morphogen source
would have less sensitive binding sites for morphogen-regulated
transcription factors (MR-TFs), whereas those expressed further
way must have more sensitive binding sites. However, this fails to
explain results from mutants in which the DV expression boundaries
of different genes shift in opposite directions. Cohen et al. (2014)
wanted to explore whether a circuit based on the bi-functional nature
of GLI1 could explain this. GLI1 is known to exist in two forms: the
native expressed form acts as a transcriptional repressor, whereas in
the presence of Shh signaling it is processed to an activator, which
nevertheless still binds to the same regulatory sequences. Could a
specific proposed gene circuit that included this bi-functional MR-
TF explain the observed data, both for the wild type and mutants?
The number of unknown parameter values for a model like this is
high; even after choosing fixed values for the production and decay
rates of each gene product, there remain 15 parameters representing
binding affinities. To determine if a successful combination of
parameter values exists, the authors first measured the output of the
system i.e. the expression patterns for the four downstream genes of
the circuit along the DV axis, in the wild type and in six other mutants
(including both single and double knockouts). A variety of methods
exist for finding optimal parameter values in cases like these: gradient
descent, simulated annealing, evolutionary algorithms and others.
Among these are Bayesian approaches, which distinguish themselves
by not just finding solutions per se, but directly taking the likelihood
of'the solution into account. The authors used an approach related to a
Bayesian method to find optimal parameter values, and were indeed
able to find a solution that agrees well with the output data (Fig. 2D).
Thus, the authors had tested a specific mechanistic hypothesis for DV
patterning, which had emerged from prior work on the topic, and
were able to confirm that it was indeed compatible with quantitative
data from the real system.

Inference or reverse-engineering of predictive models from
quantitative data

A different approach from the two mentioned above is to start without
any intuitive model at all. This can be thought of as a conceptual
extension of the parameter optimization discussed previously, but
instead of searching for the best-fitting parameters for a predefined
model, we expand the nature of the search to perform a more open
exploration through ‘model space’ to find many different models that
fit existing data. This is a very powerful approach that is likely to
become increasingly common in developmental biology, since the
complexity of biological systems makes it hard to intuitively imagine
all possible models that could fit our existing observations. ‘Reverse-
engineering’ is a suitable term, as it implies not just tweaking
parameters on a given proposal, but really finding different
combinations of the ‘nuts-and-bolts’ that might make a system
work. The idea is particularly well suited for models based on gene
circuits because even small changes to a circuit can make it function
in a very different way. This has been well illustrated by Cotterell and
Sharpe (2010), who showed that multiple distinct gene circuits can
explain stripe formation, despite each using a qualitatively different
dynamical mechanism to explain the same result.
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For reverse-engineering, if no models fit the data well, then this is
a useful concrete statement that the models are missing something
important. If multiple models fit, then this is also a productive
scenario. On the one hand, various criteria can be used to judge the
likelihood of a model, for example how constrained the parameter
values are. Models that require very specific parameter values are
fragile, and less likely to be true than those with more relaxed
constraints. This can be explored by parameter sensitivity analysis
or by using Bayesian approaches. On the other hand, if the same
data can be explained by multiple models with qualitatively
different underlying mechanisms, then this allows distinct testable
predictions to be made, thus guiding a new set of experiments that
will distinguish between the models. The rare scenario in which
only one model fits the data is the most suspicious, as it suggests that
the modeling assumptions have already biased the result towards a
particular outcome.

The reverse-engineering of circuits has a long history in
Drosophila developmental biology, where it was pioneered by the
Reinitz and Jaeger groups to explain gap gene expression patterns
(Reinitz and Sharp, 1995; Jaeger et al., 2004; Crombach et al.,
2014). However, this general idea has recently been applied to a
wider variety of developmental systems. For example, Uzkudun
etal. (2015) used a gene circuit approach that was very similar to the
earlier Reinitz models, but applied it to investigate mouse limb bud
development. Whereas in the original Drosophila studies the
embryo was abstracted to a fixed 1D domain, Uzkudun et al. (2015)
first incorporated a 2D dynamic representation of the limb bud
growing over time (Marcon et al., 2011). They generated data sets
on the dynamic expression patterns of key genes for proximodistal
patterning (Fig. 3A), and then used the ‘connectionist’ framework to
simulate hypothetical gene circuits, in which the positive and
negative inputs to a given gene are added linearly and then
transformed by a simple sigmoid Hill function (Mjolsness et al.,
1991). The sigmoid function was not intended to represent any
accurate biochemical details, but rather to capture two key
qualitative features of gene regulation: (1) the necessary saturation
of concentrations for any real-world system; and (2) the potential for
gene regulatory circuits to exhibit cooperative activation. By
performing parameter optimization on all of the possible circuit
models, the authors were able to reveal the circuit best able to
explain the data. Furthermore, they could then go beyond the wild-
type data and test the model against a variety of published
experimental perturbations, which included genetic experiments,
grafting experiments and bead implantation. The results of these
virtual experiments further refined the network, leading to a circuit
that had not previously been proposed. This non-obvious
mechanism was named the ‘cross-over model’ as it suggested that
the distal signal (FGF) controls the more proximal Hox gene
(Hoxall), whereas the proximal signal (thought to be retinoic acid)
controls the more distal Hox gene (Hoxal3).

A further advance on this approach was reported by Lobo and
Levin (2015), who developed a computational system for reverse-
engineering the circuit that controls the regeneration of planarian
flatworms, which show a striking capacity to regenerate their bodies
after dramatic injuries. Rather than using only wild-type data to train
their network, the authors first developed a data set that formalized
the published results of various different regeneration experiments
including both phenotypic and molecular data (Fig. 3B). This
allowed the computational system to automatically test models
against experimental perturbations, rather than just the wild-type
scenario (as in Uzkudun et al., 2015). They also allowed nodes in
the circuit that represent unknown genes, thus including the
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Fig. 3. Inference or reverse-engineering of predictive models from quantitative data. (A) Development of the limb bud is thought to involve FGF and retinoic
acid (RA) as well as the transcription factors Meis1/2, Hoxa11 and Hoxa13, but the circuitry between these factors is unclear (top). In Uzkudun et al. (2015),
successive hypothetical gene circuits were tested against the mapped spatiotemporal gene expression data (bottom: Meis1/2 is red, Hoxa11 is green, and
Hoxa13is blue). In the example shown here, the predicted patterns of the model can be seen to improve as the simulation gradually finds better parameter values
through multiple iterations of optimization. (B) Lobo and Levin (2015) performed a related approach for planarian regeneration. Rather than using detailed
spatiotemporal data of wild-type gene expression patterns, they used a more abstract (1D) representation but also incorporated data from numerous experimental
perturbations. Also, rather than only optimizing a given set of regulatory parameters, they allowed circuits to evolve their topological connections during the
reverse-engineering process. (C) Crocker et al. (2016) also reverse-engineered a gene regulatory circuit, this time that responsible for the stripe pattern of eve in
the early Drosophila embryo. Similar to the limb case, detailed spatial data (top) were used to train the model by finding the best-fit interaction values. However,
unlike the Uzkudun et al. and Lobo and Levin studies, the model used in Crocker et al. was not dynamic. Instead, a logarithmic regression (center) was found for
the input genes that best predicted an instantaneous, or steady-state pattern, of eve (bottom). Images reproduced, with permission, from Crocker et al. (2016).

potential to predict new genes that might be required to obtain
certain functional results. Finally, their model-generation algorithm
was not limited to varying a fixed set of regulatory parameters, but
was also allowed to reorganize the topology of the circuits to be
tested. By combining all these features together, Lobo and Levin
(2015) were able to find (and thus predict) a genetic circuit that
could explain all known features of planarian regeneration.
Satisfyingly, without putting any knowledge of known regulatory
interactions into the model, certain core features arose naturally in
the predicted circuit (such as canonical Wnt activity through (-
catenin, its repression by APC, and its ability to inhibit head

structures). Additionally, the inclusion of new unknown molecular
components led not only to predictions of where they would sit in
the circuit, but also to predictions of their dynamic activity over time
and space, which helps in experimentally searching for molecular
candidates.

Two more recent examples contest to the increasing relevance of
reverse-engineering in developmental biology. Crocker et al. (2016)
built on their previous modeling of Drosophila patterning (Ilsley
et al., 2013) to explore how the pair-rule gene even-skipped (eve) is
regulated (Fig. 3C). This gene is regulated into a more complex
pattern of stripes than the gap genes mentioned above, and
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consequently the authors did not model the pattern as a true dynamic
system evolving its state over time. Instead, they chose a single time
point and provided as a ‘given’ the spatial pattern of all genes
considered to be inputs to eve at that time. The goal was to explain
the spatial activity of particular eve enhancers (each of which is
responsible for a subset of the full expression pattern). In particular,
they sought to explain these enhancer patterns as a simple logistic
regression function of the input patterns. Despite the rather complex
patterns of eve enhancer activity, this approach worked very well
and was even able to predict the outcome of selectively inhibiting
individual enhancers (by genetically engineering sequence-specific
repressors). Since no prior hypothesis had been used to define which
regulatory interactions were more or less important to the eve stripes,
the final optimized set of interactions represented a de novo
inference of the real circuit.

The last example was performed within a study of how mouse
neural tube cells integrate Shh and BMP signals to determine their
position along the DV axis (Zagorski et al., 2017). The authors
generated an extensive grid of experimental data on how these cells
responded to different combinations of the two signals. This defined
empirically the ‘input-output’ function of the cells, and their
computational question was: which circuit design would be capable
of replicating this function? As in the Drosophila study above,
the topology of the hypothetical circuit was not altered — just the
parameter values. But again, this revealed that certain regulatory
connections of the circuit were not required, thus in effect making a
prediction about the optimal circuit topology.

Beyond single developmental concepts, towards truly multi-
scale, morphodynamic models

The modeling studies discussed above (and most projects carried
out to date) have focused on what we might call ‘single
phenomena’. How does a molecular gradient scale? How does
tissue intercalate? What controls the curvature of epithelial bending?
What minimal model explains growth control? In other words, we
have mostly concerned ourselves with deconstructing the
complexity of development into tractable and understandable
modules. This reductionist approach has of course been one of the
keys to success in all fields of science. However, there are certain
essential features of living systems lying at the heart of biology that
may not be captured in this way. Beyond being just a collection of
discrete modules, organisms must also display a higher logic, which
exhibits itself in the coordination of many simultaneous processes.
For example, the question of limb development is normally broken
down into various sub-questions: proximodistal (PD) patterning,
anteroposterior (AP) patterning, the local self-organized patterning
of the digital rays, and also the differential and anisotropic growth
that creates non-trivial flows of tissue and shape changes (Fig. 4A).
However, these multiple processes interact in at least two ways.
First, many specific molecules (for example diffusible signaling
proteins, such as FGF or BMP) are known to affect many, if not all,
of these processes simultaneously. Second, the global tissue
movements that occur during limb morphogenesis are largely
controlled by molecular patterning, but these movements also
feedback to alter the geometric arrangement of signaling cells, thus
altering the very same molecular patterning events that drive them.
This scenario raises a number of intriguing scientific questions:
what benefits do the interactions between sub-processes confer on
the system? How does this allow the coordination of multiple
dynamic processes that must collaborate? Conversely, what
constraints does this impose on the system? How difficult is it to
find parameter values that satisfy all these processes at the same
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time? And, most fundamentally: does this change our basic
understanding of how the modules themselves work? These
questions cannot be addressed by only studying the sub-processes
(or modules) one by one.

In the last few years, improvements in computer power have made
it tractable to build complex cell-based simulations that are able to
integrate multiple types and scales of process in the same model, in
particular by combining dynamic gene regulatory circuits with
realistic and flexible tissue dynamics. It should be noted that simple
models that exhibit this morphodynamic feedback have previously
been achieved. The Salazar-Cuidad group, for example,
successfully developed a model of tooth development that
included this feedback between molecular patterning and physical
morphogenesis (Salazar-Ciudad and Jernvall, 2010), and agent-
based models have also incorporated this large-scale feedback loop
into a simplified model of pancreas development (Setty et al. 2008).
However, these were either limited in scope, or somewhat abstracted
from the real biological process, and the degree of sophistication
achieved in more recent simulations has reached a much higher
level. For instance, Marin-Reira et al. (2016) have created a very
flexible modeling platform called EmbryoMaker that allows the
specification of various active cell behaviors and modes. In
particular, in addition to simpler mesenchymal cells, it includes
definitions of polarized epithelial cells which can be mechanically
linked into epithelial sheets, displaying stiffness with a realistic
resistance to bending and other forces. It also provides a fairly
comprehensive way to specify molecular reactions, or gene
regulatory events, and these can in turn control the active
behaviors of cell movements. One impressive demonstration of
the versatility of this platform was a simulation of a generic animal
gastrulation process (Fig. 4B), which included both mesenchymal
cells and epithelial sheets, molecular control of cellular activities,
differential growth, invagination of the ventral surface by active
bending, and cellular rearrangements. A similarly impressive
achievement has been made by Delile et al. (2017), who created a
cell-based simulation platform able to cope with both the
mechanical side and the genetic side, leading to the name
MecaGen. They demonstrated the power of the system through
proof-of-concept simulations of gene regulation by Wnt signaling,
compartment formation through induction, epithelialization and
boundary sharpening, and the large-scale morphogenetic
phenomenon of epiboly in zebrafish embryos (Fig. 4C). Modeling
platforms such as these will surely become central to developmental
biology over the next decade or two, as they represent the only way
to study the large-scale integration of multiple processes at different
scales: from the molecular, through the cellular, up to the tissue
level, and the feedback between them. However, we must keep in
mind the general difficulty of meaningful modeling as the number
of free parameters increases, and also the danger of creating models
that simply replicate existing hypotheses rather than challenging
them (as discussed briefly below).

Conclusions

Creating mathematical models, and exploring computer
simulations, has a long, sparse history in developmental biology,
but in recent years it is clearly growing in popularity. Some
important examples of modeling in development could not be fitted
into this Review, most notably plant development and somite
patterning. The latter provides a particularly developed example
of the interaction between theory and experimentation — almost
forming a specialized field in its own right. However, I have tried to
include a diversity of recent examples to illustrate that although
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Fig. 4. Multi-scale modeling platforms can integrate both molecular and mechanical processes. (A) Most developmental systems (e.g. the limb bud) have
typically been deconstructed into sub-questions such as proximodistal patterning (PD), anteroposterior patterning (AP), digit patterning, and spatial control of
growth. However, it is increasingly clear that multiple signaling pathways (FGF, Shh, BMP, WNT) have impacts on many of these ‘modules’. The way that different
pathways affect multiple processes, and the consequent interaction of the processes with each other, raises fundamental scientific questions about how the
system works. The larger-scale feedback of mechanics onto the molecular control is also relatively poorly understood. (B) A demonstration of the application of
EmbryoMaker (Marin-Reira et al., 2016), in which a generic animal embryo undergoes gastrulation. The first and second columns show the concentrations of two
gene products (a growth factor, GF2, and a transcription factor, TF5) from the regulatory circuit, with yellow representing high concentration and blue representing
low concentration. Images reproduced, with permission, from Marin-Reira et al. (2016). (C) Schematic of the mechanical and genetic aspects of MecaGen (Delile
et al., 2017). A time-course from the demonstration of zebrafish epiboly is shown beneath. The images show a virtual slice through the model, but the full
simulation is in 3D plus time. Images reproduced, with permission, from Delile et al. (2017).

computer models are fundamentally always the same thing — a tool
to help treat ideas in a more rigorous manner — in reality they often
fit into the scientific process in distinct ways: exploring concepts,
testing the theoretical plausibility of ideas, familiarizing ourselves
with the distinct roles of different parameters, testing a concrete
hypothesis against quantitative data, or simply helping us to
understand why a well-known model actually works (and there will
be other ideas that I have not covered here).

The last category of modeling discussed above — the truly multi-
scale, morphodynamic models — may present something of a
particular dilemma, and thus can serve to illustrate some of the
potential pitfalls of modeling. On the one hand, it is clear that the
full development of an organ necessarily involves many different
processes at different scales. The developmental biology
community has been very successful at studying and modeling
these processes separately (as testified by most of the ‘single
phenomenon’ studies discussed in this Review), but if suitable tools
existed we would naturally wish to tackle the integration of these

modules as well, i.e. the higher-level logic of the whole system.
However, it is also well known that complex models with tens or
hundreds of free parameters bring serious new theoretical problems.
The most general description of this is ‘over-fitting’. As the number
of free parameters increases, so does the flexibility of the model to
fit anything, thus weakening its ability to be falsified. As John von
Neumann famously stated: ‘With four parameters I can fit an
elephant, and with five I can make him wiggle his trunk’ (Dyson,
2004). If a model can be adjusted to fit any observation (or any set of
quantitative data), then our confidence in its probability of
describing the correct underlying mechanism diminishes. The
danger then arises that the model is nothing more than a
computational replication of a hypothesis that already existed —
neither challenging it, nor adding to it. The examples mentioned
above concerning limb development serve as a useful illustration.
The earlier models of limb morphogenesis sought only to explore
the concept of the proliferation gradient hypothesis (Poplawski
et al., 2007; Morishita and Iwasa, 2008) rather than challenging it
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with quantitative data. As such, they were able to fit the general
qualitative result (elongation of the bud) and thus potentially give
weight to a hypothesis that was mechanistically incorrect. In this
case, the scientific question and hypothesis were still relatively
simple, and the error was subsequently found relatively easily (by
falsifying the hypothesis with quantitative data). But it is important
to be aware that the risk of this problem rises dramatically if we start
building complex multi-scale models containing vastly more free
parameters.

The correct response to this dilemma is twofold. On the one hand,
we should always be cautious. Modeling is not magic, nor is it
infallible. It is an increasingly essential tool that should be embraced
but, as in all aspects of science, we must constantly question,
challenge and double-check our work in order to retain confidence in
it. The importance of challenging models with data, and attempting to
find their weaknesses, cannot be overstated. The second key
ingredient is quantitative data. John von Neumann’s quote about
the elephant is only half complete. It is not just a question of how
many free parameters a model has, but of the balance between free
parameters versus constraining data. Again, in two of the examples
discussed above (limb bud elongation and eye disc growth) it was the
generation of more high-quality data which allowed the falsification
of incorrect models (for the limb bud accurate data on proliferation
rates, and for the eye disc data on the growth response to
perturbations). Similarly complex multi-scale models will be useful
as long as we constrain them with sufficient amounts of high-quality,
accurate data. For developmental biology, this means data on the
spatiotemporal dynamics of cells and their molecular states, which
fortunately are increasingly possible to obtain by 4D time-lapse
imaging. As such, it seems clear that these ‘next-generation” multi-
scale models will slowly become invaluable, as our field becomes
more quantitative and data driven. Despite the caution required in
using them, they will be the only way to address the bigger questions
of multi-scale integration mentioned above.

In conclusion, the recent examples reviewed here show that the
mathematical and computational modeling of development is a
growing and exciting area. More importantly, it will become
increasingly essential. Biology is characterized by complexity —
many components, non-obvious regulatory logic, non-linear
interactions, dynamics over time and space. It will be impossible
to grasp all that we wish to understand without the help of modeling.
This is true both for small-scale ‘modular’ questions (which often
show non-intuitive behavior, e.g. Figs 1 and 2), as well as for large-
scale examples like the development of an entire organ. Modeling
should thus become a standard tool, available to any developmental
biologist and employed by all in the normal course of their research.
This does not mean that we should all use the same standardized
modeling tools. The field is too young for single, universal
platforms; it will still benefit from different groups trying to address
the same modeling problem in unique ways. Nor does it imply that
everyone should become expert enough to program their own new
modeling frameworks from scratch. As an analogy, few of us know
the maths behind the point-spread function of a microscope or how
to calculate the position of the objective focal plane, and yet we do
understand enough about what a microscope does to happily and
productively use it in our research. Modeling tools should be more
widely available, and some genuine knowledge and training in the
basics of how modeling works should become an important and
standard part of the field. Experimentalists and theoreticians should
work together to make this a reality over the next decade — an
achievement that would no doubt have made D’Arcy Thompson

very happy.
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