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ABSTRACT

Grainy head (Grh) is a conserved transcription factor (TF) controlling
epithelial differentiation and regeneration. To elucidate Grh functions
we identified embryonic Grh targets by ChlP-seq and gene expression
analysis. We show that Grh controls hundreds of target genes.
Repression or activation correlates with the distance of Grh-binding
sites to the transcription start sites of its targets. Analysis of 54 Grh-
responsive enhancers during development and upon wounding
suggests cooperation with distinct TFs in different contexts. In the
airways, Grh-repressed genes encode key TFs involved in branching
and cell differentiation. Reduction of the POU domain TF Ventral veins
lacking (Vvl) largely ameliorates the airway morphogenesis defects of
grh mutants. Vvl and Grh proteins additionally interact with each other
and regulate a set of common enhancers during epithelial
morphogenesis. We conclude that Grh and Vvl participate in a
regulatory network controlling epithelial maturation.

KEY WORDS: Drosophila, Airway, Chip-seq, Epithelial maturation,
Grainy head, Microarray

INTRODUCTION
Genes of the Grainy head (Grh) family encode conserved
transcription factors (TFs) controlling epithelial morphogenesis
and wound healing. Nematodes and flies have a single gri gene,
whereas mice and humans have evolved three genes encoding
Grainy head-like (Grhl) factors (Paré et al., 2012). Grhl proteins can
act as activators or repressors in different biological contexts. For
example, Drosophila Grh activates wound repair genes such as Ddc,
ple and Stit (Cad 96Ca) upon injury (Mace et al., 2005; Wang et al.,
2009), but it represses dpp and tll during early embryonic
development (Huang et al., 1995; Liaw et al., 1995). However,
the molecular mechanisms by which Grhl TFs regulate gene
expression remain unclear.

Grh was originally identified in Drosophila (Bray et al., 1989;
Dynlacht et al., 1989; Johnson et al., 1989; Bray and Kafatos,
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1991). It is expressed in epithelial tissues such as the epidermis,
the tracheal airways, the foregut and hindgut (Bray and Kafatos,
1991), but is also detected in neural stem cells of the CNS (Uv
et al., 1997). grh mutants show a variety of phenotypes in
epidermal barrier formation (Bray and Kafatos, 1991; Mace et al.,
2005), tube size control (Hemphéld et al., 2003), neural stem cell
programming (Almeida and Bray, 2005; Cenci and Gould, 2005;
Maurange et al., 2008; Baumgardt, 2009; Bayraktar and Doe,
2013; Li et al., 2013) and in wing hair orientation (Lee and Adler,
2004). Grh targets in the epidermis include cell adhesion proteins
and matrix components (Paré et al., 2012). Additionally, receptor
kinase signaling upon injury activates Grh to facilitate wound
closure and barrier restoration (Kim and McGinnis, 2011;
Tsarouhas et al., 2014).

Expression of the mammalian family members Grhll-3
(Wilanowski et al., 2002; Ting et al., 2003a) is tissue- and
developmental stage-specific in epithelial organs such as the
epidermis, oral epithelium, kidneys, the digestive tract and lung
(Auden et al., 2006). Analysis of Grall mouse mutants revealed
epidermal thickening, impaired hair anchoring and desmosomal
abnormalities (Wilanowski et al., 2008). Loss of Gril2 causes
early embryonic lethality and neural tube closure failure (Rifat
et al., 2010), while an ENU-induced mutation in Grhl2 revealed
defects in lung development (Pyrgaki et al., 2011). Grhl3 is
essential for neural tube closure, epidermal barrier formation and
wound healing (Ting et al., 2003a,b; Ting et al., 2005; Caddy
et al.,, 2010). Additionally, Grhl mutant mice are extensively
used to model epithelial disease, ranging from hearing loss to
cancer (Gordon et al., 2014). Studies of Grhl2 downstream
genes in mice and in human bronchial cells revealed its key role
in epithelial morphogenesis, cell adhesion, and motility (Gao
et al., 2013; Varma et al., 2014; Aue et al., 2015; Gao et al.,
2015).

Our studies focus on Grh function in the Drosophila airways. The
fly respiratory system (termed trachea) is an epithelial tube network
that extends to internal organs to facilitate gas transport and
exchange. An important step in tubular organ morphogenesis is the
final acquisition of distinct and uniform branch sizes. Grh regulates
tube length selectively, as indicated by the fact that grh mutants
show overelongated airways without any apparent defect in tube
diameter or early branch outgrowth. Instead, Grh regulates cuticle
deposition and epithelial cell shape, and restricts apical cell
membrane expansion during late embryogenesis (Hemphéli et al.,
2003; Luschnig et al., 2006). On the other hand, Grh overexpression
in all tracheal cells during development inhibits branch extension.
Grh targets in airway size control have not been identified and the
molecular mechanism underlying Grh control of tracheal tube size
remains unknown.
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In this study we identified Grh targets in Drosophila embryos
by combining whole-genome ChIP-seq experiments with gene
expression analysis in wild type, grh mutants and in embryos
overexpressing grh in ectodermal epithelial organs. We show that
in addition to genes involved in extracellular matrix assembly and
junction integrity, Grh directly promotes the maturation of the
epithelial innate immune responses. To identify functional Grh
targets in airway morphogenesis we compared the results of a
genome-wide airway-specific RNAi screen with the ChIP-seq
analysis. Among hundreds of conserved Grh targets in the
airways, Grh represses the expression of several key TFs
promoting cell differentiation, including wvl, which encodes a
POU domain TF. Reduction of vvl gene dosage in gri mutants
largely ameliorates the tube overelongation defects, arguing that
repression of vl is a pivotal aspect of Grh function in airway
morphogenesis.
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RESULTS

Genome-wide identification of Grh targets in Drosophila
embryos

To explore the regulatory roles of Grh on a genome-wide scale, we
performed ChIP-seq experiments using stage 16 Drosophila
embryos and either a mouse anti-Grh monoclonal antibody (Bray
etal., 1989; Uvetal., 1997) or a rabbit anti-Grh polyclonal antibody
(Fig. S1). The monoclonal antibody identified 1606 Grh peaks
whereas the rabbit antibody revealed 11,741 binding sites compared
with the control IgG sample; 1587 of these binding sites were
detected with both antibodies and 92.7% (1471/1587) of these
common peaks also include the predicted Grh-binding motif
(Fig. 1A). Although common peaks most likely represent true
Grh-binding sites, the 5599 peaks uniquely revealed by the rabbit
antibody might also represent genuine Grh-binding regions because
they are enriched for Grh-binding motifs.

Fig. 1. Identification of Grh targets.
(A) Venn diagram of ChIP-seq data
from stage 16 Drosophila embryos
showing the number of peaks
obtained with rabbit (olive) or mouse
(turquoise) anti-Grh antibodies, and
the peaks with a predicted Grh-binding
site (PWM, 80%; purple). Multiple
peaks within 200 bp were collapsed.
(B) Overview of Grh peak localization
relative to gene region. (C) The Grh-
binding motif derived from the
sequences of ChIP-seq peaks from
the mouse Grh antibody. (D) The
distance (bp) between the Grh peaks
and the transcription start sites (TSSs)
of the closest genes. The red line
represents genes activated by Grh,
the green line genes repressed by
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To validate the data, we selected Grh-bound regions from Ddc,
Stit, Cht2, knk, verm, mmy, kkv, CG32699 (LPCAT) (revealed by
both antibodies) and serp, ck, Hmu, Cprl1A4 (detected only by the
rabbit antibody) for ChIP-qPCR analysis. Compared with two
control regions from CG34245 and CG18559 (Cyp309a2), all of the
Grh peak regions showed Grh-binding with more than 10-fold
enrichment relative to control IgG (Fig. S2D), supporting that these
are bone fide target sites.

Analysis of genomic distributions revealed that Grh ChIP-seq
peaks are located in proximal and distal regulatory regions, introns
and, to a lesser extent, in exons (Fig. 1B). Located in proximity to
3754 genes, the bound regions are predominantly found near
transcription start sites (TSSs) (Fig. S2B, Table S1). An 5'-
AACNGGTTT-3" motif matching the predicted Grh-binding motif
(Venkatesan et al., 2003; Gao et al., 2013; Potier et al., 2014) was
enriched within the sequences of Grh mouse antibody ChIP-seq
peaks (E=3.5x1072%%; Fig. 1C). This argues that a significant
number of the additional Grh peaks revealed only by the rabbit
antiserum and containing this motif identify true Grh-binding sites
in the DNA. About half of the embryonic Grh peaks with the Grh-
binding motif were also detected in ChIP-seq experiments targeting
a Grh-GFP fusion protein on chromatin from larval eye disks (Potier
et al., 2014) (Fig. S3A, Table S2). Therefore, we focused on genes
with Grh ChIP-seq peaks, which contain the consensus Grh motif.
Gene ontology (GO) analysis of the Grh targets shows enrichment
for chitin-binding proteins (n=55), consistent with the known
function of Grh in epidermal barrier formation. The set of Grh
targets is also highly enriched in metabolic enzymes (n=778),
signaling proteins (n=423), cytoskeletal or cell junction
components (n=176) and TFs (n=233) (Fig. S2A).

To assess the consequence of Grh-binding to chromatin, we
performed RNA microarray gene expression analysis from stage 16
wild type (wt), grh?37 mutants and from embryos overexpressing
UAS-grh with the epithelial 69B-Gal4 driver. The combination of
the Grh ChIP-seq and gene expression data identified 240
potentially repressed and 248 activated genes (Fig. IE,F,
Tables S3 and S4). In situ hybridization confirmed that expression
of several putative targets is altered in grsz mutants and upon grh
overexpression (Fig. S4A-P). We also tested 26 selected candidates
from the ChIP-seq and microarray experiments by comparing their
expression levels in wt, grh?3” and 69B>grh embryos by RT-qPCR.
We found that 78% of these show changes in expression, as in the
microarray analysis of grk mutants and 69B>grh embryos,
compared with wt (Fig. S4Q; data not shown).

The results suggest that Grh might act both as a repressor and as an
activator of genes in ectodermal epithelia, consistent with previous
studies of individual Grh targets (Brown and Kassis, 2013). A search
for epigenetic landmarks described by modENCODE showed
differences between Grh peaks at activated and repressed targets.
Grh peaks of activated genes showed a reduced overlap with binding
sites for Polycomb group (PcG) proteins (P=0.010), for the GAGA
factor (P<5x10~%) and for H3K27me3 modifications (P<5x10™%),
compared with a background distribution of Grh peaks at genes that
do not respond to grh inactivation. This reduction of repressive
chromatin marks was not detected at the Grh-binding sites of
repressed genes, which instead showed increased overlap for the
GAGA factor (P<5x10~%) and the H3K27me3 mark (P<5x107%).
Furthermore, Grh peaks at repressed genes showed reduced overlap
with insulator proteins Beaf32 (P<5x10~*) and Cp190 (P<5x10~%)
and with the histone modification mark H3K4me3 (Fig. S2C).
Additionally, Grh-binding sites in repressed genes are consistently
located at a greater distance from the TSSs, as compared with the

genes that are activated or are unaffected by Grh (Fig. 1D). These
correlations suggest that Grh-activated and -repressed enhancers are
organized differently in the genome, and imply different direct or
indirect mechanisms for Grh-dependent transcriptional activation or
repression.

Grh-responsive elements display tissue-specific expression
To determine whether regions containing Grh peaks or predicted
binding sites represent genuine gene regulatory modules, we cloned
50 such regions derived from 48 targets into the pHPdest-EGFP
vector and assayed for GFP expression in transgenic embryos
(Fig. 2M-0). Six of these constructs contained consensus Grh-
binding motifs but had only minor ChIP enrichment that did not pass
the relatively strict cut-off of our initial peak selection (Table S5).
We found that 44 out of 50 transgenic lines show GFP expression in
embryos, indicating that the Grh ChIP-seq peaks that include
binding sites identify functional regulatory elements. The six
fragments with predicted binding motifs but without a ChIP peak
were among those driving GFP expression in relevant tissues.
Furthermore, 47 out of the 50 reporters were responsive to Grh since
they were ectopically activated upon Grh overexpression in
epidermal stripes driven by en-Gal4 (Fig. 2J-L). Therefore, the
combination of the Grh ChIP-seq data and the presence of consensus
Grh-binding motifs reliably identifies functional regulatory
elements but also excludes Grh-responsive regions that can be
identified by the presence of the predicted binding motifs alone.
Based on the GFP expression, we divided the reporter strains into
three groups: (A) an epidermal and tracheal group (Fig. 2A,D,G);
(B) an epidermal group (Fig. 2B,E,H); and (C) a group expressing
GFP in scattered cells or subsets of cells of internal organs (Fig. 2C,
EJD).

Taken together, the transgenic reporter assays suggest that Grh-
regulated regions drive tissue-specific gene expression in different
ectodermal tissues such as epidermis, tracheal or other tissues. The
tissue-specific variations in the expression of the reporters suggest
that Grh co-operates with other, tissue-specific factors in regulating
gene expression. The induced activation of most reporters by Grh
overexpression in epidermal stripes suggests that Grh can control
them directly or indirectly.

A direct role of Grh in controlling the developmental
expression of PGRP-LC and innate immunity genes

Grh controls wound healing upon epidermal injury (Mace et al.,
2005). A few Grh-regulated enhancers, such as Ddc-GFP, have been
shown to be wound inducible. To test whether any of the 50 Grh
reporters respond to injury, we wounded embryos from the
transgenic strains and monitored GFP expression. Eight of the 50
tested enhancers showed GFP upregulation at the wound site.
Importantly, one of these reporters contains the regulatory region of
a known wound-induced gene, Duox. The remaining seven
reporters include enhancers for CG33110, Dro5 (Drsl5),
CG10898, CG15282, knk, Cht2 and CG33978 (Fig. 3A-J). These
genes have not previously been implicated in wound healing, and it
will be interesting to test whether any of them might also play a role
in epithelial regeneration upon injury.

Previous analysis of gene expression in gri mutants and wt
embryos has shown that innate immunity and stress-response gene
expression are reduced upon grh inactivation (Paré et al., 2012). To
investigate a potential direct role of Grh in the embryonic expression
of innate immunity genes, we focused on PGRP-LC, since it is
dispensable for Drosophila development (Choe et al., 2002). The
only reported function of PGRP-LC is in the activation of
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Fig. 2. Grh-binding sites identify Grh-responsive regulatory elements. (A,D,G) Representatives of group A reporters with GFP expression in the
embryonic trachea and other ectodermal epithelial tissues. (B,E,H) Group B reporters with GFP expression in the embryonic epidermis but not in the trachea.
(C,F,1) Group C reporters with GFP expression in scattered cells and in subsets of internal epithelial organs. (J-L) Overexpression of Grh by en-Gal4 activates
most reporters in epidermal stripes. Single examples are shown from each of group A (J), group B (K) and group C (L). Embryos were stained with anti-GFP
antibodies. Scale bars: 50 um. (M,N,O) Representative Grh ChlP-seq peaks and regulatory regions: Cht2 (M), CG11349 (N), yellow d2 (O) loci. Red peaks denote
Grh rabbit antibody peaks. Green peaks denote signals from the IgG control. Blue bars denote the presence of the Grh-binding motif. Orange blocks denote

cloned fragments. The y-axes show read coverage.

antimicrobial peptides (AMPs) upon infection. Grh binds to the
regulatory region of PGRP-LC and regulates its embryonic
expression (Table S1). To test if Grh directly regulates epidermal
PGRP-LC expression, we generated strains in which the GFP
reporter is under the control of a 2 kb genomic region of PGRP-LC
containing three Grh-binding motifs (Fig. 4A). In parallel, we
mutated these motifs and generated PGRP-LCA-GFP flies, to test
the impact of Grh-binding on GFP expression. PGRP-LC-GFP is
expressed in all epidermal cells and faithfully reproduced PGRP-LC
mRNA expression in embryos (Fig. 4B,C), whereas GFP expression
in PGRP-LCA-GFP embryos was drastically reduced (Fig. 4D).
Consistently, PGRP-LC-GFP expression was also dramatically
reduced in gri mutants. Further, epidermal PGRP-LC mRNA was
dramatically reduced in grh mutant embryos compared with wt
(Fig. 4E,F). Conversely, Grh overexpression by bt/-Gal4 ectopically
induced PGRP-LC expression in the midline glia and the airways
(Fig. 4G,H; data not shown). Therefore, the 2 kb DNA fragment in
the PGRP-LC gene contains a Grh-dependent enhancer.
Collectively, this analysis shows that Grh directly controls
PGRP-LC epidermal expression during embryonic development.
Additionally, the ChIP-seq analysis showed that Grh occupies the
regulatory regions of a large battery of genes involved in the innate
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immune response (Table S6). Because PGRP-LC mutants do not
show discernible developmental phenotypes, our analysis reveals a
new direct function of Grh in ensuring the ability of developing
epithelial tissues to mount effective immune responses against
future infections.

Identification of functional Grh targets in airway maturation
The ChIP-seq experiments identified numerous Grh targets in the
embryo but do not reveal which of these are responsible for each of the
diverse defects observed in gri mutants. To identify functional Grh
targets in the airways, we intersected the results of an unbiased
genome-wide RNAI screen for genes involved in airway maturation
and function (Hosono et al., 2015) with the genes in our ChIP-seq
dataset. We found that 1152 Grh targets are required for proper gas
filling ofthe airways (Fig. S5A, Table S7); 791 of them have homologs
in vertebrates. These genes encode various enzymes, signaling
molecules, TFs and cytoskeletal and adhesion proteins (Fig. S5B).
Of particular interest is Mmpl, which encodes a metalloprotease.
Mmpl, like Grh, is a known tracheal tube size regulator that is strongly
expressed in tracheal cells (Page-McCaw et al., 2003).

Seven of the Grh tracheal targets encode proteins related to chitin
biosynthesis (Gangishetti et al., 2012). Among them, mmy, knk, kkv,
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Fig. 3. New Grh-dependent wound reporters. (A,B) GFP expression as a
reporter of Ddc enhancer activity, a positive control for wounding.

(C-J) CG33110-GFP (C,D), Dro5-GFP (E,F), Cht2-GFP (G,H) and CG10898-
GFP (1,J) reporters before and after wounding. Arrowheads highlight the
puncture area. Scale bar: 50 ym.

verm and serp and Cht2 are known tracheal tube size regulators
(Devine et al., 2005; Tonning et al., 2005; Swanson and Beitel, 2006).
We asked whether Grh controls tracheal tube length at least partly
through regulating the expression of these genes. We first confirmed
by ChIP-qPCR that Grh is recruited to the regulatory regions of these
genes (Fig. S2D). Additionally, the expression of knk and Cht2 was
dramatically reduced in gri mutants. Conversely, Grh overexpression
by the b#l-Gal4 driver induced knk and Cht2 expression in both trachea
and in midline glia (Fig. S4A-H). kkv expression was also slightly
reduced in grh mutants and ectopically activated in b#/>grh embryos
(Fig. S41-L). Grh overexpression also induced mmy but suppressed
verm and serp expression (Fig. S4M-P; data not shown). However, we
did not detect consistent changes in the expression of mmy, verm or
serp in grh mutants. To further confirm the transcriptional regulation
of cuticle by Grh, we generated reporter strains for knk and cht2 based
on the location of Grh-binding sites in their regulatory regions. Both
reporters show GFP expression in a pattern mimicking the
endogenous gene expression, and are both induced in epidermal
stripes in en>grh embryos. Therefore, we conclude that Grh activates
kkv, Cht2, knk and can promote mmy expression but suppresses verm
and serp expression in the airways. These results highlight an
unexpected complexity of Grh function in the regulation of genes
involved in the assembly of the luminal chitinous matrix.

Taken together, Grh regulates Drosophila airway maturation
through activating or repressing hundreds of targets, many of which
have vertebrate homologs. We also found that Grh regulates the

expression of multiple genes involved in the chitin-related tube size
control pathway.

Grh controls vvl and other genes encoding TFs

In addition to the arthropod-specific, exoskeleton-related genes, the
Grh targets encode a large number of other conserved proteins
(Table S8). A comparison of the fly targets with the putative
GRHL2 targets in human bronchial airway epithelial cells suggests
that the homologs of 661 of the 3754 Drosophila Grh targets might
also be regulated by GRHL2 in human airway cells (Fig. S3B,
Table S9). Several of the repressed Drosophila targets encode TFs
regulating the epithelial differentiation program and branch
outgrowth (Matsuda et al., 2015a,b). One such example is wi,
which encodes a POU domain TF that maintains tracheal cell
identity, upholds the levels of RTK signaling and promotes
branching and cell differentiation (Anderson et al., 1995; de Celis
et al., 1995; Llimargas and Casanova, 1997). Grh peaks are found
both upstream and downstream of the vv/ TSS, and v/ expression is
upregulated in gri mutants and downregulated in 69B>grh. RT-
qPCR (Fig. 5A), RNA in situ hybridization (Fig. SB-D’) and
ChIP-qPCR (Fig. SE) confirmed a repressive function of Grh on the
wi locus.

Several vvl enhancers have been identified by reporter strains
(Fig. 5, Fig. S6A,B) (Sotillos et al., 2010). To pinpoint Grh-
repressed regulatory modules we analyzed the expression of these
wi reporters in grh®37 mutants and in embryos overexpressing Grh
in epidermal stripes. Two reporters, vl 1.8 and wi ds3 (Fig. 5F,G),
showed increased expression in grh?37 mutants. v/ 1.8 is normally
expressed in the trachea and epidermis at stage 17. In gri®’
embryos, wil 1.8 was selectively upregulated in cells of the
presumptive mouth hook structures. vl ds3 was strongly expressed
in the epidermis and more weakly in the trachea at stage 17. Its
expression became upregulated in both tissues in grh?3” embryos.
Conversely, gri overexpression by btl-Gal4 downregulated the vv/
ds3 signal in the trachea (Fig. SH-M’). The results suggest that Grh
represses vvl through the vl 1.8 fragment in the mouth hooks, likely
acting together with a tissue-specific factor. Additionally, Grh
represses v/ in the epidermis and trachea through the wvi ds3
enhancer, which would require cooperation with a distinct factor.
Therefore, these results suggest that Grh-binding to the v/ ds3 and
wil 1.8 regulatory sequences represses the expression of v/ in
distinct tissues.

Unexpectedly, besides the repressive effect of grh on the wi 1.8
and vvl ds3 enhancers, we detected a positive effect on a new, v/
proximal reporter (Fig. 5F) and on wi dsl.7 (Fig. S6). Both these
elements could be activated in epidermal stripes in the en>grh-
overexpressing embryos (Fig. S6). By contrast, gri overexpression
did not influence the expression of a fifth reporter, vl 345 (Fig. S6).

Collectively, the analysis of wv reporters highlights the
complexity of the wv/ regulatory region and suggests that Grh-
binding to different regulatory segments results in distinct
outcomes. It also identifies two Grh-repressed regulatory
modules, arguing that Grh may directly bind and, together with
other factors, repress vv/ expression in late embryos. Future analysis
of these regulatory fragments and derivatives with mutated Grh-
binding sites will address whether Grh is directly or indirectly
involved in v/ repression.

Grh and Vvl co-regulate gene expression during epithelial
maturation

Grh and Vvl are co-expressed during airway morphogenesis (see
Fig. 7A-A") and Grh downregulates, but does not shut off, vw/
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transcription. The tracheal phenotypes of vw/ mutants include short
branches, reflecting the early functions of Vvl in tracheal cell fate
specification and branch outgrowth (Fig. S8C) (Llimargas and
Casanova, 1997; Matsuda et al., 2015b). Noteworthy, 69B>vv/
embryos at stage 16 show overelongated tracheal tubes, similar to
grh mutants, suggesting a function of v/ in late steps of tube
elongation (Fig. 6A-C). Moreover, bt/>grh embryos display
discontinuous trachea, mimicking the vvl mutant phenotypes
(Fig. S8D). These observations suggest an antagonistic
relationship between Grh and Vvl, where Vvl promotes branch
outgrowth and Grh antagonizes it by downregulating wv/
transcription. To test this, we generated grh mutants lacking one
copy of the vl gene, and found that this restored the overelongated
tracheal tubes (Fig. 6D.E), strengthening the notion that grh
antagonizes v/ to halt branch growth.

To further investigate the interplay between the two TFs in airway
maturation, we first asked if Vvl might also control the expression of
Grh targets. We found that 6 out of 11 randomly selected Grh-
dependent GFP reporters were ectopically induced in epidermal
stripes in en>vvl embryos (Fig. 7B-B”, Fig. S7). This suggests that
wvl can regulate some Grh targets. This effect is unlikely to be due to
an indirect upregulation of grh transcription by Vvl overexpression
because only 6 of 11 Grh reporters responded to Vvl. Further, ChIP-
qPCR with an anti-Vvl antibody and chromatin isolated from stage
17 wt embryos showed Vvl enrichment around the Grh-binding
regions of these six targets (Fig. 7C).

Previous studies of Vvl function in development and upon
immune responses identified Vvl-binding site sequences on its
respective targets (Anderson et al., 1996; Certel et al., 1996; Junell
et al., 2010). We asked whether similar motifs are present in the
regulatory regions of Grh targets. We found that consensus motifs
for Vvl binding frequently co-occur with Grh peaks in the genome,
suggesting that the two TFs might share some of their targets
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(Table S1). We generated primer pairs targeting the regulatory
regions of eight potential common targets and used them in ChIP-
gPCR experiments with either the Grh or the Vvl antibodies. We
detected more than 10-fold enrichment for both Grh and Vvl in six
out of the selected eight regions, suggesting that Vvl and Grh bind to
common regions in stage 16 embryos (Fig. 7C). These Grh and Vvl
common targets are not only expressed in the trachea but also
include genes expressed in the epidermis but not the airways, such
as CG15282, CG13377 and CG33110 (Table S5).

To investigate the significance of Vvl binding at the enhancers of
Grh targets, we tested the mRNA expression of potential common
targets in grh and vw/ mutants by RT-qPCR. CG33110, CG17941
(dachsous) and CG17549 are activated by both Grh and Vvl
Conversely, Duox is repressed both by Grh and Vvl. However,
CG17839 and ics are repressed by Grh but activated by Vvl. Chz2,
CGY363 (GstZ2), yellow C and Gp150 are regulated by Grh but not by
Vvl in stage 17 embryos (Fig. 7E, Table S10). This suggests that Grh
and Vvl share some common targets during late embryogenesis.

The gene expression analysis of target genes in vvl and grh mutants
reveals a complex interaction scheme, whereby the two TFs either act
independently or cooperate with each other and other TFs to induce or
repress target gene expression. We therefore tested whether the two
TFs can bind to each other by performing co-immunoprecipitation
experiments in Drosophila S2 cells. After co-transfection,
immunoprecipitation with the Grh antibody was able to precipitate
HA-tagged Vvl and, conversely, the Vvl antibody could
immunoprecipitate Grh (Fig. 7D). This suggests that Grh and Vvl
form protein complexes to control common target gene expression.

DISCUSSION

Grh and its targets in epithelial maturation

Grh controls epithelial development and regeneration in multiple
organisms. Our ChIP-seq data provide a broad view of Grh-binding
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Student’s t-test. Error bars indicate s.e.m. (B-D’) In situ hybridization for vv/
mRNA levels. (B,B’) Wild-type vv/ expression. (C,C’) Increased vv/ expression
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Grh rabbit antibody peaks are in red and IgG peaks in green. Blue bars denote
the Grh-binding motif and orange bars the cloned enhancers. The y-axes show
read coverage. (H,l) Grh represses vv/ 1.8 in mouth hooks. (H) v/ 1.8
expression in wild type. (I) Higher vv/ 1.8 signal in the mouth hook (arrowhead)
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of v/ ds3 reporter in wild-type embryos. (K) vv/ ds3 signal increases in the
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embryos. Magenta, anti-B-galactosidase; green, anti-Gasp (trachea). (J',K’)
Heat maps of signal intensities in H and I. (L’,M’) vvI ds3 expression in the
trachea (arrowheads). Scale bars: 50 um.

to its targets in all Grh-expressing tissues. The analysis of Grh-
dependent regulatory sequences indicates that the majority of the
5599 peaks that include the consensus Grh-binding sequence
identify true Grh targets. Hitherto, analysis of Grh targets in
development focused on proteins involved in epidermal barrier
formation, adhesion molecules and junctional proteins. Our
identification of functional Grh targets in the airways adds large
groups of proteins involved in lipid metabolism, cell signaling and
TFs. This suggests additional functions of Grh in tubulogenesis that

grh®7/grh™ grh®37/grh™; v

grhB37/grh™; vvICA/+

\ *kk

grh"”/grh’“ ns
dkk
wt
r T T T 1
& K O R R

Normalized Tracheal Length

Fig. 6. Grh and Vvl antagonize each other during tracheal
morphogenesis. (A-D) Maximum projections of confocal sections of the
trachea. (A) Stage 17 wild type. (B) 69B>vvI embryos show overelongated
dorsal trunks. (C) grh®37/grh™ embryos with elongated airways. (D) Deletion of
one copy of vv/ ameliorates the tracheal phenotype in grh®37/grhi™™ embryos.
Trachea are stained by Gasp. Green lines indicate tracings for length
measurements. Scale bar: 50 um. (E) Tracheal length quantification shows
that decreased vv/ expression can partially rescue grh mutant tracheal
phenotype. Tracheal length was measured in confocal z-stacks, normalized to
embryo length and then normalized to w’778. Error bars indicate normalized
s.e.m. ***P<0.001; ns, no significant change; Student’s t-test.

might explain several of its additional roles. For example, the
phenotype of grh mutants in the airways includes the selective
expansion of the epithelial apical membranes, a phenotype that has
not been detected in any of the mutants affecting junctional proteins
or the formation and modification of the apical extracellular barrier
(Tonning et al., 2006; Wang et al., 2009; Tiklova et al., 2010). Our
definition of new Grh targets during airway maturation provides a
rich resource for future studies addressing how Grh controls
epithelial morphogenesis.

A prevalent group of Grh targets in the epidermis and airways
includes genes involved in innate immune responses ranging from
pattern recognition receptors to effectors. Interestingly, several
putative GRHL?2 targets in human bronchial epithelial cells, such as
serpins and chitinase 3-like proteins (He et al., 2013), have been
implicated in immune responses (Gao et al., 2015). Our analysis of
PGRP-LC reveals a direct role of Grh in endowing epithelial cells
the ability to combat infections. Although the PGRP-LC reporter
expression was not inducible by wounding or bacterial injection, it
remains possible that Grh also directly controls the activation of
epithelial immune responses upon infection. Indeed, partial
inactivation of Grh by RNAI in adult flies resulted in increased
morbidity and mortality upon bacterial infection (Paré et al., 2012).

Grh as an activator or repressor of target genes

Our analysis of 47 new Grh-activated enhancers in epithelial
development suggests the presence of distinct, tissue-specific Grh
co-factors in the control of target genes in different epithelial cell
types. The activation of some of these reporters upon injury expands
the repertoire of Grh-activated enhancers and is in line with previous
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models proposing wound-induced interactions of Grh with other
factors. These interactions could be induced by post-translational
modifications of Grh or its co-factors by Rolled (Kim and
McGinnis, 2011) and other kinases downstream of Stit receptor
kinase signaling (Tsarouhas et al., 2014) and might facilitate the
activation of transcription by Grh pre-bound to chromatin.

The ChIP-seq and gene expression analysis also reveal a potential
role for Grh as a repressor. Such a repressor function of Grh is
consistent with previous studies addressing Grh function on individual
targets in flies and mammals (Tuckfield et al., 2002; Blastyak et al.,
2006; Strubbe et al., 2011). We find a higher correlation of PcG-
binding sites and repressive chromatin marks around the Grh-binding
sites of repressed targets as compared with the binding sites of activated
genes. The positioning of Grh-binding sites relative to the TSS of
repressed versus activated or unaffected genes also differs: Grh-binding
sites are usually further from the TSS in repressed target genes. This
observation is supported by the analysis of vl ds3 and v/ 1.8, the only
two identified repressible enhancers, which are located more than 2 kb
from the v/ TSS. The difference in the structure of the repressed and
activated Grh enhancers suggests that Grh repression might require
chromatin looping and involve co-repressors (Saramdiki et al., 2009).
Further work is needed to elucidate a potential direct function of Grh in
transcriptional repression.

Grh and Vvl, transcriptional regulation and complex
co-factor interactions

A characteristic group of Grh targets in the airways includes TFs
involved in epithelial cell differentiation. This resembles the complex
regulatory functions of Grh during neuronal specification. For
instance, in neuroblasts, Grh demarcates the last time window for
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TF expression by repressing Castor (Baumgardt et al., 2009). In
intermediate neural progenitors (INPs), Grh is detected in the
‘middle-aged’ INPs and overlaps with the expression of the TFs
Dichaete and Eyeless. The three TFs cross-regulate each other
(Bayraktar and Doe, 2013). Similar cross-talk between Grh and its TF
targets might specify and maintain epithelial differentiation. Since
reduction of vl in grh mutants largely ameliorates the tube elongation
defects, the direct or indirect repression of genes encoding TFs is
likely to be a crucial function of Grh in the airways. The shared
expression pattern of Vvl and Grh, their binding to a set of common
enhancers and their ability to form complexes suggest that they
collectively control tube growth during airway maturation. Given
their co-expression in other contexts, they might also co-operate
during neural cell specification and epithelial immune responses.

MATERIALS AND METHODS

ChlIP-seq and ChIP-qPCR

We performed ChIP as described by Dai et al. (2013) using 13-16 h w!//$
embryos. Embryos were homogenized and fixed in 1.8% formaldehyde at
room temperature. After several washes, chromatin in lysis buffer was
sonicated to 0.1-0.5 kb. For each immunoprecipitation, sheared chromatin
was precleared with Gammabind G Sepharose (GE Healthcare) coated with
BSA and incubated with pre-absorbed rabbit anti-Grh antibody (5 pg),
mouse anti-Grh antibody (Bray et al., 1989; 5 ug), rabbit anti-Vvl antibody
(R. Matsuda, Stockholm University, Sweden; 5 ug) or rabbit IgG (Sigma; 5
ug). Precipitated complexes were washed, eluted, and cross-links were
reversed at 65°C. After proteinase K treatment, DNA was purified using
QIAprep spin columns (Qiagen) and recovered in 50 ul elution buffer
containing RNase A (Thermo Fisher, 5 mg/ml). DNA libraries were made
using the [llumina ChIP-seq Library Kit and sequenced as individual lanes
on an Illumina GAIIL
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Real-time PCR was performed on a Bio-Rad CFX96 using Power SYBR
Green (Applied Biosystems). Primer sequences are presented in Table S11.
PCR was performed in triplicate samples, and immunoprecipitated
DNA was compared against standard curves obtained from serial dilutions
of input DNA. Values are plotted as fold enrichment normalized to IgG
control, and the standard deviation within the triplicate samples was
calculated.

Quantitative RT-PCR (RT-qPCR) and microarray analysis
Stage 16 grh®37 homozygous mutant embryos and 69B>grh embryos were
selected. RNA was extracted with Trizol (Thermo Fisher) and was incubated
with Turbo DNase (Thermo Fisher; 2 units). Total RNA (4 ng) was reverse
transcribed with Superscript III reverse transcriptase (Thermo Fisher; 200
units) using random primers. To ensure absence of genomic DNA, RT-
qPCR was performed on a mock reverse-transcribed RNA sample. Primer
sequences are listed in Table S11.

For microarray analysis, RNA samples from two biological replicates
were labeled and hybridized to the A ffymetrix GeneChIP Drosophila Genome
2.0 Array at the Genomic Core Laboratory at Memorial Sloan-Kettering.

Bioinformatics

ChIP-seq data processing was carried out according to Dai et al. (2013).
Reads were mapped to the Drosophila dm3 genome using Bowtie
(Langmead et al., 2009) with parameters —v 2 —m 1 (i.e. allowing two
mismatches and only using uniquely mapping reads). Peaks were called
using Quest (Valouev et al., 2008) with the following parameters:
bandwidth, 30; region size, 300; ChIP enrichment, 5; ChIP to background
enrichment, 2; and ChIP extension enrichment, 2. The set of Grh peaks was
determined by combining all Grh peaks found with the two antibodies, and
retaining those that covered a Grh site for further analysis. Peaks were
annotated to the gene with the closest TSS using ENSEMBL transcript
annotations. ChIP-seq data from Potier et al. (2014) were analyzed in the
same way as for data described here.

For de novo motif finding, MEME (Bailey and Elkan, 1995) was run on
the top 500 peaks, extended 100 nt in each direction from the summit of the
peak, to search for 6- to 15-nt motifs using default settings. As a proxy for
statistical significance of motifs, we used the £-value calculated by MEME,
i.e. the number of (equally or more interesting) motifs expected by chance if
the nucleotides in the input sequences were shuffled. To search for hits
against the Grh site, the PWM Biostrings Bioconductor package was used
with a minimum score of 80%.

Microarray data were normalized using the GCRMA Bioconductor
package, and log fold change values were computed using the Bioconductor
limma package. P-values were adjusted for multiple hypotheses using the
false discovery rate (FDR) correction. For genes with multiple probe sets,
the probe set with the lowest adjusted P-value was selected. Genes with
P<0.01 after FDR adjustment were considered differentially expressed.

Enrichment of gene ontology annotations (Ashburner, 2000) and tissue-
enriched expression profiles (Chintapalli et al., 2007) were computed as
described (Dai et al., 2013), using Fisher’s exact test with the Bonferroni
correction for multiple hypothesis testing. FlyAtlas (http:/flyatlas.org) gene
classifications were based on tissue enrichment scores; genes with
enrichment scores of at least 2 were considered enriched in a given tissue.
Orthologous genes between D. melanogaster and mouse were called using
the Drosophila RNAi Screening Center (DRSC) Integrative Ortholog
Prediction Tool (Hu et al., 2011). Ortholog calls supported by at least three
of the programs included in the meta-server were used for analysis.

Drosophila mutant strains

w8 grhB37 grh™ and wwi%? are loss-of-function mutations. w’/’ was
used as control in all experiments. The b#/-Gal4 transgene is inserted on the
second chromosome and 69B-Gal4 on the third chromosome. lacZ- or GFP-
marked CyO and TM6 balancers were used to identify genotypes.

Enhancer cloning and transgenic strain generation

Genomic fragments for enhancer assays were selected based on the presence
of Grh ChIP-seq peaks and on the expression changes of the adjacent genes
in transcriptome analysis of grh mutants or grh-overexpressing embryos.

Fragments were cloned by PCR from genomic DNA of w’//® into pPENTR
D-TOPO (Invitrogen) and then transferred to pHPdest-EGFP vector (Boy
etal., 2010). PCR primers are listed in Table S11. Constructs were integrated
into the attp?2 site. The resulting reporters were tested for GFP expression by
live imaging and antibody staining.

The PGRP-LC GFP reporters were constructed by subcloning
corresponding PCR fragments into pH-stinger (Barolo et al., 2000). The
Grh-binding sites in the PGRP-LCA-GFP reporter were mutated using the
QuikChange Site-Directed Mutagenesis Kit (Agilent) and the primers
indicated in Table S11. PGRP-LC GFP transgenic lines were established by
P-element-mediated transformation. The wi ds3, v 1.8 and wil dsl.7
enhancer strains were described previously (Sotillos et al., 2010).

Wounding assays
Embryos were collected during stage 15 (~12 h after egg laying at 25°C)
and pricked with a glass needle.

In situ hybridization and immunostaining

Digoxigenin-labeled RNA probes were transcribed from EST clones and
hybridized to embryos as described (Lehmann and Tautz, 1994; Matsuda
et al., 2015a,b). EST clones were obtained from the Drosophila Genomics
Resource Center (DGRC) and are listed in Table S12.

Immunostaining was performed as described by Tsarouhas et al. (2007)
with the following antibodies: rabbit anti-GFP (Invitrogen, A11122; 1:250),
mouse anti-GFP20 (Sigma, G6539; 1:1000), rabbit anti-B-galactosidase
(Cappel, 55976; 1:1500), guinea pig anti-Gasp (Tiklova et al., 3013;
1:2000). The polyclonal rabbit anti-Grh antiserum was generated by
polyclonal genomic antibody (GAT) against the peptide QQQLISIKREP-
EDLRKDPKNGNIAGAATANGPGSVITQKSFDYTELCQPGTLIDAN-
GSIPVSVNSIQQRTAVHGSQ and used at 1:1000.
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