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Rapid and robust directed differentiation of mouse epiblast stem
cells into definitive endoderm and forebrain organoids
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ABSTRACT

Directed differentiation of pluripotent stem cells (PSCs) is a powerful
model system for deconstructing embryonic development. Although
mice are the most advanced mammalian model system for genetic
studies of embryonic development, state-of-the-art protocols for
directed differentiation of mouse PSCs into defined lineages require
additional steps and generates target cell types with lower purity than
analogous protocols for human PSCs, limiting their application as
models for mechanistic studies of development. Here, we examine
the potential of mouse epiblast stem cells cultured in media
containing Wnt pathway inhibitors as a starting point for directed
differentiation. As a proof of concept, we focused our efforts on two
specific cell/tissue types that have proven difficult to generate
efficiently and reproducibly from mouse embryonic stem cells:
definitive endoderm and neural organoids. We present new
protocols for rapid generation of nearly pure definitive endoderm
and forebrain-patterned neural organoids that model the
development of prethalamic and hippocampal neurons. These
differentiation models present new possibilities for combining
mouse genetic tools with in vitro differentiation to characterize
molecular and cellular mechanisms of embryonic development.
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INTRODUCTION
Over the last two decades, methods for the directed differentiation of
human PSCs (hPSCs) into numerous lineages have been developed
and refined. As a result, it is now possible to generate nearly pure
populations of multiple specific cell types or 3D multicellular
organoids that resemble developing human tissues (Huch et al.,
2017; Loh et al., 2016; Tchieu et al., 2017; Yiangou et al., 2018).
However, although hPSC-based models for studying development
advanced, analogous protocols for mouse PSCs have not yet
emerged. Current state-of-the-art protocols for directed

differentiation of mouse PSCs tend to be more complex than
equivalent hPSC protocols, and they often fail to generate target cell
types with high purity. Robust and efficient protocols for directed
differentiation of mouse PSCs into defined lineages would be
synergistic with in vivo studies in mouse and with studies of hPSC-
based models of human embryonic development.

A crucial difference between most mouse and human directed
differentiation protocols is the starting cell state. hPSCs are
generally cultured in the primed pluripotent state, which is
roughly equivalent to cells of the pluripotent epiblast around the
start of gastrulation [approximately embryonic day (E) 6.5 in
mouse] (Rossant and Tam, 2017). In contrast, mouse PSCs are
predominantly grown in the naïve pluripotent state [mouse
embryonic stem cells (ESCs)], which is equivalent to cells in the
inner cell mass of the pre-implantation embryo at ∼E3.5-4.0
(Nichols and Smith, 2012). Like their embryonic equivalents, naïve
PSCs must first exit the naïve pluripotent state before they can
properly respond to differentiation cues (Morgani et al., 2017;
Mulas et al., 2017; Smith, 2017). As a result, mouse naïve PSC
directed differentiation protocols must include an additional first
step of ∼48 h, during which cells exit the naïve pluripotent state and
transition into an early formative and/or later primed pluripotent
state that is competent to respond to signals that induce
differentiation into specific somatic lineages. The requirement for
this additional initial step is problematic because the naïve-to-
primed transition is inherently asynchronous, leading to a
heterogeneous starting population of formative/primed cells
before directed differentiation has commenced (Kalkan et al.,
2017; Strawbridge et al., 2020 preprint). The initial naïve-primed
conversion step thus represents an impediment to the development
of rapid and efficient protocols for directed differentiation that use
mouse naïve PSCs as a starting population.

Mouse PSCs can be cultured in a primed pluripotent state, referred
to as epiblast stem cells (EpiSCs). EpiSCs share many similarities
with hPSCs, including the ability to respond rapidly to differentiation
stimuli (Brons et al., 2007; Tesar et al., 2007; Vallier et al., 2009).
Protocols that use EpiSCs as a starting point for directed
differentiation have been developed, including (but not limited to)
robust protocols for generation of oligodendrocyte progenitor cells
(OPCs) and neuromesodermal progenitors (Edri et al., 2019; Najm
et al., 2011). However, EpiSC-based protocols are not widely used
for several reasons: (1) EpiSCs are prone to spontaneous
differentiation and thus are more difficult to culture than mouse
naïve PSCs or hPSCs; (2) EpiSCs exhibit significant line-to-line
variability in their differentiation propensity; and (3) EpiSCs express
markers of lineage-primed epiblast cells transiting through the
anterior primitive streak (T, FOXA2), which may limit their potential
to differentiate into some lineages (Bernemann et al., 2011; Jouneau,
2019; Kojima et al., 2014; Kurek et al., 2015; Rossant and Tam,
2017; Song et al., 2016).
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More recently, several groups have demonstrated that inhibition
of the canonical Wnt signaling pathway can limit spontaneous
differentiation in EpiSC cultures, enabling consistent, long-term
maintenance of pluripotent EpiSCs (Kurek et al., 2015; Sumi et al.,
2013; Tsakiridis et al., 2014; Wu et al., 2015). Despite this progress,
EpiSCs cultured in these conditions (i.e. in the presence of Wnt
inhibitors; hereafter referred to as ‘+WI’) are still not commonly
used for directed differentiation experiments. Therefore, whether
EpiSCs (+WI) have the potential to improve directed differentiation
towards multiple lineages in vitro remains a significant gap in the
field.
Here, we examine the potential of EpiSCs (+WI) as a starting

point for in vitro directed differentiation studies. We focused
on two specific cell populations that have proven difficult to
generate reproducibly and efficiently from mouse naïve PSCs:
definitive endoderm (DE) and neural organoids. First, we
systematically optimized conditions to differentiate EpiSCs into
DE, developing a protocol that converts EpiSCs into nearly pure DE
in only 40 h. Second, we show that EpiSCs can robustly and
reproducibly generate forebrain-patterned neural organoids.
In-depth characterization of forebrain-patterned organoids
revealed that they undergo polarization into multiple distinct
domains of progenitors, including the prethalamic (P3) region of
the caudal forebrain (diencephalon), hippocampus and cortical hem,
as well as OPCs. The prethalamic progenitors, which give rise
primarily to inhibitory (GABAergic) neurons of the thalamic
reticular nucleus and the zona incerta, are notable because they have
not previously been efficiently generated in vitro (Shiraishi et al.,
2017; Xiang et al., 2019). Our data suggest that mouse EpiSCs
(+WI) could be a powerful platform for directed differentiation
studies, enabling direct comparative studies with mouse
embryonic development in vivo and with hPSC directed
differentiation models.

RESULTS
Rationale for using EpiSCs (+WI) as a starting point for
directed differentiation experiments
Given the issues associated with using mouse naïve PSCs for
directed differentiation, we sought to assess the potential of mouse
EpiSCs as a starting point for directed differentiation experiments.
We chose to use mouse EpiSCs cultured with Wnt inhibitors
(EpiSCs +WI), which had been previously shown to significantly
reduce spontaneous differentiation and allow for maintenance of
pluripotency over many passages in culture (Kurek et al., 2015;
Sumi et al., 2013; Wu et al., 2015). These culture conditions have
several features that make them potentially useful for directed
differentiation experiments. First, EpiSCs (+WI) are easy for labs
that currently work with mouse naïve PSCs to acquire, as naïve
PSCs can be converted into stable EpiSC (+WI) lines in vitro.
Second, there is suggestive data from previous studies indicating
that EpiSC culture conditions work well across a variety of genetic
backgrounds (including distinct inbred mouse strains) and with both
male and female cells (Brons et al., 2007; Tesar et al., 2007). In
contrast, culture of naïve PSCs from most inbred mouse strains
requires addition of inhibitors of FGF/ERK signaling and GSK3 (2i
culture conditions), which impedes de novoDNAmethyltransferase
activity, leading to erosion of parent-of-origin-specific gene
regulation (Choi et al., 2017; Czechanski et al., 2014; Yagi et al.,
2017; Ying et al., 2008). Finally, given the similarities between
EpiSCs (+WI) and hPSCs, we reasoned that it should be possible to
adapt strategies developed for hPSC differentiation to EpiSCs
(Vallier et al., 2009; Greber et al., 2010).

Derivation and characterization of a panel of ground-state
EpiSCs
We derived EpiSCs (+WI) from 12 distinct naïve PSC lines,
including lines from several distinct inbred mouse strains: C57Bl/6J
(n=5), B6129SF1/J (n=3), DBA/2J (n=1) and PWK/PhJ (n=3)
(Czechanski et al., 2014) (Table S4). Briefly, naïve PSCs were
converted into epiblast like-cells (EpiLCs) using previously
established protocols (Hayashi et al., 2011). Following EpiLC
conversion, cells were split onto irradiated mouse embryonic
fibroblast feeders and maintained EpiSC media containing a
tankyrase inhibitor (NVP-TNKS656) to block canonical Wnt
signaling (Shultz et al., 2013). Consistent with previous studies,
EpiSCs (+WI) express markers of post-implantation epiblast [OCT4
(POU5F1), SOX2, OTX2, NANOG], do not express markers
specifically expressed in naïve pluripotent stem cells (KLF4), and
exhibit sparse expression of markers of primed epiblast (FOXA2)
and primitive streak (T) (Fig. 1A,B).

To characterize these EpiSC (+WI) lines in greater depth, we
measured gene expression by RNA sequencing (RNA-seq; n=12
lines) and mapped accessible chromatin regions across the genome
by assay for transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq; n=9 lines) (Buenrostro et al., 2015). We
observed high expression of primed [Otx2,Oct6 (Pou3f1),Dnmt3b]
and general (Oct4, Sox2, Nanog) pluripotency markers, and
low expression of naïve pluripotency markers (Klf4, Tbx3,
Prdm14, Nr5a2) across all lines, in agreement with results
from immunofluorescence staining (Fig. 1B,C). Similarly, genes
associated with lineage commitment/lineage priming (T, Foxa2,
Mixl1, Sox17, Gata6, Cdx2, Sox1) exhibited low to moderate
expression across all lines (Fig. 1C). Principal component analysis
(PCA) of RNA-seq and ATAC-seq data revealed that pluripotency
state (naïve PSCs versus EpiSCs) is the primary driver of gene
expression differences between lines, followed by genetic
background (PC1; ∼56% and ∼71% of total variance,
respectively, Fig. 1D,E). EpiSC lines from the same genetic
background had highly correlated profiles of both gene expression
and chromatin accessibility.

Next, we compared chromatin accessibility across the genome in
our new EpiSC lines to cell populations in the embryo at E6.5
(epiblast, visceral endoderm, primitive streak, and germ layer
progenitors) as well as EpiSC lines cultured in the presence (EpiSC-
AFX) or absence (EpiSC-AF) of the tankyrase inhibitor XAV939
(Kinoshita et al., 2021; Xiang et al., 2020). PCA of chromatin
accessibility profiles revealed that EpiSC lines most closely
resemble EpiSC-AF and EpiSC-AFX, followed by in vivo epiblast
tissue, and are least similar to primitive streak and endoderm/
mesoderm (Fig. 1F). Taken together, these data suggest that EpiSCs
(+WI) exhibit expected features of primed PSCs and can be stably
maintained in an undifferentiated state in culture.

Optimized directed differentiation of EpiSCs into DE
We next sought to test whether EpiSCs (+WI) can be directed to
differentiate efficiently into DE. Current protocols for directed
differentiation of hPSCs into DE are rapid and efficient, and serve as
the foundation for robust protocols for generating progenitors of
various endodermal organs (Yiangou et al., 2018). In contrast,
protocols for DE differentiation of mouse PSCs require additional
steps and give rise to heterogeneous populations of DE and
mesodermal cell types (Fig. S1A, Table S1).

hPSCDE differentiation protocols consist of two steps that mimic
the signals that sequentially specify DE during gastrulation (Gadue
et al., 2006; Loh et al., 2014; Yiangou et al., 2018; Zorn and Wells,
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2009). In the first step, Wnt and TGFβ/Nodal signaling promote exit
from pluripotency and differentiation into anterior PS-like (aPS)
progenitors. In the second step, high TGFβ/Nodal signaling
promotes the commitment of aPS progenitors into DE. This
general approach has been applied to a variety of hPSC lines and
can consistently generate >85% pure DE (Loh et al., 2014). We
hypothesized that signaling requirements for mouse DE
differentiation from EpiSCs (+WI) would be similar to those of

hPSCs, but that it was likely that the timing of each stage and the
appropriate concentration of signaling factors would be different for
mouse EpiSCs compared with hPSCs (Greber et al., 2010; Vallier
et al., 2009)

To determine the optimal timing and concentration of each signal
for aPS induction, we applied a gradient of increasing
concentrations of CHIR99201 (to activate Wnt signaling via
GSK3 inhibition) and activin A (to activate TGFβ/nodal

Fig. 1. Derivation and characterization of mouse EpiSCs cultured in primed ground state conditions. (A) Phase-contrast image of an EpiSC (+WI) colony.
Scale bar: 50 μm. (B) Immunofluorescence images of EpiSC (+WI) cultures showing markers of general pluripotency (SOX2, OCT4), primed pluripotency
(OTX2), naive pluripotency (KFL4, NANOG) and lineage commitment (T, FOXA2, SOX1). Scale bar: 50 μm. (C) Gene expression heatmap of RNA-seq data from
EpiSC (+WI) lines (n=12; biological replicates derived from distinct naïve mouse ESC lines) for selected genes associated with pluripotency and lineage
commitment. (D) PCA plot of RNA-seq data (biological replicates; C57Bl/6J=5, B6129SF1/J=3, PWK/PhJ=3, DBA/2J=1) for EpiSC (+WI) lines. (E) ATAC-seq
data (n=9 biological replicates; C57Bl/6J=3, B6129SF1/J=2, PWK/PhJ=3, DBA/2J=1) for EpiSC (+WI) and ESC lines (n=2; B6129SF1/J). (F) PCA plot of ATAC-
seq data for EpiSC (+WI) lines (biological replicates; C57Bl/6J=4, PWK/PhJ=2, DBA/2J=1; all shown as light blue). For comparison, ATAC-seq data from an
additional set of EpiSC lines EpiSC-AF (cultured with activin A and FGF2) and EpiSC-AFX (cultured with activin A, FGF2 and the Wnt inhibitor XAV939) (taken
from Kinoshita et al., 2021) and from early embryonic lineages in vivo (E6.5 epiblast, E6.5 visceral endoderm, E7.5 ectoderm, E7.5 mesoderm, E7.5 endoderm,
E7.5 primitive streak (taken from Xiang et al., 2020).
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signaling) to EpiSCs (DBA/2J) for either 16, 20 or 24 h (see
Materials and Methods for further details). After aPS induction, all
conditions were shifted to the same DE commitment conditions for
an additional 24 h, and DE induction purity (fraction of the total
population co-expressing FOXA2 and SOX17) was determined by
immunostaining (Fig. 2A, Fig. S1B). Across all conditions, we
observed DE purity ranging from 7% to 82%. The highest purity
was achieved in conditions with higher activin A and the highest
levels of Wnt activation. Exposure to these aPS conditions for 16 h
was sufficient to enable DE commitment in the second stage of the
protocol, and no further increase in purity was observed in the 20 or
24 h aPS conditions.
Having defined these improved conditions for aPS induction, we

next sought to define the optimal conditions for DE commitment of
aPS-like cells (Stage 2) (Fig. 2B, Fig. S1C). To promote
commitment of aPS-like cells into DE, DE differentiation
protocols for hPSCs add a high concentration of activin A for
48 h. Concurrent inhibition of BMP and/or Wnt signaling has also
been reported to reduce off-target differentiation of aPS cells into
mesodermal lineages (Loh et al., 2014). Based on these data, we
tested the effects of activin A concentration, BMP inhibition (LDN-
193189), Wnt inhibition (NVP-TNKS656, LGK-974), and the total
duration of Stage 2 on DE commitment.
We induced aPS using the optimized conditions from Fig. 2A and

examined the effects of different signaling conditions and timing
(24, 36, 48 h) on DE commitment. We observed the highest purity
of DE differentiation in conditions with the highest levels of activin

A (∼75% of SOX17+ cells with 100 ng/ml versus ∼65% SOX17+

cells with 40 ng/ml; Fig. 2B). Inhibition of BMP signaling
markedly increased DE purity across all conditions, whereas Wnt
inhibition had minimal effects. DE purity was highest in the 24 h
Stage 2 condition, with longer durations leading to a substantial
reduction of FOXA2/SOX17-positive DE cells. In the 24 h
condition, rare SOX17-negative cells were observed in small
clusters of densely packed cells. Most of these off-target cells co-
expressed OCT4 and T, were FOXA2 negative and lacked
expression of CDX2, which is expressed by paraxial mesoderm
cells that are also generated from aPS-like progenitors. These data
suggest that the OCT4+/T+/FOXA2− cells are most likely to be
lagging aPS-like cells or immature mesodermal cells. However, in
the 36 and 48 h conditions, SOX17− cells could also result from
properly specified DE cells that have started to adopt distinct
anterior-posterior (A-P) identities that no longer express SOX17,
such as anterior or posterior foregut (Li et al., 2018).

These systematic optimization experiments demonstrate that the
combination of Wnt activation in the presence of moderate TGFβ/
Nodal signaling, followed by TGFβ/Nodal activation and BMP
inhibition can generate high purity DE frommouse EpiSCs in∼40 h
(Fig. 2C, supplementary Materials and Methods). Application of
this protocol to EpiSCs (+WI) cultured in feeder-free conditions
gave similar results (Fig. S3B).

To determine the purity of DE generated by our protocol more
quantitatively, we used flow cytometry to measure the levels of the
surface marker CXCR4 (expressed in endoderm and mesoderm)

Fig. 2. Systematic optimization of conditions for EpiSC-DE differentiation. (A,B) Results of DE protocol optimization experiments. For each condition,
immunofluorescence staining was performed following 40 h of differentiation (end of Stage 2). Immunofluorescence images were quantified using CellProfiler.
Markers of DE (FOXA2, SOX17), pluripotency (OCT4) and aPS/mesoderm (T, CDX2) were examined. (A) Summary of results aPS (Stage 1) optimization (n=2
technical replicates). Note that we did not test the effects of <16 h of aPS induction. (B) Summary of results for optimization of DE commitment (Stage 2) (n=2
technical replicates). For Stage 1, the optimal conditions identified in Awere used, then cells were switched into the indicated conditions for Stage 2. (C) Diagram
of the optimized protocol for differentiation of mouse EpiSCs (+WI) into DE and a current hPSC-to-DE protocol (Loh et al., 2014). (D) FACS quantification of
immunostaining for DE markers (SOX17-Alexa Fluor 488 and CXCR4-Alexa Fluor 647) from cells at the endpoint of the optimized DE differentiation protocol.
(E) Quantification of DE differentiation purity (SOX17+/CXCR4+ cells) across multiple experiments (technical replicates; C57Bl/6J, n=4; DBA/2J, n=3; PWK/PhJ,
n=3).
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and the transcription factor (TF) SOX17 (expressed exclusively in
DE) (Fig. 2D). This analysis indicated that the DE purity was ∼95%
using the optimized conditions. Next, we used flow cytometry to
assess the performance of our DE protocol on two additional EpiSC
lines derived from distinct inbred strains of mice. The average DE
purity achieved with a C57Bl/6J EpiSC linewas similar to the DBA/
2J line used for optimization (∼95%), whereas the purity achieved
with a PWK/PhJ EpiSC line was slightly lower (∼80%) (Fig. 2E).
However, for each line the results were similar between technical
replicates from independent experiments (n=3-4 technical
replicates/line).

Molecular characterization of mouse EpiSC-derived DE
To further characterize DE generated by our new protocol, we
performed RNA-seq and ATAC-seq on DE generated from four

independently derived C57Bl/6J EpiSC lines (characterized in
Fig. 1C-E). CXCR4+ DE was purified with magnetic assisted cell
sorting (MACS). EpiSC-derived DE exhibited large-scale
transcriptional changes compared with EpiSCs, including
upregulation of canonical DE marker genes (Sox17, Foxa2,
Cxcr4, Gata4/6, Cer1) and downregulation of pluripotency-
associated genes, including Oct4 and Nanog (Fig. 3A, Fig. S2A-D),
consistent with results obtained using immunofluorescence staining
(Fig. S2E) (Genga et al., 2019; Nowotschin et al., 2019). There were
also widespread changes in chromatin accessibility in DE compared
with EpiSCs. PCA of ATAC-seq data indicated that cell type
(EpiSCs versus DE) accounted for the majority of variation
observed across samples (PC1; 92.5%) (Fig. S2B). Accordingly,
we observed significant increases in chromatin accessibility at
numerous putative enhancer elements near genes known to be

Fig. 3. Genomic characterization of DE derived from EpiSCs (+WI). (A) RNA-seq data from C57Bl/6J EpiSCs (n=5, biological replicates) and C57Bl/6J DE
purified by MACS (n=4, biological replicates). Differentially expressed genes between EpiSCs (+WI) and DE are highlighted in orange (P<0.01, Wald test and
corrected using the Benjamini–Hochberg method). A set of essential genes for primed pluripotency and DE are further annotated in red. (B) ATAC-seq data from
EpiSCs (+WI) (top) or DE (bottom). Gene loci known to play crucial roles in DE development are displayed. Arrows indicate the promoter of each gene.
(C) Comparison of TF binding motif enrichment in accessible chromatin regions during the EpiSC (+WI) to DE transition. Peaks with differential chromatin
accessibility between stages were compared with identify TF motifs enriched in cis-regulatory elements in each cell state [one-sided Kolmogorov–Smirnov (KS)
test]. TFmotifs with a KS test effect size≥0.20 are indicated by dashed lines. (D,E) Results of de novo TFmotif searches within EpiSCs (+WI) (D) or MACS-sorted
DE (E) ATAC-seq peaks. (F) Diagram of the optimized protocol for differentiation of mouse DE into posterior foregut and antral gastric progenitors. (G) Antral
gastric progenitors stained with antibodies against markers of posterior foregut (PDX1, SOX2 and GATA4), midgut/hindgut progenitors (CDX2) and DE (FOXA2,
SOX17) (n=3 biological replicates). Scale bars: 50 μm.
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essential for DE differentiation (Foxa2, Gsc, Otx2, Sox17)
(Fig. 3B). Across the genome, regions of hyper-accessible
chromatin (peaks identified by ATAC-seq) in DE compared with
EpiSCs were enriched for binding motifs for TFs known to play key
roles in DE specification (GATA4/6, OTX2, SOX17, GSC). In
contrast, ATAC-seq peaks in EpiSCs compared with DE exhibited
enrichment for OCT4 and AP-1 (FOS/JUN) binding motifs
(Fig. 3C-E). In summary, these genomic data demonstrate that DE
exhibits global changes in gene expression and TF binding
compared with EpiSCs and has the expected genomic features of
bona fide PSC-derived DE.
Finally, we examined whether the DE generated by this protocol

can be further patterned into specific populations of organ
progenitors. We treated EpiSC-derived DE with conditions that
promote posterior foregut patterning and subsequent differentiation
into antral gastric progenitors (modified from protocols developed
for hPSCs by Broda et al., 2019; McCracken et al., 2014) (Fig. 3F).
After 72 h of additional differentiation, we observed a high density
of cell clusters expressing markers of antral gastric epithelial
progenitors (SOX2, PDX1, GATA4) and lacking expression of
markers of midgut/hindgut (CDX2) and DE (FOXA2 and SOX17)
(Fig. 3G). These data indicate that EpiSC-derived DE can be further
patterned into organ progenitors and demonstrate the value of
generating a high-purity population of DE for subsequent stages of
differentiation.

Efficient and homogeneous conversion of EpiSCs into
forebrain-patterned organoids
The first neural organoid protocols were developed using embryoid
bodies (EBs) formed from naïve mouse PSCs (Eiraku et al., 2008;
Wataya et al., 2008). Given the success of our efforts to generate DE
from EpiSCs (+WI), we next sought to determine whether EpiSCs

(+WI) would also be a better starting cell type for generating neural
organoids. We chose to focus our attempts on generating dorsal
forebrain-patterned organoids, which have the potential to give rise
to progenitors of multiple brain regions, including the cerebral
cortex, hippocampus and thalamus (Montiel and Aboitiz, 2015).

Following extensive testing, we were able to identify conditions
for robust EB formation, neural induction and forebrain patterning
of EpiSC-derived EBs (summarized in Fig. 4A,B). Briefly, EpiSCs
(+WI) were dissociated into single cells and EBs formed from
∼1000 EpiSCs in neural induction media in AggreWell plates. We
found that addition of chroman 1 (ROCK inhibitor) and emricasan
(pan-caspase inhibitor), components of the recently reported CEPT
cocktail (Chen et al., 2021), help to dramatically reduce cell death
during EB formation compared with commonly used ROCK
inhibitors (Y-27632 or thiazovivin; Fig. S4A). To promote the
generation of forebrain fates (telencephalon, diencephalon), we
inhibited Wnt signaling by addition of the porcupine (PORCN)
inhibitor LGK-974 for the first 2 days of differentiation (Rifes et al.,
2020; Tchieu et al., 2017). Inhibition of FGF signaling (by the
FGFR inhibitor PD173074) during this period can promote
forebrain patterning, but it is not essential for forebrain
specification in this system. After the first 24 h, EBs were
removed from AggreWell plates and embedded in Matrigel (based
on Qian et al., 2018). Under these conditions, many EpiSCs
expressed SOX1 after the first 24 h of EB formation, and nearly all
cells in EBs expressed SOX1 after 48 h (Fig. 4C). In contrast, mouse
neural organoid protocols that start from naïve PSCs have few
SOX1+ cells after 72 h in culture (Eiraku et al., 2008).

During early A-P patterning of the neural plate, FGF signaling
promotes acquisition of more posterior neural fates, but shortly
thereafter promotes telencephalic identity in the anterior-most
region of the neural epithelium (∼E8.25) (Garel et al., 2003;

Fig. 4. Generation of forebrain-patterned organoids from mouse EpiSCs. (A) Diagram of the protocol for forebrain-patterned neural organoid generation.
(B) Brightfield images of forebrain organoids. (C) Confocal immunofluorescence image of a developing organoid after 48 h (d2). (D,E) Confocal
immunofluorescence images of a d4 organoid. (F) z-stack reconstruction of a d4 organoid. (G) Confocal immunofluorescence image of a day 8 organoid. Scale
bars: 200 μm (B); 25 μm (C-G). For C-G, all organoids were cleared (see Materials and Methods) and imaged in toto without sectioning.
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Shimamura and Rubenstein, 1997). Therefore, we hypothesized that
addition of FGF8 (FGF8b) after the first 48 h of differentiation
would facilitate induction of anterior telencephalic fates and could
subsequently promote the proliferation and survival of telencephalic
neuroepithelial progenitors (Storm et al., 2006). By 96 h [day (d) 4],
EBs formed continuous neuroepithelia, with consistent apicobasal
polarity (Fig. 4D,E, Fig. S4B) (Movie 1). Characterization of the
complete 3D structure of d4 organoids using tissue clearing
revealed mitotic neuroepithelial progenitors at the apical
membrane, a central lumen, nestin-expressing cells with
characteristic radial-glial morphologies spanning the length of the
apical-basal axis of the developing tissue, as well as intermediate/
basal progenitors and early-born postmitotic neurons migrating
outward towards the basal lamina (Fig. 4D-G). Live-imaging of
sparsely labeled radial glial cells in organoids over a 24 h period
(d3-d4) revealed interkinetic nuclear migration and cell division
behaviors characteristic of radial glial cells in the embryonic brain
(Arai and Taverna, 2017; Noctor et al., 2004) (Movie 2). After d4,
organoids were removed from Matrigel and switched into
maintenance media (N2B27 media with vitamin A, and the
neurotrophic factors BDNF and GDNF) in low-adhesion cell
culture dishes on an orbital shaker.
Next, we sought to characterize the specific regional identity of

progenitors and neuronal populations generated in these organoids.
At d4, all organoids expressed PAX6, which is expressed by
progenitors in the caudal forebrain (diencephalon) and/or dorsal
telencephalon, depending on the exact stage (Puelles et al., 2000).
However, PAX6 expression was not homogeneous throughout the
organoids, suggesting that not all neuroepithelial progenitors
acquire the same regional identity under these conditions
(Fig. 5A). By d8, most organoids spontaneously pattern into two
opposing domains, which mirror the Pax6+ and Pax6− regions at d4
(Renner et al., 2017; Takata et al., 2017) (Fig. 5B-G). Surprisingly,
one domain contained large numbers of PAX6+ post-mitotic
neurons, which occur almost exclusively in the developing
prethalamus, generated from the anterior-most domain of the
diencephalon (prosomere 3, p3) (Caballero et al., 2014; Manuel
et al., 2015) (Fig. 5C). In the other domain, we observed neurons
expressing markers of the cerebral cortex, such as TBR1, BCL11B
(also known as CTIP2) and BRN2 (POU3F2), as well as RELN, a
marker of Cajal–Retzius cells (Fig. 5D-G, Fig. S5). Taken together,
these data suggest that organoids generated in these conditions
polarize early into distinct domains that represent different A-P
identities: the dorsal telencephalon and the anterior diencephalon
(prosomere 3). Importantly, these results are reproducible across
technical replicates and when starting with distinct EpiSC (+WI)
lines (three additional EpiSC lines) (Fig. S5C,D, Table S5).

Characterization of forebrain organoids using single-cell
RNA-seq
To gain further insight into the precise cell populations present
within forebrain organoids, we generated single-cell (sc)RNA-seq
data from d12 organoids (5652 total cells). Reduced-dimensionality
visualization using uniform manifold approximation and projection
(UMAP) revealed multiple distinct clusters, which we tentatively
classified as specific cell types based on their expression of known
marker genes. Importantly, nearly all cells within the organoid
appeared to be neuroectodermal derivatives, suggesting that neural
induction in EBs is highly efficient (Fig. 6, Fig. S6A, Fig. S7).
Consistent with our immunostaining results, we observed clusters

that appeared to be immature (cluster 7) and more mature (cluster 8)
prethalamic neurons. In the embryo, the prethalamic domain

generates multiple distinct types of GABAergic neurons that form
the thalamic reticular nucleus and the zona incerta (Puelles et al.,
2013). Accordingly, the early prethalamic neuron cluster (cluster 7)
was characterized by expression of markers associated with early
development of GABAergic neurons (Ascl1, Dlx5, Dlx6, Gad1,
Gad2). The more mature prethalamic neuron cluster (Cluster 8) was
characterized by expression of the prethalamic neuron markers
(Pax6, Isl1, Meis2, Mmp16) (Mandai et al., 2014; Nagalski et al.,
2016; Ono et al., 2014; Virolainen et al., 2012) (Fig. 6E). Within
cells in this cluster, there was further heterogeneity based on the
relative expression levels of Ptprd and Pax6, which distinguishes
the lateral or the medial portions of the developing prethalamus
in vivo (Guo and Li, 2019; Kim et al., 2020; Li et al., 2020; Sommer
et al., 1997; Tuttle et al., 1999). In addition, more mature
prethalamic neurons express higher levels of L1cam and Nrcam,
which play a role in the pathfinding of axons from prethalamic
neurons that project into the thalamus (Molnar et al., 2012;
Quintana-Urzainqui et al., 2020) (Fig. S6B).

We identified one cluster (Cluster 6) that appeared to correspond
to the glutamatergic neurons expressing TBR1 and/or BCL11B.
However, although expression of TBR1 and BCL11B is often
associated with cerebral cortex development, neurons in this cluster
instead expressed several markers specific to hippocampal neurons
(Zbtb20, Neurod1, Prox1), and lack expression of the telencephalic
marker Foxg1, which is expressed broadly in the cerebral cortex, but
has low expression, or is even absent, in the hippocampus (Hatami
et al., 2018) (Fig. 6F). These data suggest that these neurons more
closely resemble developing hippocampal neurons than deep layer
cortical neurons. The observed similarity in marker profiles between
these two cell types is consistent with in vivo data showing that the
developing neocortex (cerebral cortex) and allocortex (hippocampus
and olfactory bulb) have similar expression profiles during
embryonic development (Cadwell et al., 2019).

We also observed a cluster of cells (Cluster 3) that resemble
cortical hem, and are characterized by expression of RSPO genes,
Wnt8b, Wnt9a and Bmp7 (Grove et al., 1998; Hasenpusch-Theil
et al., 2012) (Fig. S7). The cortical hem is a secondary organizer
located next to the developing hippocampus in the dorsomedial
region of the developing telencephalon (Vieira et al., 2010). In
addition to its role in cortical patterning via secretion of Wnt and
BMP, neural progenitors in the cortical hem also generate
Cajal–Retzius cells during early stages of telencephalon
development (Takiguchi-Hayashi et al., 2004). Accordingly, we
observed cells bridging clusters 3 and 6 that co-expressed the
Cajal–Retzius cell markers Trp73 (also known as p73) and Reln
(reelin) (Hanashima et al., 2007; Simon et al., 2012) (Fig. 6F).

We also used VoxHunt (Fleck et al., 2021) to comprehensively
compare our single-cell dataset to gene expression data from the
developing embryonic brain (in situ hybridization data from the E18
Allen Developing Mouse Brain Atlas; Thompson et al., 2014). This
analysis confirmed that the forebrain organoids most closely
resemble medial pallium (hippocampus/cortical hem) and
prethalamus/p3 (Fig. 6H).

In addition to these neuronal clusters, we also found clusters
(clusters 4 and 5) that appear to represent OPCs, characterized by
high expression ofOlig1,Olig2, Pdgfra andDll1 (Fig. 6G, Fig. S7).
Among all of the clusters, OPCs appeared to be the only actively
proliferating cells within organoids at d12 (Fig. 6D).
Immunofluorescence staining for OLIG2 at d12 confirmed the
presence of these cells, which were intermingled with BCL11B+

hippocampal neurons, suggesting that the same progenitors that give
rise to the hippocampal glutamatergic neurons progress to produce
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OPCs (Fig. S5C). This is consistent with prior studies showing that
mouse radial glial cells from the dorsal telencephalon give rise to
OPCs after birth, and explant studies demonstrating that dorsal
telencephalic progenitors from the embryonic brain often generate
OPCs when explanted or cultured in vitro (Kessaris et al., 2006;
Qian et al., 1997; Tekki-Kessaris et al., 2001).
Taken together, these data reveal that our EpiSC-based forebrain

organoid protocol can robustly generate organoids containing
multiple distinct regions of the developing forebrain, including
dorsal, caudo-medial telencephalon (hippocampus and cortical
hem) and dorsal anterior diencephalon (prosomere 3, prethalamus).
These two domains are adjacent to one another, each bordering the
boundary between the telencephalon and diencephalon.
Prethalamic domains and hippocampal/cortical hem domains
generally formed on opposite poles of organoids, suggesting that
organoids undergo spontaneous polarization during early stages of
development and develop into distinct domains representing
different A-P identities (Takata et al., 2017).

DISCUSSION
Directed differentiation models enable a range of experimental
techniques that would be difficult or impossible to perform in vivo,
including genetic and chemical screens, live imaging, and

experimental embryology approaches such as in vitro
reconstitution (Hadjantonakis et al., 2020; Li et al., 2019; Moris
et al., 2020; Schlissel and Li, 2020). Using mouse PSCs for directed
differentiation has multiple advantages compared with hPSCs. For
example, using mouse PSCs makes it possible to use the extensive
genetic tools and resources that have been generated for mice. This
includes not only knockout lines, reporter lines and human disease
models, but also numerous distinct inbred strains and outbred
heterogeneous stocks such as Diversity Outbred mice that can be
used for quantitative genetic approaches (Churchill et al., 2012;
Skelly et al., 2020). In addition, results from mouse PSC
differentiation models can be directly compared with genetically
matched tissues from mouse embryos, which allows for rigorous
assessments of model validity (Voelkl et al., 2020). Such data
represent an important proof of concept for hPSC-based cellular
models of development and disease processes, as it will never be
possible to perform similar cross-validation experiments in
developing human embryos (Kleiman and Engle, 2021).

Despite the advantages of mouse directed differentiation,
mouse PSC models are much less frequently used than hPSC-
based models. This is likely due in part to the limited availability
of mouse PSC directed differentiation protocols that are robust,
efficient, generalizable and user-friendly. We found that by

Fig. 5. Characterization of the identity of progenitors and neurons generated in forebrain organoids. (A,B) Confocal immunofluorescence image of
organoids at d4 (A) and d8 (B). (C) Diagram of prosomeres in the mouse brain (modified from Puelles et al., 2013). CSP, caudal secondary prosencephalon; is,
isthmic organizer; m1, m2, midbrain mesomeres 1 and 2; p1, p2, p3, prosomeres 1-3 of the diencephalon; r1-r11, rhombomeres 1-11; RSP, rostral secondary
prosencephalon; SpC, spinal cord. (D-D″) Confocal immunofluorescence images of a d8 organoid (boxed area magnified in D′ and D″), immunostained using
antibodies against the deep layer cortical neuron markers TBR1 and BCL11B, and the forebrain neural progenitor marker OTX2. (E-G) Confocal
immunofluorescence image (3D projection) of a d8 (E) and d12 (F,G) organoids. Dashed lines in G indicate apical regions of neuroepithelia. Scale bars: 100 μm
(A,B,D,E-G); 25 μm (D′,D″).
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using EpiSCs (+WI) it is possible to develop protocols for directed
differentiation that are as robust as state-of-the-art hPSC protocols.
As naïve PSCs can be converted into EpiSCs (+WI) in vitro,
our new protocols can be applied to generate DE and neural
organoids from pre-existing naïve PSC lines that carry specific
genetic modifications, including gene knockouts or fluorescent
reporters. These new optimized methods for directed differentiation
represent a valuable addition to the experimental toolkit available
for studying mouse development and thus should be of substantial

interest to the developmental and stem cell biology research
communities.

Rapid and efficient generation of DE from EpiSCs
By adapting protocols developed for hPSCs, we demonstrate that
EpiSCs (+WI) can be differentiated into DE with high purity
(>90%) in only 40 h. Our findings are consistent with previous work
showing that EpiSCs and hPSCs respond similarly to most
differentiation cues (Greber et al., 2010; Vallier et al., 2009).

Fig. 6. Characterization of day 12 forebrain organoids using scRNA-seq. (A) UMAP representation of scRNA-seq data from d12 organoids. Three broad
classes of cell types are highlighted: OPCs, hippocampus/cortical hem and prethalamus. (B) Violin plots of gene expression levels for representative markers
used to identify each cluster in A (see also Table S5). (C) Annotated UMAP highlighting the expression of Sox2, a neuronal progenitor marker, and Tubb3 (also
known as Tuj1), a pan-neuronal marker. (D) Cell cycle analyses on d12 scRNA-seq data. (E) UMAP representations of cells from putative prethalamic clusters
(from A), highlighting expression of known prethalamic markers. (F) UMAP representations of gene expression data from putative hippocampal/cortical hem
clusters from A. Expression of Bcl11b and Neurod1, which delineate the early development of the CA1-2 and CA3 regions of the developing hippocampus,
respectively, appear to be mutually exclusive (Simon et al., 2012). (G) UMAP representations of gene expression data from putative OPC clusters
fromA. (H) VoxHunt analyses on the scRNA-seq dataset, separated by cluster, compared with the E18 developingmouse brain. p1, p2, p3, prosomeres 1-3 of the
diencephalon; m1, m2, midbrain mesomeres 1 and 2; r1-r11, rhombomeres 1-11.
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The most significant difference we observe between hPSC and
EpiSC differentiation is timing. The optimal timing for EpiSCs is
16 h for aPS induction and 24 h to DE commitment, whereas hPSC
protocols use 24 h for aPS induction and 48 h to DE commitment
(Loh et al., 2014). These differences are consistent with the faster
pace of mouse development compared with human, which has been
previously observed when directly comparing mouse and human
differentiation protocols (Ebisuya and Briscoe, 2018).
The high-purity DE generated by our protocol will be an ideal

starting point for subsequent differentiation into progenitors of a
variety of endodermal organs, such as lung, liver, intestinal tissues
or organoids (Fowler et al., 2020; Yiangou et al., 2018). As a proof
of concept, we demonstrated that EpiSC-derived DE can be further
patterned to posterior foregut progenitors and antral gastric
progenitors by adapting previously developed protocols for hPSC
differentiation (Broda et al., 2019; McCracken et al., 2014). The
high purity of DE achieved by this protocol should also facilitate
large-scale genetic screens to identify genes that control endoderm
commitment (Li et al., 2019).

Improved methods for mouse neural organoid generation
The first neural organoid protocols were developed using naïve
mouse PSCs (Eiraku et al., 2008; Wataya et al., 2008). Although
these pioneering studies provided the foundation for the subsequent
development of protocols to generate neural organoids from hPSCs,
the original mouse protocols are now rarely used. This is due, at least
in part, to the fact that these protocols were less robust and user-
friendly than current hPSC organoid protocols. In addition, most of
these early mouse neural organoid protocols pre-date the
development of improved methods for consistently generating
polarized neuroepithelia in neural organoids (e.g. Matrigel
embedding or addition of laminin/Matrigel to the culture media)
(Lancaster et al., 2013; Nasu et al., 2012). Therefore, we reasoned
that by starting with EpiSCs instead of naïve PSCs, and by
implementing improved techniques for organoid generation
developed for hPSCs, we would be able to develop an improved
protocol for the generation of mouse neural organoids.
Although our initial goal was to generate a mouse organoid

model of cerebral cortex development, we instead observed
domains of hippocampal and prethalamic progenitors. This
suggests that our conditions for A-P patterning must be further
modified to generate cerebral cortex, which comes from the most
anterior region of the developing neuroectoderm. Previous work
with mouse neural organoids found that insulin exerts posteriorizing
effects on developing neuroectoderm via activation of FGF
signaling, and it is necessary to remove insulin from the media at
early stages of neural induction to maintain anterior neuroectoderm
patterning (Takata et al., 2017; Wataya et al., 2008). However, this
strategy is not readily adaptable to primed PSC organoid models
because insulin is required for primed PSC growth and survival,
making it difficult to form EBs and perform neural induction in
insulin-free conditions. Based on these studies, we added FGFR
inhibitors in addition to Wnt inhibitors for the first 2 days to block
the posteriorizing influence of FGF signaling. However, FGFR
inhibition was not strictly required for forebrain specification if
Wnt signaling is sufficiently inhibited. Within forebrain organoids,
we observed spontaneous polarization into telencephalic and
diencephalic regions (Renner et al., 2017; Takata et al., 2017).
Interestingly, for hPSC-based cerebral cortex organoids, inhibition
of Wnt signaling (in addition to dual SMAD inhibition for
neural induction) is generally sufficient to maintain anterior
neuroectodermal identity and specification of cortical fates, even

in the presence of high levels of insulin. It will be interesting to
explore the mechanisms underlying this apparent difference in A-P
patterning between mouse and human.

Methods for the generation of organoids containing diencephalic
progenitors have previously been reported (Shiraishi et al., 2017;
Xiang et al., 2019). These protocols use a combination of moderate
insulin, inhibition of FGF/ERK and activation of BMP signaling
(BMP7) to specify diencephalic progenitors of the thalamus and
epithalamus (prosomere 2) and pretectum (prosomere 1). In
contrast, we find that addition of high levels of FGF8b without
exogenous BMP7 induces prethalamic (prosomere 3) fates. This is
consistent with the high expression of FGF8b in the dorsal midline
of p3 and prethalamic eminence at early stages of diencephalon
development (E10.5-E12.5) (Martinez-Ferre and Martinez, 2009).
In vivo, prethalamic progenitors generate numerous distinct types of
inhibitory (GABAergic) neurons that form the thalamic reticular
nucleus and the zona incerta (Li et al., 2020). Prethalamic neurons
have not been generated efficiently in previous mouse and human
thalamic organoids, and thus our forebrain organoid protocol should
be useful for studying the development of this complex and
understudied brain region.

Mouse forebrain-patterned organoids can complement
in vivo mouse models of forebrain development as well as
neurodevelopmental disorders (Sestan and State, 2018). Our
neural organoid model should facilitate direct comparisons
between the phenotypes observed in vivo in mice with mutations
associated with neurodevelopmental disorders, and those observed
in analogous mouse organoid models in vitro. In contrast, hPSC-
based models of neurodevelopmental disorders cannot be
conclusively validated in vivo, and thus it is difficult to evaluate
the relevance of observations made in neural organoid models
in vitro for developmental pathophysiology in vivo. More rigorous
assessment of the strengths and limitations of in vitro models in
mice would help to inform experimental design for hPSC-based
modeling of neurodevelopmental disorders. In future studies, it will
be interesting to perform in-depth comparisons of developing neural
organoids and their analogous cell types in vivo, and to compare
mouse and human organoid development.

Limitations of the study
Although we were able to develop robust protocols for
differentiation of EpiSCs (+WI) into DE and neural organoids, it
is possible that EpiSCs (+WI) will not be an ideal starting point for
differentiation into all cell types.

For some protocols, EpiLCs or more recently described stable
formative stage stem cells might be superior to EpiSCs (+WI)
(Hayashi et al., 2011; Kinoshita et al., 2021; Morgani et al., 2018;
Yu et al., 2021). Even when cultured with Wnt inhibition, we
observe some heterogeneity in EpiSC cultures, marked by
expression of anterior primitive streak markers Foxa2 and T
(Bernemann et al., 2011; Blauwkamp et al., 2012; Song et al., 2016;
Tsakiridis et al., 2014). Additional optimization of EpiSC (+WI)
conditions could help to develop conditions that are as robust as
hPSCs and further mitigate issues with current culture conditions,
such as residual heterogeneity and the need for fibroblast feeder
cells. In this study, we exclusively used EpiSCs (+WI) that we
derived in vitro via conversion of naïve mouse PSCs. Previous work
suggests that EpiSCs derived in vitro are highly similar to EpiSC
lines derived directly from post-implantation epiblast (Kojima et al.,
2014), so we would expect cells from both sources to behave
similarly, but we have not demonstrated that this is the case. There is
an emerging consensus in the hPSC directed differentiation field
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that the initial culture conditions of hPSCs have a significant impact
on their ability to differentiate into specific lineages (Cornacchia
et al., 2019; Watanabe et al., 2019 preprint). Thus, it is likely that
further improvements of EpiSC (+WI) culturewill be the best way to
generally improve their performance in directed differentiation
experiments. The impact of long-term culture on genetic and
epigenetic stability of EpiSCs (+WI) has not been characterized in
depth (Halliwell et al., 2020). Similarly, the long-term effects of
tankyrase inhibition on the genetic and epigenetic stability of
EpiSCs remain to be characterized. Several types of Wnt inhibitors
have been used for EpiSC culture, and it remains uncertain how
different means of inhibiting Wnt activity might change the
properties of the resulting EpiSCs (Kurek et al., 2015; Sumi et al.,
2013; Wu et al., 2015).

MATERIALS AND METHODS
Summary
Step-by-step protocols for directed differentiation experiments are provided
as supplementary Materials and Methods. Detailed information about the
reagents used can be found in Table S3.

Mouse ESC culture and conversion to EpiSCs
All mouse ESC lines were maintained on gelatin-coated dishes with
irradiated mouse embryonic fibroblast feeder cells using serum/LIF media
composed of DMEM (high glucose, GlutaMAX, HEPES), 1% nonessential
amino acids, 1% sodium pyruvate, 1% penicillin-streptomycin, 0.1% 2-
mercaptoethanol, 10% fetal bovine serum and 1000 units/ml ESGRO LIF.
All ESC lines (except lines from B6129SF1/J background) were cultured in
serum/LIF media with 2i containing 3 µM CHIR99201 and 1 µM
PD0325901. Media was changed daily, and ESCs were passaged upon
70% confluence at a 1:6 ratio using TrypLE. ESC-to-EpiLC conversion was
performed as described by Morgani et al. (2018). Briefly, ESCs were lifted
using 0.5 µ/µl collagenase IV, centrifuged (200 g for 3 min at room
temperature) and dissociated into a single-cell solution using Accutase. The
ESC suspension was plated on fibronectin-coated plates (16.7 µg/ml) at a
density of 17,500 cells/cm2 in N2B27 media supplemented with 12.5 ng/ml
heat-stable recombinant human bFGF, 20 ng/ml activin A, and 1%
Knockout Serum Replacement (Gibco, 1082028). N2B27 media consists
of 50% DMEM-F12, 50% Neurobasal medium, 0.5% N2 supplement, 1%
B27 supplement without vitamin A, 2 mM GlutaMAX, 1% penicillin-
streptomycin and 0.1% 2-mercaptoethanol. The media was changed after
24 h, and cells were converted to EpiSCs after 48 h. For EpiLC-to-EpiSC
conversion, EpiLCs were dissociated into small clumps (approximately
three to five cells) with Accutase and plated at a density of∼50,000-100,000
cells per cm2 on irradiated mouse fibroblast feeder cells in N2B27
supplemented with 20 ng/ml activin A, 12.5 ng/ml heat-stable bFGF and
Wnt inhibitor (175 nM NVP-TNKS656). EpiSC media was changed daily,
and cells were passaged every∼48 h at a 1:6 ratio using 0.5 µ/µl collagenase
IV followed by dissociation with Accutase into small clumps of three to five
cells. For feeder-free EpiSC culture, EpiSCs growing on feeders were
isolated using 0.5 μ/μl collagenase IV and seeded on fibronectin-coated
plates (16.7 µg/ml). After the first feeder-free passage, cells were passaged
using Accutase only. The EpiSCs were considered as feeder-free after two
passages with no visible feeder cell remaining.

DE and antral gastric progenitor differentiation
For DE differentiation, EpiSCs were generally used after approximately four
to eight passages in EpiSC conditions. For differentiations, high-quality
cultures of EpiSCs were detached using collagenase IV (0.5 µ/μl), washed
once with PBS, and then dissociated into a single-cell suspension using
Accutase. EpiSCs were plated at a density of 110,000 cells/cm2 in
chemically defined media (CDM) containing 50% IMDM, 50% Ham’s F12
Nutrient Mix with GlutaMAX, 1% chemically defined lipid concentrate,
450 µM monothioglycerol, 1% polyvinyl alcohol (w/v), 15 µg/ml Apo-
transferrin, 0.5% GlutaMAX, 0.7 µg/ml insulin and supplemented with
20 ng/ml activin A, 12.5 ng/ml heat-stable bFGF, 175 nM NVP-TNKS656,

1% Knockout Serum Replacement, and 2 µM thiazovivin. Plating media
was removed 6 h after seeding, cells were washed gently with PBS without
calcium or magnesium (PBS-/-) and the media was changed to CDM
supplemented with 3 µM CHIR99201 and 40 ng/ml activin A. Sixteen
hours after the first media change, cells were washed with PBS-/- and the
media was replaced with CDM supplemented with 100 ng/ml activin A and
100 nM LDN-193189. After 24 h (46 total hours after cells were initially
seeded), cells were fixed for immunostaining or collected for further
analysis. For antral gastric progenitor differentiation, DE cells were kept in
CDMwith 100 nMLDN-193189 and 2% fetal bovine serum, with a renewal
of the media after 24 h. After 48 h, the media was changed to CDM with
100 nM LDN-193189, 2 µM retinoic acid and 2% fetal bovine serum for a
further 24 h. After 72 h, cells were fixed for immunostaining.

Immunostaining
For immunostaining of adherent cells (EpiSCs and DE), cells were rinsed
twice with PBS-/- and fixed with 4% paraformaldehyde solution for 30 min
at room temperature. After fixing, cells were washed twice with PBS-/- and
permeabilized with PBS-/- containing 1% Triton X-100 (PBST) for 10 min
at room temperature and blocked for 30 min with PBS-/- containing 0.3%
Triton X-100 and 5% fetal bovine serum. Primary antibodies were diluted in
PBST with 1% fetal bovine serum and incubated overnight at 4°C. Detailed
information about the antibodies used can be found in Table S2. Following
overnight incubation and three 10 min washes with PBST, cells were
incubated with secondary antibodies for 2 h at room temperature. Cells were
rinsed with two 10 min washes of PBST before DAPI staining (1 µM) for
15 min at room temperature. Cells were rinsed with PBST and imaged using
a Leica Dmi8 microscope.

Quantification of immunofluorescence images
All image quantification was performed using Cell Profiler version 4.2.1 to
calculate efficiency of DE differentiations based on FOXA2 and SOX17
expression. DAPI-stained nuclei were identified using the ‘Identify Objects’
module. To identify nuclei stained with each antibody, segmented nuclei
were further analyzed using the ‘Identify Objects’ module and the ‘Relate
Objects’ Module. These data were then classified as either positive or
negative for each marker using the ‘Filter Objects’ module and overall
efficiency was calculated based on percentage of expression for each
marker.

Flow cytometry
Following DE differentiation, cells were dissociated in Accutase and
washed in FACS buffer consisting of PBS-/-, 20% fetal bovine serum and
0.1% 0.5 M EDTA. CXCR4 antibody conjugated to Alexa Fluor 647 and
live/dead zombie UV staining were diluted in FACS buffer at the
manufacturer’s recommended concentration (Thermo Fisher) and
incubated for 15 min at room temperature. Cells were washed and
resuspended in FACS buffer with fixation/permeabilization diluent and
fixation/permeabilization concentrate for 30 min at room temperature. The
cells were then resuspended in permeabilization buffer with SOX17
antibody conjugated to Alexa Fluor 488 at the manufacturer’s recommended
concentration for an additional 30 min at room temperature. Fixed cells were
then analyzed using a Cytek Aurora cell sorter.

Flow cytometry results were analyzed using FlowJo software v10.8 and
single-color stainings were used as a negative control for gating purposes.

MACS purification of DE
DE cells were isolated for ATAC-seq and RNA-seq analyses using MACS
following the manufacturer’s instructions, with slight modifications. Cells
were dissociated in Accutase, washed in FACS buffer, counted, and
resuspended with rat anti-mouse CD184/CXCR4 Alexa Fluor 647-
conjugated antibody at a concentration of 1 µl/106 cells and incubated for
1 h at 4°C. Cells were then washed with FACS buffer, centrifuged (200 g for
3 min at 4°C) and resuspended in a solution composed by 80% FACS buffer
and 20% anti-rat IgG MicroBeads (Miltenyi Biotec, 130-048-501). Cells
were incubated in the mixture for 15 min at 4°C, then washed and
resuspended in 500 µl buffer. The MS column was placed in an OctoMACS
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separator (Miltenyi Biotec, 130-048-501) on theMACSmultistand. The cell
suspension was added to the column and rinsed three times with buffer.
Finally, the column was removed from the separator and the magnetically
labeled cells were collected.

RNA extraction for RNA-seq
Phase separation in cells lysed in TRIzol was induced with 50% isopropanol
and 0.5% 2-mercaptoethanol and RNA was extracted from the aqueous
phase using the MagMAX mirVana Total RNA Isolation Kit (Thermo
Fisher, A27828) on a KingFisher Flex Magnetic Particle Processor
according to the manufacturer’s protocol with 1-2 million cells input.
Samples were eluted in 38 µl elution buffer.

Transcriptome sequencing of EpiSC samples
After RiboGreen quantification and quality control using an Agilent
BioAnalyzer, 100-500 ng of total RNA with RIN values of 9.5-10
underwent polyA selection and TruSeq library preparation according to
instructions provided by Illumina (TruSeq Stranded mRNA LT Kit), with
eight cycles of PCR. Samples were barcoded and run on a NovaSeq 6000 in
a PE100 run, using the NovaSeq 6000 S4 Reagent Kit (200 Cycles)
(Illumina). An average of 36 million paired reads were generated per sample
and the percentage of mRNA bases per sample ranged from 84% to 89%.

Transcriptome sequencing of DE samples
After RiboGreen quantification and quality control using an Agilent
BioAnalyzer, 2 ng total RNAwith RNA integrity numbers ranging from 7.7
to 10 underwent amplification using the SMART-Seq v4 Ultra Low Input
RNAKit, with 12 cycles of amplification. Subsequently, 10 ng of amplified
cDNA was used to prepare libraries with the KAPA Hyper Prep Kit using
eight cycles of PCR. Samples were barcoded and run on a NovaSeq 6000 in
a PE100 run, using the NovaSeq 6000 S4 Reagent Kit (200 Cycles)
(Illumina). An average of 39 million paired reads were generated per sample
and the percentage of mRNA bases per sample ranged from 83% to 87%.

ATAC-seq
ATAC-seq was performed as previously described (Buenrostro et al., 2015;
see also dx.doi.org/10.17504/protocols.io.bv9mn946 at https://www.
protocols.io/view/atac-sequencing-protocol-dm6gpwmpplzp/v1) with
minor modifications. Briefly, cells were dissociated into single cells,
filtered through a Flowmi cell strainer and the nuclei were isolated by
incubation with lysis buffer [10 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM
MgCl2, 0.1% Tween-20, 0.1% NP-40, 0.01% digitonin and 1% bovine
serum albumin (BSA)] for 5 min at 4°C; 20,000 and 40,000 nuclei were
isolated, and the DNA was tagmented with Tn5 (Illumina) and amplified
using NEBNext® High-Fidelity 2X PCR Master Mix (NEB). The number
of cycles was estimated by qPCR. DNA tagmentation efficacy was
evaluated with a Bioanalyzer 2100 (Agilent Technologies) and the DNA
amounts calculated with Qubit. i5 and i7 primer sequences were obtained
from Mezger et al. (2018). The resulting DNA libraries were sequenced
using the NextSeq550 system (Illumina) and about 25 million reads were
obtained per sample in duplicate.

RNA-seq analysis
Resulting fastq files were mapped to their transcripts and quantified using
Salmon (Patro et al., 2017) against the genome version mm10. For
downstream analyses, Rstudio was used with the packages DESeq2,
pcaExplorer and pheatmap (Love et al., 2014; Marini and Binder, 2019).
Statistical significance was calculated using a Wald test and corrected using
the Benjamini–Hochberg method.

ATAC-seq analysis
The raw fast data were analyzed using BasePair software (https://www.
basepairtech.com/) with a pipeline that included the following steps. The
raw reads were trimmed using fastp to remove low-quality bases from reads
(quality<20) and adapter sequences. The trimmed reads were aligned using
Bowtie2 (Langmead and Salzberg, 2012) to UCSC genome assembly
mm10. Duplicate reads were removed using Sambamba. Peaks were

identified with MACS2 (Gaspar, 2018 preprint) and those overlapping with
satellite repeat regions were discarded. For further analyses, a union peak
atlas was created from the MACS2 files. Peak intensity for each sample was
counted using featureCounts (Liao et al., 2014). HOMER (v4.11) (Heinz
et al., 2010) was used for motif analyses. PCA was carried out using the R
packages DESeq2 (Love et al., 2014) and pcaExplorer (Marini and Binder,
2019).

For motif enrichment analysis, ATAC-seq peaks in the atlas were
associated with TF motifs in the CIS-BP database (Weirauch et al., 2014)
using FIMO (Grant et al., 2011) of MEME suite (Bailey et al., 2009), under
the P-value cutoff of 1e−4. We limited the motif analyses to motifs for 236
TFs that are expressed in EpiSCs or DE (RPKM>5). Normalized counts
were obtained using variance-stabilizing transformation in DESeq2. The
shift in the cumulative distribution of normalized counts was compared
between the subset of the atlas containing the TF motif and the total atlas
using a one-sided Kolmogorov–Smirnov test.

Generation of forebrain organoids
For forebrain organoid generation, B6129SF1/J EpiSC colonies were
detached using collagenase IV (0.5 µ/μl), washed once with PBS-/-, and
then dissociated into a single-cell suspension using Accutase. EpiSCs were
then seeded at 1000 cells/microwell in an AggreWell plate in EB formation
media containing 50 nM chroman-1, 5 μM emricasan, 400 nM LDN-
193189, 10 μM SB-431542, 100 nM PD173074 and 4 nM LGK-974 in
N2B27 (B27 without vitamin A) media. After 24 h, the EBs were recovered
and transferred to the samemedia but without chroman-1 and emricasan and
embedded in Matrigel as previously described (Qian et al., 2018). Briefly,
66.7 μl of EBs and media were mixed with 100 µl of Matrigel using wide-
bore tips. The mix was added to a non-adherent 6-well plate without
touching the edges of the well and incubated at 37°C for 30 min. After
30 min, 3 ml of warm media were added on top. At day 2, the media was
changed to plain N2B27 (B27without vitamin A) with 100 ng/ml Fgf8b and
kept for 48 h more. Day 4 EBs were recovered from Matrigel using cell
recovery solution (Corning) and incubating for 30 min at 4°C. After day 4,
the EBs were transferred to a Petri dish and kept in N2B27 (B27 supplement
with vitamin A) with BDNF and GDNFwhile shaking at 65 rpm (Infors HT,
Celltron benchtop shaker). For sparse labeling of neuronal progenitor cells
with CytoTune EmGFP Sendai fluorescence reporter, 7.5 μl were added to
the 2 ml media in the AggreWell plate at d0 and kept until d1. The organoids
were then imaged for ∼24 h from d3 to d4.

Immunofluorescence staining of organoids
For organoid staining, the organoids were collected in tubes pre-coated with
1% BSA. The samples were washed twice with PBS-/- and fixed with 4%
paraformaldehyde for 45 min at 4°C. Afterwards, they were washed twice
with PBS-/- and permeabilized with 0.5% Triton X-100 for 15 min at 4°C.
Blocking was performed for 15 min in organoid washing solution (OWS;
adapted from Dekkers et al., 2019), consisting of 0.2% Triton X-100, 0.02%
SDS and 0.2% BSA in PBS-/-) at 4°C. Next, the samples were incubated in
OWS with primary antibodies overnight at 4°C. On the following day, they
were washed three times for 2 h each with OWB while shaking, then
incubated overnight at 4°C with secondary antibodies and DAPI (1 µM) in
OWB. The next day, the organoids were washed three times with OWB for
6 h total while shaking. Finally, the organoids were mounted in DeepClear
solution (CelExplorer Labs). The samples were imaged using a confocal
Nikon A1RHD25 or Leica SP8 confocal microscope and analyzed with
Imaris software. For live imaging, the organoids were embedded in phenol-
free Matrigel and imaged using the TrueLive3D Imager system (Luxendo).

scRNA-seq
Multiple organoids were collected and mixed at d12, washed with PBS-/-
and dissociated with Accutase until a single-cell suspension was achieved.
Then, the sample was washed once again with PBS-/-. The resulting cell
suspension was used for 10x scRNA-seq (10x Genomics, Single Cell 3′ Kit
v3.1, dual index) following the manufacturer’s directions; 326 M reads were
obtained. The resulting fastq files were processed with Cell Ranger (10x
genomics cloud). CellBender was used to eliminate background reads and
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other artifacts (Fleming et al., 2019 preprint), and any cell with more than
10% mitochondrial reads was excluded. The Seurat package (v4) was used
for downstream analyses (Hao et al., 2021). Cluster annotation was
performed using the cited literature and the Allen Developing Mouse Brain
Atlas, stages E15.5 and E18.5. VoxHunt analyses were performed as
described by Fleck et al. (2021).
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