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ABSTRACT

Cell morphology is crucial for all cell functions. This is particularly
true for glial cells as they rely on complex shape to contact
and support neurons. However, methods to quantify complex
glial cell shape accurately and reproducibly are lacking. To address
this, we developed the image analysis pipeline ‘GliaMorph’.
GliaMorph is a modular analysis toolkit developed to perform
(1) image pre-processing, (2) semi-automatic region-of-interest
selection, (3) apicobasal texture analysis, (4) glia segmentation,
and (5) cell feature quantification. Miller glia (MG) have a stereotypic
shape linked to their maturation and physiological status. Here,
we characterized MG on three levels: (1) global image-level, (2)
apicobasal texture, and (3) regional apicobasal vertical-to-horizontal
alignment. Using GliaMorph, we quantified MG development on a
global and single-cell level, showing increased feature elaboration
and subcellular morphological rearrangement in the zebrafish retina.
As proof of principle, we analysed expression changes in a mouse
glaucoma model, identifying subcellular protein localization changes
in MG. Together, these data demonstrate that GliaMorph enables an
in-depth understanding of MG morphology in the developing and
diseased retina.
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INTRODUCTION

Although a vast amount of biomedical research relies on
microscopy data and image-driven research, methods to process
cell morphology objectively and reproducibly are lacking. However,
computational analysis is paramount to understanding cell function
and connectivity on a more abstract level, particularly in complex
tissues. Glial cells are some of the most morphologically elaborate
cells (MacDonald et al., 2017; Wang et al., 2017) and provide a
myriad of functions in the central nervous system (CNS) (Oberheim
et al., 2009; Khakh and Sofroniew, 2015). To fulfil these crucial
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functions, glial cells are precisely shaped to contact neurons,
synapses and the vasculature. Glial shape is not only pivotal in
healthy tissue, but is altered in numerous neurodegenerative
conditions, and can precede neuronal dysfunction in some cases
such as epilepsy (Sharma et al., 2019) or diabetic retinopathy (Lasta
et al., 2013). Hence, measuring glial morphology in a robust and
reliable manner is paramount to our understanding of CNS
development and dysfunction.

Current methods for glial cell morphological analysis often
require user input (i.e. manual cell tracing) that might result in
subjective bias, offer crude measurements (i.e. not subcellular
resolution and not reproducible detail), or are challenging to adapt
to specific biological questions and dynamic time-lapse
acquisitions. This leads to a data analysis bottleneck in
morphological analysis and image-based cell profiling (Pennisi,
2016; Fetz et al., 2016). As such, it is necessary to develop
workflows and high-quality datasets of glial morphologies for
robust and (semi-)automatic analysis of glial shape in healthy and
diseased CNS. In the era of machine learning, defining relevant
features could be assumed to be easily achievable. However,
machine-learning methods require appropriate training sets or a
priori information. Therefore, conventional image analysis
workflows are required to establish benchmark datasets before
machine-learning approaches could be considered. Hence, there is a
rationale to develop computational, (semi-)automatic analysis
methods to resolve glial cell morphology and status (Escartin
et al., 2021).

As a part of the CNS, the retina serves as a tractable model to
study cell morphology and structure due to its highly stereotypic
architecture. The retina consists of seven main cell types: six
neuronal and one glial cell type called Miiller glia (MG). MG are
radial glia that are considered molecular and functional homologues
to astrocytes (Masland, 2012), as they carry out numerous
physiological roles to support neurons (Newman and
Reichenbach, 1996; Bringmann et al., 2006) and emanate
elaborate fine projections to contact synapses (Wang et al., 2017).
Nascent MG cells derive from retinal progenitor cells, beginning as
simple radial cells that then mature to morphologically elaborate
cells with a highly branched morphology (MacDonald et al., 2017,
Williams et al., 2010). The mature MG are organized laterally such
that they interact with each other in a so-called ‘tiled’ fashion,
contacting almost all cells in the retina (MacDonald et al., 2017;
Wang et al., 2017). Thus, MG morphology is linked to their spatial
and functional organization. Moreover, it was shown that MG shape
is indicative of their maturity (MacDonald et al., 2017) and health
(Halford et al., 2017). For instance, neuronal tissue damage can
elicit MG to undergo gliosis, a reactive state whereby their
morphology and gene expression levels are drastically altered; this
is observed in several diseases, such as glaucoma (Seitz et al.,
2013).
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Here, we establish a workflow, called ‘GliaMorph’, that allows
for the reproducible assessment of glia shape (Fig. 1). GliaMorph is
a 3D image analysis toolkit to describe quantitatively the stereotypic
cellular morphology of MG. Specifically, we present (1) an in-depth
description of encountered data challenges, (2) steps for image pre-
processing to improve data quality; (3) a novel tool for semi-
automatic region-of-interest (ROI) selection to allow comparability
between samples and groups, (4) a method to plot apicobasal
textures automatically, (5) an MG segmentation workflow, and (6) a
workflow for 3D quantification of glia. This allows for image
assessment at three levels: global image level, apicobasal texture,
and apicobasal vertical-to-horizontal alignment. We apply this to
retinas of fully transgenic zebrafish, in which all MG cells are
labelled, and to mosaic-injected embryos, in which individual
MG cells are labelled. We show that MG become significantly
more morphologically complex throughout their maturation
from 60 h post fertilization (hpf) to 96 hpf in the zebrafish retina.
Finally, we apply GliaMorph to immunohistochemistry data from
the mouse glaucoma model DBA/2J (Turner et al., 2017) and detect
signs of gliosis, demonstrating that this tool has the potential to work
across species and identify subcellular pathological changes in MG.
Taken together, our work provides a benchmark for 3D MG analysis
across MG visualization techniques, developmental ages, and
species.

RESULTS

Data understanding informs the design of a computational
workflow to assay MG cell morphology

Zebrafish are a well-established model for studying retina
development and disease (Richardson et al., 2017; Gestri et al.,
2012; Angueyra and Kindt, 2018; Malicki et al., 2016). The overall
organization and composition of the retina, including MG
function and structure, are highly conserved between zebrafish
and human (Richardson et al., 2017; O’Brown et al., 2018).
Furthermore, the zebrafish retina is suitable for morphological
analysis as it is accessible for advanced imaging, rapidly develops,
and is amenable to various manipulation and/or visualization
techniques. These include specific transgenic reporter lines
(Vazquez-Chona et al., 2009) and antibodies labelling MG
markers (e.g. Glutamine synthetase, GS) (Fig. 2A-A").
However, as these labels mark a considerable proportion of MG
in the retina, it is challenging, both morphologically and
computationally, to identify or quantify individual cells (Fig. 2A").
Furthermore, MG become increasingly morphologically elaborate
during retinal development (Fig. 2B). Therefore, the zebrafish
retina is suitable for generating the high-resolution imaging data
required to develop a computational workflow to quantify
complex glial morphologies robustly in the healthy and diseased
vertebrate retina.

SplitChannelsTool

D

GliaMorph Decision Tree

Raw Image

Image format

tiff czi @l
I

O BT e c FIEREEE D BN TR 0 | o — "iff"
n P G = [ARRSEIEE = N OERREEE 00 |00 Y
7-:‘ Acquisition mode
ks
é AiryScan contocal [l fanTool |
= Ml "DeconvDir"
5 - Segmentation EDM Skletn Image aspects ;
3 8 e evtanaciar > 18)80degreeRotatonlool |
L . B B L T S ———— T
2 _3
§ = ‘E >\ \
TU [
2 §
2 o
‘D m [5] HYLe TaT,
; split0 ool
i
7 “IC0ir"/"2C0ir"/" 3C0ir"/"4CDir"
e
)
® Image Height Average Thickness  Skeleton Length Surface
£ MG Height # of Junction Surface:Volume Ratio
I Volume # of Endpoints
@ Volume Coverage Average Branch Length
T _J
( G i
B Original Segmentation  Skeleton
oo, i
e -% "outZone"
o = "QuantEDM"
o9 0" "
=35 o (uantSkel
o ‘5 o Skeleton Stats.csv
T A [uantificationResults.csv
A o
N <
. J \

Fig. 1. GliaMorph workflow overview. (A) Using global image-level measurements, we developed a tool to quantify 11 different parameters of MG
morphology. (B) Using the zonationTool and applying it to original, segmented and skeletonized data allows insights into apicobasal subcellular feature
distributions. (C) Fourier transformation-based analysis allows the assessment of apicobasal subcellular orientation distributions. (D) As GliaMorph is
modular in its application, workflow design is easy and flexible to suit user needs. AFT, alignment by Fourier transform; EDM, Euclidean distance map.
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Fig. 2. MG cells have a complex shape that makes them challenging to analyse computationally. (A) Imaging of MG was conducted in the ventro-
temporal zebrafish retina to standardize the ROI. (A’) MG can be visualized with a variety of transgenic reporter lines or immunohistochemistry markers.

(A") Depth-coded MIP of MG stable transgenic line. (A”) Data as in A” after image segmentation. (B) Hand-drawn schematic of individual MG cell
morphological maturation during early development, showing elaboration of subregions and an increase in protrusions (arrowheads) based on observed
biological data (MacDonald et al., 2017). (C) MIP micrograph with yellow dotted lines indicating the apicobasal position of retinal layers. (C’) Resliced/
transformed sections at the position of the yellow dotted lines, illustrating that cell subregions have cellularly and computationally distinct properties along the
apicobasal axis. (C”) Manually drawn schematic of how MG subregions features could be described for computational analysis in terms of shape. In all
images, apical is the top and basal is the bottom of the image. INL, inner nuclear layer; OLM, outer limiting membrane.

When developing image quantification approaches for cell
morphology, it is essential to understand data to being able to
establish computational analysis workflows. This is particularly
important when working with complex data, such as images of MG
cells, as their shape is complex and changes along the apicobasal
axis (Fig. 2A-A"). To allow for sufficient resolution to resolve
individual glial subdomains, we used confocal imaging (Jonkman
et al.,, 2020). First, we focused on the optimization of data
acquisition and data quality as this greatly impacts downstream
analysis outcomes. To standardize the ROI for image acquisition,
we focused on the ventro-temporal retina, as regional differences in
anatomy (e.g. high-acuity area versus periphery) and cell
morphologies (e.g. photoreceptor neurons) exist across the retina
in zebrafish (Fig. 2A-A") (Zhou et al., 2020; Yoshimatsu et al.,
2020). MG have five apico-basal subregions and each fulfils a
specific function for nearby retinal neurons (MacDonald et al.,
2017) (Fig. 2C). Computationally these regions fall into categories
based on their geometries. This is seen more clearly when looking at
cross-sections of the 3D data stack (Fig. 2C’). It also becomes clear
that MG have complex morphologies and that different subregions

pose different computational challenges (Fig. 2C”). Subregion 1
resembles a honeycomb structure, allowing MG to interact with
photoreceptors. Subregion 2 resembles a fine mesh-like structure,
allowing MG to interweave with synaptic terminal of
photoreceptors, bipolar and horizontal cells. Subregion 3 contains
blob-like cell bodies. Subregion 4 is characterized by mesh-like
protrusions in the inner plexiform layer (IPL), and subregion 5
contains the sheet-like endfeet. In addition to this apical-to-basal
differences, these subregions are also computationally distinct
with respect to signal levels and patterns with our transgenic and
antibody markers (Fig. SIA). As such, we considered imaging
parameters such as 3D signal intensity profiles for MG markers
(Fig. S1B,C), optimized sampling frequency (Fig. S1E) and
examined potential imaging artefacts (e.g. blurring; Fig. S1F-H).
This data understanding allowed us to determine the required
image processing steps and optimize data acquisition, resulting in
the GliaMorph data analysis workflow presented here (Fig. 1). To
ensure accessibility of the method, all steps were implemented in
the open-source image analysis software Fiji (Schindelin et al.,
2012).
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Establishing image comparability and reproducibility to
quantify MG cells reliably in the retina
For robust characterization of glial morphology, imaging datasets
must first be processed identically to allow images to be compared
within and between groups. For example, images may differ in
sample orientation, acquisition position, z-axis size differences, or
field of view (FOV). Thus, images cannot be directly compared to
each other but require pre-processing to allow comparable ROIs
between samples. To establish image similarity, we developed the
semi-automatic ‘subregionTool’, which enables ROI extraction
based on manual line selection (Fig. 3A), and can be applied to right
or left eyes (Fig. S2A,B). Once the ROI is selected, the
subregionTool automatically (1) aligns them along the y-axis
(Fig. S2C,D), (2) creates a bounding box to crop images in the xy
dimension (see Fig. S2E,F and code for details), and then
(3) reduces the stack to the specified depth (Fig. S2G). As the
subregionTool is also applicable to other imaging datasets, not only
MG, we were able to overlap data from different neuronal markers,
as well as images from 24-72 hpf including neurons as well as MG
(Fig. 3B). To confirm data comparability, we measured progenitor/
MG height, revealing high similarity in age-matched samples, and
that the developmental growth of MG is highly consistent [Fig. 3C;
coefficient of variation (CoV) 24 hpf 18.72%, 48 hpf 3.13%, 60 hpf
5.25%, 72 hpf 6.52%; P<0.0001]. Together, these data show that
the subregionTool allows the establishment of reproducible 3D
images, enabling images to be compared objectively, making
sample and group assessments possible.

When performing fluorescence microscopy, images do not
directly reproduce the object of interest owing to artefacts as well

A (1) Manual ROI (2) Rotation

Tg(TP1bglob:CaaX-GFP)"9!!

as the system impulse function or convolution of light, called point
spread function (PSF) (de Gennaro, 2010). To restore object
properties before data processing and object measurements, a
deconvolution step is typically performed. We established the
‘deconvolutionTool’, which allows processing of data acquired in
confocal mode (Fig. S3). To establish an easy-to-use deconvolution
approach, we integrated existing plugins into the deconvolutionTool
to allow single-/multi-channel input, selection of fluorophore
wavelengths, different objective numerical aperture (NA), and
theoretical or experimental PSF file input (Fig. 1). We found that 3D
deconvolution outperforms 2D deconvolution when imaging MG in
transgenic zebrafish, resulting in reduced background (Fig. S4,
white arrowheads), and high deconvolution results in increased
structured noise and grains (Fig. S4, black arrowheads). Together,
this emphasizes that the imaging modality (e.g. confocal versus
Airyscan) and parameters of deconvolution influence data quality
for subsequent data analysis.

Global MG apicobasal structure can be visualized by 1D
vector analysis

As MG have a stereotypic apicobasal pattern with differential
distribution of geometries and intensity (Fig. 4A), we next wanted to
utilize this to describe 3D MG data (x,y,z) in a simplified form (1D
vector) using dimensionality reduction. To reduce data, we
developed the ‘zonationTool” (Fig. 4B, Table 1), which reduces
data first in the z-axis (2D; x,y), transforms them by 90° (2D; y,2),
and then performs another dimensionality reduction (1D; y). This
dimensionality reduction allows assessment of the intensity
distributions or ‘zonation’ in the apical-to-basal direction across
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Fig. 3. Image standardization facilitates global MG measurements across developmental time. (A) Workflow of the subregionTool. Semi-automatic
subregion selection by (1) manual line ROI (yellow line) selection, which is then used to rotate the image (2), create a bounding box (3), crop the image using
this bounding box (magenta dotted box) (4), and crop the image in the z dimension (5) (sigma=user-defined basal extension to allow for blood vessel
inclusion). (B) Images from different animals and different transgenic reporter lines (representative images) overlaid with each other after processing with the
subregionTool. (C) Measurement of GCL-to-OPL distance in age-matched samples [measured in Tg(TP1bglob:CaaX-GFP)“9'"; CoV 24 hpf 18.72%, 48 hpf
3.13%, 60 hpf 5.25%, 72 hpf 6.52%; P<0.0001; 24 hpf n=13 embryos, 48 hpf n=5 embryos, 60 hpf n=8 embryos, 72 hpf n=8 embryos; N=2 experimental

repeats; Kruskal-Wallis test; meants.d.]. ns, not significant.

DEVELOPMENT


https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008

TECHNIQUES AND RESOURCES

Development (2023) 150, dev201008. doi:10.1242/dev.201008

z-stack

A

b3 [ msnnnnasnnaninnsaninmi
[ mamsnmasnasnsnnnsnsn;

B [mamanmasunsnsnnnnnsnnns

[aanannsnnnnnsnnsnnsnns;

1T T

MIP (z) Fig. 4. The zonationTool enables
the identification of distinct

apicobasal MG subregions.

reslice (left) MIP (x)

(A) MG morphological

OPL

specializations from the apical (top)

to basal (bottom) position in the

retina. Subregions 1-5 are

highlighted by boxes. Dashed line

INL

indicates assumption of relative

intensity profile of cells from apical

NUPLLLLTTION i
'~ Vais ‘,é >,
-

b5 e to basal. (B) Diagram of the
workflow: 3D image stacks were
reduced to 2D images, transformed
to 1D+z, and again reduced, thus
resulting in a one-voxel-wise
representation of MG data.

(C) Apicobasal intensity plot derived
using the zonationTool (as
described in B) of the double-
transgenic Tg(GFAP:GFP); Tg(ath5:
RFP) at 75 hpf. Apicobasal position

To(gfap:GFP)
Tg(ath5:gapRFP)

<«—— Apicobasal Position [pixel]

-

1"

250

200

150

100

-

o

=
T

100

o
o
1

is absolute in pixels (normalization
presented in the following).

(D) Representative images showing
differences between transgenic
lines. (E) Heatmap representation
for apicobasal texture analysis of the
images shown in D (MG, left; RGC,
right). (F) Retina height
measurements (or GCL-to-OPL

ILe distance) from 24 to 96 hpf shows a
4 statistically significant increase over
time [***P=0.0006; not significant

Progenitor & MG Height [um]

Intensity [a.u.]

1 | 1

0 500 1000 1500
Apicobasal Position [pixel]

— 24hpf — 48hpf — 72hpf — 96hpf

the retina. As the approach is again independent of input data, it can
be applied to different labelling approaches of MG as well as other
cell types, such as retinal neurons (Fig. 4C-F). We next wanted to
examine MG zonation or texture from 24 to 96 hpf, but first needed
to understand these in more depth, i.e. whether MG at different
developmental stages are comparable in size and how this changes
over time. Measuring the distance between the granule cell and
outer plexiform layers (GCL-to-OPL distance) (also progenitor or
MG height), a significant increase was found over time (P=0.0006,
Kruskal-Wallis test; Fig. 4F). When analysing the CoV, variation
was low, suggesting comparability between samples, meaning we
could align 1D vectors of age-matched samples without processing.
Briefly, the highest CoV was observed at 24 hpf 18.72%, with lower
CoV values at 48 hpf 3.31%, 60 hpf 5.25%, 72 hpf 6.52% and
96 hpf 5.46%. In addition to this, we wanted to assess how local
texture changed from 24 to 96 hpf. To do this, we normalized the
apicobasal axis to 1920 pixels to allow direct visual comparison.
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This showed that endfeet are identifiable from 48 hpf onwards, and
a clear discrimination between MG cell bodies and the IPL is
possible from 72 hpf onwards (Fig. 4G,H). Together,
dimensionality reduction of 3D images using the zonationTool is
a user-friendly way to visualize texture and subregional zones of
MG as 1D vectors.

3D feature extraction reveals MG subcellular elaboration
during development

We used Tg(TPIbglob:VenusPest)***, an established transgenic
reporter line for visualizing MG, to develop and test the ability of
the GliaMorph toolkit to quantify 3D cell features. To examine
whether MG features became more elaborate with maturity, we
analysed data at 72 hpfand 120 hpf. After using the subregionTool
for data comparability, to extract MG in the images, we established
the ‘segmentationTool’, which uses bleach correction, 8-bit
conversion, 3D median filtering, and Otsu-based thresholding to

5
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Table 1. zonationTool measurements

Descriptor Variable Comment
Image height In Total height of the image
MG height MGy Radial extension of MG

produce Dbinary/segmented images. We then applied the
‘quantificationTool’, which extracts the following global image-
level features from the segmented image: (1) image height: length of
y-axis, (2) MG volume: voxels classified as MG after segmentation,
and (3) density: ratio of total image voxels divided by MG volume
voxels (i.e. given as a fraction of 1). After surface extraction using
Canny edge detection, (4) surface area is quantified. Using 3D
thinning, the skeleton/centreline was extracted to quantify
(5) network length, (6) number of branching points, (7) number
of end points, and (8) average branch length. Lastly, combining the
skeleton with a 3D Euclidean Distance Map, (9) the average
thickness was analysed (Fig. 5A,B, Table 2). Applying the
zonationTool to plot the apicobasal texture of MGs showed
growth of MG and downward migration of nuclei (Fig. 5C; cell
subdomain 3). To also assess for local patterns, we normalized data,
which confirmed an elaboration of subdomains with maturation
(Fig. 5C-E). Applying the zonationTool to the segmented data
showed again an increase in size and MG cell bodies that were
positioned more basally at 120 hpf. Also, clear bands of apical MG
zones (1 and 2) and endfeet were seen (Fig. 5D; subdomain 5).
When plotting the automatically skeletonized images, elaborations
of MG from 72 to 120 hpf were pronounced in the IPL (Fig. 5E;
subdomain 4).

Following this apicobasal analysis, we quantified specific MG
3D features with the quantificationTool at 72 hpf and 120 hpf.
Quantification of MG height showed a significant increase from 72
to 120 hpf (P=0.0061; Fig. 5F). Surprisingly, neither MG volume
(P=0.2314; Fig. 5G) nor percentage volume coverage were
significantly different between 72 and 120 hpf (P>0.9999;
Fig. 5H). However, MG surface volume (P=0.0004; Fig. 5I) and
surface-to-volume ratio were significantly increased from 72 to
120 hpf (P=0.0015; Fig. 5J), suggesting that shape complexity
increased over time. The average thickness was significantly
decreased from 72 to 120 hpf (P=0.0366; Fig. 5K), which was
thought to be due to an increase in the number of thinner protrusions
over time. As expected, skeleton length (P=0.0100; Fig. 5L),
number of junctions (P=0.0026; Fig. SM) and number of endpoints
(P<0.0001; Fig. 5N) were significantly increased and average
branch length was decreased from 72 to 120 hpf (P=0.0060;
Fig. 50). Together, these data show that GliaMorph is suitable for
assessing MG morphology in complete transgenic retinas along the
apicobasal axis as well as in 3D to extract biologically meaningful
information.

Visualization of membrane-tagged fluorophores supersedes
cytosolic reporters in quantification of MG morphology

As cellular labels are used to visualize the glial cells and their gross
morphology, we must consider their differing characteristics for
robust analysis (e.g. cytosolic versus membrane expression)
(Escartin et al.,, 2021; Halford et al., 2017). As GliaMorph
analysis is based on object intensity and distribution, we next
compared MG-specific transgenic lines expressing the cytosolic
fluorescent protein Tg(csl:mCherry)!! with mosaic single-cell
expression of the membrane fluorescent marker transgene
Tg(TPlglob:CaaX-GFP)**!! (72 hpf; Figs S5, S6A-C). Visually,

the membrane marker delineated more detail than the cytosol
marker, as seen for MG protrusions in the IPL (Fig. S6A-C, white
arrowheads) or MG honeycombing (Nagashima et al., 2017) in the
outer limiting membrane (Fig. S6A-C, unfilled arrowhead). A tested
segmentation approach delivered satisfying outcomes with the
membrane marker, but not the cytosol marker (Fig. S6D-F).
Moreover, with the membrane marker cell connectivity and IPL
protrusion details were extracted. This was also reflected in the 3D
skeleton, which showed more detail with the membrane marker
(Fig. S6G-I). Together, we conclude that membrane visualization
leads to more accurate visualization of morphology.

MG development is defined by apicobasal elaboration and
refinement of subcellular domains

As membrane labels outperformed cytosolic MG cell labelling from
single-cell labelling experiments, we generated the stable transgenic
line Tg(TP1bglob:eGFP-CAAX)**!!. Using this, we analysed MG
development in a shorter time frame from 60 to 96 hpf (Fig. 6A-C).
This revealed statistically significant increases in MG height
(P<0.0001; Fig. 6D), thickness (P=0.0466; Fig. 61), and average
branch length (P=0.0018; Fig. 6M), but none of the other measured
parameters (Fig. 6E-H,J-L). This led us to examine our data in a
local fashion using apicobasal distributions. This revealed a
significant difference in intensities from 60 to 96 hpf for original
(P<0.0001), segmented (P<0.0001) and skeletonized images
(P<0.0001; Fig. 7A). We observed a downward migration of
nuclei, increased MG height, and increased overall complexity (as
indicated by skeleton distributions), particularly in the IPL. We then
examined the alignment of structures in the image (i.e. horizontal
versus vertical), which can be described as image order (Marcotti
et al., 2021) (Fig. 7B,C), revealing a significant difference from
60 to 96 hpf (P=0.0049; Fig. 7D). These data suggest that even
though features might not change enough to be extracted globally
(Fig. 6), local features are elaborated and refined over time. When
comparing our 72 hpf data of the cytosolic transgenic 7g(TP1bglob:
venusPest) with the membrane-tagged transgenic Tg(TP1bglob:
eGFP-CAAX)"*!!, most quantified features were increased in the
membrane-tagged transgenic.

Single-cell analysis validates the global image-level
measurements of MG morphology

As the above measurements are based on the population-level
(image-level or global) analysis, we next sought to study cell
heterogeneity and whether measurements of individual cells
represent collective measurements of cell populations. Thus, we
visualized and analysed data from individual MG cells from 60 to
96 hpf (Fig. 8A). In individual MGs, we saw changes in retina
height, surface-to-volume ratio, skeleton length, and endpoints
(Fig. 8B,E.F,H) just as we observed at the population level
(Fig. 5SD,H,I,L). Other parameters, such as volume, surface, and
number of junctions were increased in single-cell level measurements
(Fig. 8C,D,G), whereas branch length and thickness were not
altered at the single-cell level (Fig. 81,J). Together, our data show that
single-cell and global image-level measurements are in good
agreement, also with respect to zonationTool-based analysis
(Fig. 8K,L), but that batch effects might impact measurement
outcomes. For example, single-cell thickness measurements showed
high variability, which was not observed for global image-level
measurements. Conversely, using single-cell measurements allows
for a closer examination of cellular heterogeneity. Although precise
measurements can be derived from single-cell analysis, the sampling
problem they introduce becomes important. This highlights that
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Fig. 5. 3D quantification of MG using GliaMorph
shows that MG significantly elaborate between
72 hpf and 120 hpf. (A,B) Workflow overview to
extract MG features from a cytosolic transgenic on
a 3D global image level, including depth-coded
(DC) original images, DC segmentation, DC
surface, thickness (EDM; higher intensity
represents thicker regions) and skeleton (MIP
dilated for representation) at 72 hpf (A) and 120 hpf

'S } (B). a.u., arbitrary unit. (C) Apicobasal texture plot
! fNE “\ W \ 3 of original images showing changes in subregions
Original Segmentation ¥ ) EDM ¥ Skeleton 1 and 2 (white arrow), cell bodies (grey arrow) and
» Image Height ' Skeleton Length endfeet (P=0.0862). Normalization refers to image
£ MG Height Surface  Average Thickness # of Junction length, i.e. both images were adjusted to the same
o Volume Surface:Volume Ratio # of Endpoints length. (D) Apicobasal texture plot of segmented
E Volume Coverage Avg. Branch Length images indicates IPL maturation (blue arrows)

(**P=0.0052). (E) Apicobasal texture plot of
skeletonized images over time (P=0.3402; Mann—
Whitney U-test; mean). P-values for C-E refer to
non-normalized data. (F) MG height was
significantly increased from 72 to 120 hpf
(**P=0.0061). (G) Volume was not significantly
changed (P=0.2314). (H) Volume coverage was not
significantly changed (P>0.9999). (I) Surface
volume was significantly increased (***P=0.0004).
(J) Surface-to-volume ratio was statistically
significantly increased (**P=0.0015). (K) Average
thickness was significantly decreased (*P=0.0366).
(L) Skeleton length was statistically significantly
increased (**P=0.0100). (M) The number of
C Original D Segmentation E Skeleton junctions was significantly increased (**P=0.0026).
Non-Norm. Norm. Non-Norm. Norm. Non-Norm. Norm. . . o
Py (N) The number of endpoints was significantly
increased (****P<0.0001). (O) Average branch
10 length was significantly changed (**P=0.0060).
72 hpf n=15, 120 hpf n=18; N=2 experimental
repeats; two-tailed, unpaired t-test; meants.d. ns,
not significant.
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Table 2. Quantified parameters

Feature Variable Unit Description

Image height Iy um Total height of the image

MG height MGy um Radial extension of MG

Number/count Ny Number of objects in ROI

Volume Vi umd Volume of object voxel, derived after segmentation

Volume coverage VCn % Percentage of image volume covered with MG (lowest=0; highest=100)

Surface Sn um? Number of object surface voxels, derived after segmentation (given in um? for
comparability between experiments)

Surface:volume ratio S:Vy Ratio of surface to volume (lowest=0; highest=1)

Thickness Tn Distance from the local centreline to the corresponding surface

Skeleton length Ly um Skeleton voxels (given in pm for comparability between experiments)

Number of junctions In Number of points where two or more sub-branches branch off

Number of endpoints EPN Number of blind-ended object points

Average branch length BL um Average length of individual skeleton branches

global and single-cell analysis might answer different biological
questions.

Apicobasal feature analysis provides reliable readouts of MG
defects in a mouse model of glaucoma

So far, we applied GliaMorph to transgenic reporter lines labelling
MG in the zebrafish retina. However, many studies in which MG
morphology is of interest (e.g. in diseased tissues or drug
treatments) may use other models, such as mice, and a cell-specific
fluorescent transgenic reporter is not always available. Thus, we
tested GliaMorph on the retina of another species (i.e. mice) in
which MG are visualized with antibody staining. To assess
whether biologically relevant data could be extracted, we collected
retinas from approximately 1-year-old CD1 controls and DBA/2J
mice, which develop glaucoma-like phenotypes and exhibit
gliosis (Turner et al., 2017). We used an Rlbpl (also known as
Cralbp) antibody to label entire MG and a GFAP antibody to
detect gliosis and pathology (Fig. 9A,B). Subsequent to
establishing similarity with the subregionTool and splitting
channels with the splitChannelsTool, we applied the
zonationTool to analyse apicobasal distributions. This showed
changes in Rlbp1, suggesting that cell morphology and subcellular
arrangements are changed in this glaucoma model (Fig. 9C-C”;
original P<0.0001; segmentation P<0.0001; skeleton P<0.0001).
Additionally, we found GFAP to be upregulated and distributed to
a more apical area in glaucoma mice in comparison with controls
(Fig. 9D-D”; original P<0.0001; segmentation P<0.0001;
skeleton P<0.0001). Volume, branching and size quantifications
using the GliaMorph suite showed no statistically significant
difference (Fig. S7). Together, this shows that GliaMorph can be
used with images from retinas of different species and in
combination with antibody staining to observe and quantify MG
phenotypes.

Workflow integration

The GliaMorph toolkit allows the workflow to be individualized for
experimental needs based on its modular construction (Fig. 1).
Batch processing allows processing of whole experimental
folders, increasing throughput and automation. Implementation
in the Fiji framework allows cross-platform and licence-
free applicability. Implementing codes as macros with graphical
user interfaces allows direct use and alteration of code, even by
users without any coding experience. This is supported by the
online availability of code (https:/github.com/ElisabethKugler/
GliaMorph), example data (Zenodo: 10.5281/zenodo.5747597),

YouTube tutorials (https:/ www.youtube.com/watch?v=aPFBZZIS
TTg&list=PLaAjG7rSmqQnmkPdktLJgbxotoRfyY72k), as well as
a step-by-step user guide Kugler et al. (2023).

DISCUSSION

GliaMorph allows robust quantification of MG morphology in
the vertebrate retina

Quantifying the morphology of glia is challenging owing to their
highly branched and complex morphologies. Generally,
quantification of glia cells relies on measurements of cell
number (e.g. counting nuclei) or manual cell tracing. However,
this provides little detail of the morphology and can be time
consuming or prone to human error. Quantifying morphology is
crucial because the cell shape facilitates close contacts with retinal
neurons, synapses and blood vessels. For example, morphological
changes in some glial cells, such as astrocytes, correlates with
neuronal alterations (Stogsdill et al., 2017), leading to the
potential for subtle glial morphological shifts underlying
neuronal dysfunction, neural degeneration and ultimately vision
loss (Bringmann et al., 2006; Bringmann and Wiedemann, 2012;
Vecino et al., 2016). Our data shows that the transgenic membrane
marker increased morphological data points compared with the
cytosolic marker in developing MG. However, the global
population glial measurements with ~membrane-tagged
fluorophores became obscured because of densely labelled
regions of the retina and limitations in the segmentation and
skeletonization using GliaMorph. Analysis of developmental
changes of MG showed an increase of most measured
features, and we show that if global changes are too subtle to be
depicted with the quantificationTool, local analysis with the
zonationTool can detect MG morphological elaboration at each
of the apicobasal domains. To gain additional insights into
individual MG morphology, we used single-cell transgenic
labelling, in which the elaboration of MG cells at precise
domains is most apparent. This demonstrates the importance of
considering which cellular labels are used to visualize and
quantify glial morphology. For example, even though glia shape
serves as a readout of maturity (MacDonald et al., 2017) or cell
damage (Halford et al., 2017), plasma membranes can suffer
disruption in these conditions, interfering with morphological
analysis (Halford et al., 2017).

The cellular and molecular mechanisms regulating the
claboration of MG precisely at each of the five domains in the
retina remain poorly understood. GliaMorph will provide a robust
computational pipeline to analyse and quantify MG shape in genetic
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Fig. 6. Increased MG feature extraction using
membrane-tagged fluorescent reporter lines.
(A-C) Micrographs of original and processed data at
60, 72 and 96 hpf. a.u., arbitrary unit. (D) MG height
was statistically significant increased from 60 to

96 hpf (****P<0.0001). (E) Volume was not statistically
significantly changed (P=0.2197). (F) Volume
coverage was not statistically significantly changed
(P=0.7728). (G) Surface volume was not statistically
significantly changed (P=0.3036). (H) Surface-to-
volume ratio was not statistically significantly changed
(P=0.3570). (I) Thickness was statistically significantly
increased from 60 to 96 hpf (*P=0.0466). (J) Skeleton
length was not statistically significantly changed
(P=0.1095). (K) The number of junctions was not
statistically significantly changed (P=0.0741). (L) The
number of endpoints was not statistically significantly
changed (P=0.0690). (M) Average branch length was
statistically significantly increased from 60 to 96 hpf
(**P=0.0018). 60 hpf n=11, 72 hpf n=12, 96 hpf n=13;
N=2 experimental repeats; Kruskal-Wallis test;
meanzs.d. All P-values refer to the comparison of the
60 and 96 hpf time points.
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mutants or knockdown of candidate genes (Escartin et al., 2021;
Charlton-Perkins et al., 2019). Importantly, as techniques develop,
future work will also be looking at integrating multimodal data, such
as shape analysis, calcium data for cell function, and overall visual
behaviours. By applying apicobasal texture analysis to a mouse
disease model, we show that there is an overall change in expression
domains in MG in a glaucoma model. This is particularly pertinent
to the pathogenesis of disease, whereby subtle glial cell changes
may serve as important hallmarks of neurodegeneration, even
potentially driving pathogenesis. In many instances, transgenic or

single-cell labels are not possible. Here, we have shown that using
antibodies on a mouse model of retinal disease and the zonationTool
we can clearly identify subcellular expressions changes of a common
glial pathology marker (e.g. GFAP). Thus, the zonationTool is a
powerful tool for rapid subcellular morphological analysis in any
retinal tissue that can be labelled with cell-specific florescent
transgenic reporters (e.g. zebrafish) or with glia-specific antibodies
(e.g. mouse or human). This global level analysis can be expanded
upon with the segmentationTool and quantificationTool to quantify
precise cellular features.
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Fig. 7. Zonation and orientation measurements identify increased
subcellular organization of MG cell processes during development.

(A) Apicobasal intensity plotting using the zonationTool showed a
statistically significant difference from 60 to 96 hpf in original (****P<0.0001),
segmented (****P<0.0001) and skeletonized images (****P<0.0001) (60 hpf
n=11, 72 hpf n=12, 96 hpf n=13; N=2 experimental repeats; Kruskal-Wallis
test; mean). (B) Orientation measurement using Fourier transformation
analysis delivered local orientation (yellow lines) in non-zero (black) regions.
(C) Image as in B but colour-coded for orientation, showing that subcellular
organization changed from a more vertical (1, yellow) to a more horizontal
(0.2, blue) alignment. (D) Image order collapsed into 1D vectors for
quantitative comparison (P=0.0049 for the comparison of the 60 and 96 hpf
time points; data from two experimental repeats; Kruskal-Wallis test). a.u.,
arbitrary unit; ns, not significant.

The importance of imaging data quality and standardization

Standardized image analysis approaches, especially those that
facilitate the reliable comparison of images across different samples
and labs, are crucial for the rapidly advancing imaging paradigms
and large datasets acquired in cell and developmental biology. As
more and more image data are standardized, and protocols for
depositing raw image data are developed, approaches like
GliaMorph will become more commonplace. Here, we present a
comprehensive data analysis workflow to assess 3D MG
morphology. We show that in-depth data understanding is crucial
to analysing data in 3D. We performed benchmarking and
troubleshooting using a variety of experimental approaches to

identify key parameters that must be optimal/optimized for
workflow validity. Although we included sections on data
understanding and deconvolution, these need to be newly
assessed when working with data other than those studied here.
As the field of deconvolution is complex, we here only suggest the
two routes: (1) deconvolution of confocal data with existing Fiji
plugins integrated into the deconvolutionTool and (2) microscope
programs designed specifically for their data (e.g. processing
Airyscan-acquired data with Zeiss packages). Again, it is important
to spend time on data exploration and examination to understand
the data and what features need to be considered [e.g. highly
different contrast-to-noise ratio (CNR) between different subcellular
regions] (see the Olympus ‘Introduction to Deconvolution, https:/
www.olympus-lifescience.com/en/microscope-resource/primer/
digitalimaging/deconvolution/deconintro/; Huang and Murphy,
2004). Generally, the better the data, the better the data analysis
output.

MG have a computationally challenging apicobasal arrangement,
which translates to five subcellular domains that are biologically and
computationally highly distinctive. In addition to subcellular
difference, local anatomical differences can impact data analysis.
Thus, to obtain comparable datasets, image acquisition should be
performed at standardized positions. Here, we acquired data in the
ventro-temporal zone of the right eye [dorsally to the area
temporalis, known as strike zone (Zimmermann et al., 2018), or
high-acuity area]. Standardization procedures might differ for
samples at other ages, visualization techniques (e.g. different
transgenics, antibodies, microscopes, etc.), or species. We also
highlighted the challenges in z-axis signal decay in confocal
microscopy, and suggested that the appropriate deconvolution is a
requirement for fluorescence microscopy, which is in line with
previous work (Korobchevskaya et al., 2017; Troger et al., 2020).
However, particularly for antibody staining, penetration depth in
sample preparation is a limiting factor for image quality. Again,
these observations highlight that high input data quality and
appropriate image pre-processing are pivotal for quantitative image
analysis. As data are often acquired at different orientations, we
achieved data comparability by employing semi-automatic rotation
and 3D subregion selection. Standardization allowed for
dimensionality reduction using the zonationTool to create 1D
vectors from 3D data, enabling intuitive and quantitative insights
into apical-basal polarity data. Lastly, employing standardized data,
we used fibre-orientation assessment to analyse vertical-to-
horizontal structures in our data. Together, high-quality data, data
understanding, and establishing image comparability allowed for
data analysis and quantification on various levels. GliaMorph
allows for multi-dimensional glia analysis, enabling image-level as
well as subcellular assessments that are robust, easy to use and
adaptable.

Robustness of application

An aim for data analysis approaches should be robustness across
users and data. Using acquisition standardization and automatic
analysis ensures comparability between age-matched samples.
This is exemplified when acquiring two datasets by two
independent investigators and comparing MG volume and
skeleton as readouts. This showed neither a significant
difference, nor bias, for both measured parameters. Thus, even
if data are acquired in different samples and by different
people, age-matched analysis is possible (Fig. S8A,B; volume
P=0.9211; skeleton P=0.8460). Similarly, analysis of the
same dataset, but by different experimenters does not bias/
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Fig. 8. Analysis of MG development using single-cell measurements reveals variability between cells. (A) Segmentation MIPs of single MG cells at
60 hpf, 72 hpf and 96 hpf (representative images extracted from 3D stacks). (B) MG height did significantly increase from 60 to 96 hpf (***P=0.0006).

(C) Volume did significantly increase from 60 to 96 hpf (**P=0.0035). (D) Surface volume did significantly increase from 60 to 96 hpf (*P=0.0029).

(E) Surface-to-volume ratio did not significantly change from 60 to 96 hpf (P=0.9947). (F) Skeleton length did significantly increase from 60 to 96 hpf
(**P<0.0001). (G) The number of junctions did significantly increase from 60 to 96 hpf (***P<0.0001). (H) The number of endpoints did not significantly alter
from 60 to 96 hpf (P=0.0400). (I) Average branch length did not significantly alter from 60 to 96 hpf (P=0.3320). (J) Thickness did not significantly alter from
60 to 96 hpf (P=0.8241). 60 hpf n=10 cells, 72 hpf n=19 cells, 96 hpf n=16 cells; N=3 experimental repeats; Kruskal-Wallis test; meants.d. (K,L) Apicobasal
intensity plotting using the zonationTool showed a statistically significant difference from 60 to 96 hpf in segmented (****P<0.0001) and skeletonized
(****P<0.0001) images.

change the parameters analysed by GliaMorph (Fig. S8C,D;
volume P=0.1934; skeleton P=0.7363). This shows that the
GliaMorph pipeline (Fig. 1) is a robust and reliable method to
quantify MG morphology, which will facilitate the direct
comparison of data between multiple users and laboratories.
Additionally, we here presented data acquired by markedly

different approaches, varying experimenters, transgenic lines or
antibody staining, whole-mount intact tissues or cryosections,
different microscopes and zebrafish or mouse tissues, and were
able to perform multi-dimensional data analysis and detect subtle
differences that might be otherwise overlooked using visual or
manual assessments.

DEVELOPMENT

11


https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201008

TECHNIQUES AND RESOURCES

Development (2023) 150, dev201008. doi:10.1242/dev.201008

Merge
P335 CD1

Cc' Segmentation c"

*kkk

Apicobasal Position [pixel]

&

D Original D' D"

1

Segmentation

I *hkk

1
—
[}
X 1009
a
Fumr

kKK
1

253
379

253
379
505
631
757
883

200 757
883

100 2017

Apicobasal Position

N
S > & & s W

>
®

Applicability to MG in other species and other cell types

GliaMorph can detect features including positioning of nuclei,
subcellular features along the apicobasal axis, general cell
morphology features, including branch points, cell body size, and
skeletal shape. Similar comparisons can be carried out in other
vertebrate models to determine whether the MG cells undergo a
stereotypic morphological elaboration programme in the developing
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Fig. 9. Apicobasal texture analysis identifies subcellular
changes in protein localization in mouse glaucoma
models. (A,B) Micrographs of stainings in controls and
spontaneously glaucomatous DBA/2/J mice (Rlbp1 labels
MG, GFAP labels MG reactivity, DAPI labels cell nuclei).
(C-C”) Apicobasal texture analy