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Topological properties accurately predict cell division events and
organization of shoot apical meristem in Arabidopsis thaliana
Timon W. Matz1,2, Yang Wang3, Ritika Kulshreshtha3, Arun Sampathkumar3 and Zoran Nikoloski1,2,*

ABSTRACT

Cell division and the resulting changes to the cell organization affect
the shape and functionality of all tissues. Thus, understanding the
determinants of the tissue-wide changes imposed by cell division is a
key question in developmental biology. Here, we use a network
representation of live cell imaging data from shoot apical meristems
(SAMs) inArabidopsis thaliana to predict cell division events and their
consequences at the tissue level. We show that a support vector
machine classifier based on the SAM network properties is predictive
of cell division events, with test accuracy of 76%, which matches that
based on cell size alone. Furthermore, we demonstrate that the
combination of topological and biological properties, including cell
size, perimeter, distance and shared cell wall between cells, can
further boost the prediction accuracy of resulting changes in topology
triggered by cell division. Using our classifiers, we demonstrate the
importance of microtubule-mediated cell-to-cell growth coordination
in influencing tissue-level topology. Together, the results from our
network-based analysis demonstrate a feedback mechanism
between tissue topology and cell division in A. thaliana SAMs.
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models, Networks, Shoot apical meristem, Topology

INTRODUCTION
The adjacency of cells, which species the tissue topology, defines
the organization of cells and affects function of organs in
multicellular organisms. Therefore, deciphering the organizational
principles of cellular connectivity networks are fundamental to
improve our understanding of the development of multicellular
organisms. The shoot apical meristem (SAM) of plants is a highly
organized structure composed of continuously proliferating cells
that differentiate and give rise to all aerial organs and is under the
control of an intricate signaling network influencing plant growth
and response to different stimuli. The SAM epidermis in plants
serves as an excellent system to identify organizational principles of
cellular connectivity networks (Varner and Lin, 1989).

As the cells in the SAM are glued to each other by a rigid cell
wall, changes in the SAM topology, abstracting the tissue with the
respective cellular neighborhoods, are only brought about by cell
division events. Cell division in plants is a cell size-dependent, cell-
autonomous process (Jones et al., 2017), and crossing multiple
checkpoints allows the final transition towards cell division (De
Veylder et al., 2007; Qi and Zhang, 2020). Willis et al. (2016)
recently showed that initial cell size at birth influences the increase
in cell size (the sizer model – smaller cells grow faster and all cells
divide at a specific size threshold), even though there seems to also
be a component of constant size increase (the adder model – always
adding the same size increment regardless of the initial cell size at
birth) in the SAM of Arabidopsis thaliana. This study has hinted at
the possibility that a combination of both models may best describe
cell division (see D’Ario and Sablowski, 2019 for a comparison
of models). Although size-dependent cell division seems to be
independent of position and cell-to-cell contact (Willis et al., 2016),
a recent study by Jackson et al. (2019) indicates that dividing cells
display higher centralities, measured by their participation in more
shortest paths between pairs of cells in the network representation of
the A. thaliana SAM; however, this observation is not sufficient to
accurately predict cell division from topological or cell size
properties, and is only based on 32 dividing cells from the three
upper layers with only seven derived from the surface layer (Jackson
et al., 2019).

As biochemical and physical signals are transmitted across tissues
and affect cell division, growth and morphology in a spatio-
temporal fashion, the question arises of how tissue topology could
influence such processes to help the plant respond to a variety of
stimuli. In the context of physical signals, the ability of plant cells to
respond to growth-driven mechanical signals requires the activity of
the microtubule-severing protein KATANIN (Uyttewaal et al.,
2012). It has been shown that the lack of mechanical feedback, as
seen in the katanin1-2 mutant, results in changes to the topological
features as a consequence of modified cell shape (Jackson et al.,
2019). Therefore, this mutant can be employed to test whether
topological features are indeed relevant for cell division and related
processes.

This issue can be readily addressed due to the availability
of plant lines expressing stable fluorescence reporters that
allow the monitoring of cellular outlines in combination with
confocal imaging techniques (Reddy et al., 2004). In addition, the
combination of user-friendly tools for accurate segmentation, such
as MorphoGraphX (Barbier de Reuille et al., 2015), with different
machine learning (Bhavsar and Panchal, 2012; Pisner and Schnyer,
2020) and deep learning techniques (Camacho et al., 2018) has led
to massive advances in the analysis of high-throughput imaging
data. Furthermore, the analysis of micrographs for subcellular and
cellular scale phenotypes has been facilitated by adopting the
network paradigm by abstracting a biological system as a network
(Breuer et al., 2017; Nowak et al., 2021). For example, actin
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filaments can be represented as a network of intersecting paths
(Breuer et al., 2017) or the shape of cell membrane can be
represented by nodes connected via edges if they do not intersect the
membrane (Nowak et al., 2021).
In the context of cellular connectivity network (i.e. topology),

nodes correspond to cells and edges represent adjacency
of cells. Network properties (topological features) have been
employed to study and devise models of cell wall placement for
dividing cells, by using the degree (i.e. number of neighbors) in
combination with a spring-based model (Gibson et al., 2011)
or other individual topological features (Jackson et al., 2019). It
has been shown that some of these individual topological features
can better predict the placement of some cell walls when compared
with a more traditional approach (Jackson et al., 2019), such as
dividing cells using the shortest wall placement or generalized
Errera’s rule (Besson and Dumais, 2011). These resemble
the minimization of tensile stress in the central region of the
SAM (Louveaux et al., 2016). Although these models provide
an important step towards resolving the problem of cell wall
placement, each model underperforms on some cells in the
central region of the SAM (Shapiro et al., 2015; Jackson et al.,
2019).
Furthermore, although individual features have been used in the

context of the tissue topology, the whole landscape of topological
properties is underexplored. Topological properties can be divided
into three groups:
(1) Local properties pertain to individual nodes or edges and can

be determined by having access to the immediate neighborhoods.
Examples of local topological properties include weighted degree
(averaging the edge weights to all neighbors of a given node) or the
clustering coefficient, which quantifies the density of connections in
the immediate neighborhood of a node.

(2) Global properties pertain to the entire network (e.g.
representation of tissue topology) and require knowledge of the
entire network to be quantified; e.g. the diameter and the
characteristic path length are two global network properties
associated with the maximum and average hops for a signal to be
transferred from one to another cell.

(3) Local-global properties pertain to individual nodes or edges,
but require knowledge of the entire network to be quantified. These
include properties related to random walks and shortest paths
between two nodes (Table S1).

Although there have been attempts of combining network
properties with imaging data from SAMs, there is little progress
in predicting individual cells divisions in this plant tissue. Here,
we provide a network-based perspective to model cell division
and cell wall placement in the SAM of Arabidopsis thaliana, a
well-established system for studying cell division. To this end, we
combine network-based analysis of live cell imaging data with
classifiers that allow us to simulate tissue-wise topological changes
of the A. thaliana SAMs and test these classifiers independently on
the katanin1-2 mutant.

RESULTS
Topology and surface area accurately predict cell
division events
The question of whether division of a cell embedded in a tissue
is driven by the topology of the neighboring cells, the area of the
cell, or combination of the two is still unanswered. To address
this question, we imaged eight SAMs of A. thaliana expressing a
plasma membrane reporter (pUBQ10:acyl-YFP) every 24 h over
5 days using confocal microscopy (Fig. 1A). First, we manually
determined the number of dividing and non-dividing cells between
two consecutive time points in the central zone of the SAM.

Fig. 1. Feature generation from three-dimensional
(3D) images of the shoot apical meristem (SAM).
(A) The surface of A. thaliana SAM was imaged
every 24 h over 5 days. Pairs of dividing cells,
depicted with the same colors, were determined
manually (see Materials and Methods). (B) The 3D
images of SAMs were converted to 2.5D surfaces by
employing MGX (Barbier de Reuille et al., 2015) (left
panel). The surface is abstracted according to its
topology, capturing the connectivity of neighboring
cells in a radius of 30 μm (white circle) around the
central cell(s), marked with an asterisk (center
panel). The topology of the analyzed cells inside the
circle is colored orange (right panel). Two nodes are
connected by an edge if the cells they represent
share a cell wall. (C) Four different network
scenarios are considered: (1) unweighted edges,
and edges weighted by (2) area, (3) a shared cell
wall and (4) distance, illustrated for the case of three
cells u (blue), v (green) and w (white). In the
unweighted network scenario, all edge weights have
a value of one. The edge weight for the network
weighted on area, shared wall and distance is the
inverse of the mean cell areas of u and v, the inverse
of the shared cell wall area (magenta) and the
inverse distance of the center of mass for the graph
weighted on the distance (black). The weights of the
edge e(u, v) in the four scenarios are illustrated with
different line widths (a smaller thickness represents
smaller weight values and cells being closer in terms
of topological representation).
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We defined the central zone of a SAM as the area covered by a circle
of 30 µm radius around the most central and highest point in the
analyzed SAM (Fig. 1B), and found that 28.9±17.9% of cells
divided per tissue between two successive tissue time points, with a
total number of 605 dividing cells and 1458 non-dividing cells in
28 tissues (Fig. 1B).
Next, we represented the topology of the full tissue as a network,

in which every node corresponds to a cell and two nodes are
connected by an edge if the cells share cell wall. As a result, the
topology abstracts the tissue from an image into a neighborhood
representation. For each cell in the central region, we calculated 17
properties, referred to as topological features (Table S1), in an
unweighted network, in which every edge is of weight 1. We also
applied different edge weights, which add cellular information into
the topology based on the mean outer periclinal surface area, shared
cell wall and distance of the cell centroids between two nodes
representing those cells (Fig. 1C). In addition, we considered the
surface area of each cell in the central zone as a biological feature for
division prediction.
Previous studies have shown that a critical cell size threshold

exists for cell division in the SAM of A. thaliana (Jones et al., 2017).
To show that topological features capture information distinct from
that provided by the cell surface area, we calculated its Pearson
correlation coefficient (r) with the topological features (Fig. S2).
We found that the degree of distance weighting was most closely
correlated to the surface area (r=0.75). Nevertheless, the absolute
value of the correlation with surface area was smaller than 0.3 for
47% of the features (98% showed correlation less than 0.7), with
only three of the 50 considered features showing non-significant
correlation (P<0.05, Table S2). Therefore, topological features in
the considered network scenarios carry information that is different
from that obtained by the cell surface area alone. To further show the
predictive power of the classifiers trained on the topological
features, we considered two reduced feature sets that included only
features with an absolute value of the Pearson correlation coefficient
(r) smaller than 0.3 (Fig. S2). In this way, we aimed to remove bias
by considering features that may, to a certain extent, include
information about surface area. As a result of these considerations,
we trained five classifiers based on support vector machines
(SVMs) with linear kernel (Bhavsar and Panchal, 2012) to predict
cell division based on: all topological features (topo); surface
area alone; the combination of topological features and surface
area (topo+area); topological features with low absolute value
of correlation with the surface area (r<0.3); and unweighted
topological features. To this end, we selected all dividing and non-
dividing cells from 20 tissue time steps (derived from six SAMs) for
training the SVMs, and ensured balanced performance by weighting
based on the frequency of dividing and non-dividing cells. We
kept the data from the remaining eight tissue time steps (two SAMs)
as a testing set (see Materials and Methods). Furthermore, we
partitioned the 1445 selected cells into training and validation sets,
and used six-fold cross validation to train the classifiers with each
split being on plant (see Materials and Methods).
Although the training accuracy of the SVM using only the surface

area was 73.8%, the training accuracy solely based on topological
features was significantly higher – 81.6% (P=0.0094, paired t-test);
this was also the case when the combined set of topological features
and surface area was used, with a training accuracy of 81.2%
(P=0.0070, paired t-test) showing that all feature sets contained
information to be learned in order to predict cell division events. To
ensure no overfitting, i.e. the model memorizing only training data,
and to ensure transferability on unseen data, we applied the model to

validation and test data. Here, we observed a similar performance,
with no difference in the validation accuracies between the feature
sets for the three SVMs (∼75%; see Fig. 2B). For the test SAM, the
classifier based on the surface area alone exhibited the best
performance, with an accuracy of 78.3%, closely followed by the
SVM that was trained on the combination of topological features
and area (76.7%), and the SVM that considered all topological
features (75.9%, see Fig. 2C, Table S3). The area under the curve
(AUC) of the receiver operating characteristic (ROC) curve, which
is used as another measure of performance, yielded similar results
(Fig. S3A, Table S3).

The removal of topological features that were highly correlated
with area does not change the performance for training or for
validation and test accuracy (Fig. 2B,C, Table S3). Although
using only the topological features from the unweighted network
scenario (Fig. 1C) decreased the training performance, the
validation accuracy was only significantly reduced compared with
the classifiers trained with both topological features and area, and
when r < 0.3 (P=0.0144 and 0.0300; paired t-test). The final test
accuracy was slightly reduced, but was comparable with that of the
other classifiers at 69.8% (Fig. 2B,C, Table S3). Inspection of
the learning curves showed that the classifiers did not suffer from
high bias and variance, and that the training set was sufficiently
large (Fig. S4). Therefore, we concluded that topological features
and area can predict cell division independently of each other,
whereas the performance could not be further increased by the
combination of both feature types.

We hypothesize that feedback between topology and cell division
is mediated by cell-to-cell interactions, suggesting that properties
related to signal transduction and their influence in the network are
important features in classification. Indeed, we found that harmonic
centrality, which measures the sum of reciprocal distances of a node
to all others, is of highest positive importance (Fig. 2D). Harmonic
centrality implies that nodes that are closer to all nodes (Marchiori
and Latora, 2000), and hence in the center of topology, are more
likely to divide. Similarly, the next two positive most important
features are based on Katz centrality. This centrality measure
depends on the number of walks, rather than paths, of a particular
length, whereby nodes that are involved in more walks to the others
are considered more central (Katz, 1953), and has a similar
interpretation to harmonic centrality. Interestingly, and in line with
the previously discussed features, we also found that the versions of
information centrality that weight the connections of cells (edges)
based on shared wall, on equality (unweighted) and on distance are
also of high importance in classification. If this centrality index
measures the harmonic mean length of paths ending at a given node,
suggesting the node is connected via many short paths to all other
nodes, then it will be smaller. In addition, weighted node degree,
absolute graph density in the second neighborhood and clustering
coefficient denote the local density of subgraphs induced by a given
node, suggesting that topologically dense regions are hotspots of
cell divisions.

To further corroborate the biological relevance of these
findings, we randomly permuted the labels and retrained the
classifiers, repeating this procedure 100 times for each feature set
(see Materials and Methods). We could not train a classifier that
performed well and was able to generalize on the validation or
test set, and exhibited accuracies expected by chance (Fig. S5A).
Therefore, the classifiers trained on the randomized labels
demonstrate that the features used capture information that is
important for classification of dividing and non-dividing cells at 1-
day intervals.
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To evaluate the transferability of the classifiers, we applied the
SVMs trained on wild-type SAM data on the same feature sets
generated from three different central meristems: SAMs of the
katanin1-2 (ktn) mutant, and floral meristems of wild type and ktn
(tracked every 12 h because of their increased division speed
compared with the SAM). Although the performance for predicting
cell division events on the floral meristems was at the same level as
the wild-type SAM test performance, the performance of the
classifier slightly decreased in all feature sets from the ktn SAMs
(non-significantly for accuracy and significantly reduced for area
under the curve of all classifiers), except for the unweighted
topological features (Fig. 2C, Fig. S3B). Although these findings
demonstrate the importance of surface area as a determinant of cell
division, they also support the claim that topology plays an
important role in predicting cell division events and that similar

mechanisms exist in the central regions of both SAM and floral
meristems.

Combination of topological and biological features enables
recreation of the local topology after cell division
To examine whether properties derived from the tissue connectivity
network as well as biological properties (i.e. cell size and perimeter,
distance, and shared cell wall between cells) are informative in the
time-dependent connectivity of daughter cells, we trained classifiers
based on SVMs (with linear kernel) to predict which of the cells
adjacent to a dividing (parent) cell are neighbors of the divided
(daughter) cells. We distinguished neighbors that were adjacent to
only one daughter cell: those adjacent to the daughter cell closer to
the SAM center are labeled as class 0; those adjacent to the daughter
further from the center are classified as class 1; neighboring cells

Fig. 2. Surface area and topology-based features generate similar predictions of cell division in the SAM that generalize for ktn mutant and floral
meristems central region. (A) Comparison of predicted and observed division events on wild-type shoot apical meristem (SAM) test plant tissue from
Fig. 1A day 0, highlighting correct predictions in blue and wrong predictions in red. Dividing cells are indicated with white dots. The predictions are from
classifiers trained on different feature sets: combined topological features (topo), surface area and combined topological features with surface area
(topo+area; from left to right). Scale bar: 10 µm. (B,C) The accuracy of the support vector machine classifier to predict cell division of (B) wild-type SAM
training (blue) and validation (green) in 24 h time steps, and (C) testing wild-type (dark orange) and ktn mutant (dark purple) SAMs in 24 h time steps, and
wild-type (light orange) and ktn (light purple) floral meristem in 12 h time steps. Datasets from left to right: topo, surface area, topo+area, a reduced set of
topological features that show an absolute Pearson correlation coefficient with surface area smaller than 0.3 (r<0.3), and unweighted topological features
(unweighted; derived from the unweighted network scenario). The performance on the training and validation set is determined from sixfold cross-validation
as mean±s.d. The 10 most important features of the test classifier trained on the feature set r<0.3 (coloring positive blue and negative coefficients orange)
are shown. Different letters indicate significance between groups using Benjamini-Hochberg adjusted two-tailed paired t-test (P<0.05). Statistical testing for
differences of classifier performance for the training, validation and test sets is conducted separately (lowercase letters without prime, lowercase letters with
prime and uppercase A, respectively). Lines indicate a Benjamini-Hochberg adjusted two-tailed Student’s t-test between test wild-type SAM and other central
apical meristems with non-significant (ns) pairs. NWT=28 (20 tissues time steps for training-validation and eight for testing); Nktn=5; NWT_floral=8; Nktn_floral=7;
nWT=1445 and 618 train-validation and test cells, respectively; nktn=575; nWT_floral=151; nktn_floral=295. N denotes the number of tissues over the time steps
considered; n denotes the number of train-validation cells.
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adjacent to both daughter cells are considered to be class 2
(Fig. S1C).
To predict changes in the local topology due to cell divisions, we

first determined all neighbor-parent pairs of dividing parental cells
and then predicted the adjacency of the neighbor to the daughter
cells. To this end, we considered the topological features as well as
biological properties of the parent and the neighbor cells in the
preceding time point. We used the topological features of the
neighbor cell to distinguish neighbor-parent pairs in which a
neighbor is adjacent to two dividing cells. By including both parent
and neighbor, we generated 96 unique topological-based properties
for each neighbor-parent pair of the combined topological feature
set (topo, Fig. S1B). For the biological feature set, we extracted the
surface area and perimeter of both the parent cell and neighbors, as
well as their shared cell wall and distance between the centers of
mass. For the combined features, we concatenated both topological
and biological features. Given a parent cell, we determined the class
of its neighbors at the next time point by aligning the tissues at 1-day
time intervals manually, and determining their adjacency with their
neighbor with respect to the daughter cells (see Materials and
Methods and Fig. S1B).
We excluded neighbor-parent pairs for which the neighbor also

divided in the 1-day interval being considered to avoid bias from
guessing which cell divides first (Fig. 3A). Using this procedure, we
created 3015 neighbor-parent pairs with 900 representatives in each
of the three classes (0, 1 and 2) from eight different SAMs, tracked
every 24 h over 5 days. The data were split into three parts (training,
validation and test data), such that the SAMs of two plants were kept
as test data, while the rest of the plants were used in a nested fivefold
cross-validation for training the SVM.
The training and validation accuracy was best for the SVM based

on the topological features combined with biological features, at
71.6% and 65.9%, respectively. The topological and biological
features alone showed 12.8% and 23.4% reduction in validation
accuracy compared with the combined classifier, and similar
reduction in training accuracies (P=0.012, paired t-test with
Benjamini-Hochberg correction). Regarding the performance on
the test set, the combined classifier performed best, with an accuracy
of 64.8%, followed by the classifier based on topological features
alone with 53.3%. The classifier that used biological features alone
had the worst accuracy (equivalent to guessing) of 50.2% (Fig. 3B,
Table S4).
Investigating the area under the ROC curve (AUC) measure for

individual classes highlighted the differences between the two
classifiers trained on topological or biological features alone. The
SVM based on the topological features showed better performance
for the neighbors adjacent to only one cell (class 0 and 1) in
comparison with the classifier based on the biological features (i.e.
relative increase of 13.0% and 30.0% for class 0 and 1,
respectively). In contrast, the SVM based on the biological
features performed 29.4% better for neighbors adjacent to both
daughter cells in comparison with the classifier based on the
topological features. Combining both feature sets improved the
average AUC on the validation data of the classifier by 12.7% and
16.7% (relative increase compared with topological and biological
features alone, respectively) while retaining high performance for
all classes (Fig. 3C, Fig. S6). Investigating the reduced topological
feature set (i.e. removing features with Pearson correlation
coefficients larger than 0.3 with any biological feature) as well as
considering only unweighted features resulted in similar validation
and test accuracies compared with all topological feature trained
classifiers (Fig. 3B,C, Table S4). Investigating the classifier

learning curves reveals that they did not suffer from high bias and
variance, and that training was carried out on a sufficiently large
number of pairs (Fig. S7). These findings indicate the importance of
both topological as well as biological properties in predicting local
topology after a division event.

To further corroborate the biological relevance of these results,
we randomly permuted the labels and retrained the classifiers,
repeating this procedure 100 times for each feature set. Although the
resulting classifiers showed performance better than expected at
random on the training data with the three sets of features, they did
not generalize well and exhibited accuracy on the validation set
similar to that expected by chance (Fig. S5B). Furthermore, we
investigated the more difficult scenario of including neighbor-
parent pairs whose neighbors also divide and repeat the topology
prediction procedure. Here, we found similar performance to that on
the training, validation and test sets for all combinations of feature
sets (Table S4). Therefore, our findings demonstrated that the used
features capture information important for classifying changes in
local topology predictions surrounding dividing cells in 24 h
intervals.

We also tested how well the trained classifiers based on the wild-
type SAM data performed on the ktn mutant SAM and floral
meristem, as well as on wild-type floral meristem. With the data
from the ktn mutant SAM, we found a reduction in accuracy
for the best-performing classifier when trained on the combined
topological and biological, reduced feature set, and unweighted
features (35.7%, 19.9% and 26.6% with P<0.001, P<0.0463
and P<0.0103 using Student’s t-test, respectively, Fig. 3C). We
could equally well predict floral meristem topological changes
compared with the wild-type SAM test data, except for ktn floral
meristem based on all topological features and wild-type floral
meristems based on unweighted topological features (with relative
reduction of 17.2% and 17.4%, and P=0.0462 and P=0.0490 using
Student’s t-test, respectively). The reduced performance on SAM
data of classifiers trained on topological and biological features
combined cannot be attributed to one specific class (Fig. S1C).
These results highlight the importance of both topological and
biological information in local topology rearrangement after cell
division.

Combined application of division event and local topology
prediction enables the prediction of tissue topologies
To apply the classifiers and compare the resulting topologies, we
used the data from the test plant and successively predicted division
events and changes in local topology using classifiers trained on the
combined biological and topological features (see following
procedure outlined in Fig. 4A). We compared the predicted and
observed topologies by investigating the unweighted topological
features (Fig. 1C, Table S1) of non-dividing cells in the next time
points of both scenarios. We selected non-dividing cells of both
scenarios, i.e. predicted and observed, to compare in a pairwise
manner their unweighted topological features. We did not consider
other network scenarios (see Fig. 1C) as we would need to estimate
the weights for the topology, adding a layer of uncertainty. Here,
290 of the possible 437 non-dividing cells in the observed topology
were also non-dividing in the predicted topology. For these cells, we
calculated r of all unweighted features between observed and
predicted topologies, with the information centrality showing the
largest value of r=0.71, and 10 out of 17 features with r>0.5
(Fig. 4D, blue bars). We compared the predicted and observed
values of harmonic centrality of the non-dividing cells of the next
time step, and found strong correlation (Fig. 4E, Fig. S8).
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Fig. 3. Topological and biological features are required for accurate prediction of the local neighborhood after cell division in the SAM and ktn
mutant shows reduced performance on SAM. (A) Comparison of predicted and observed local neighborhood changes around dividing cell (white
asterisks) from wild-type shoot apical meristems (SAM) tissue after 24 h (as in Fig. 1A, day 0), highlighting correct (blue) and wrong (red) predictions. The
predictions are made with classifiers trained on different feature sets: combined topological (topo, including features of the four network scenarios, see
Fig. 1C, Fig. S1), biological (bio, including area, perimeter, shared cell wall and distance), and combined topological and biological features (topo+bio). Scale
bar: 10 µm. (B,C) Accuracy of the support vector machine classifier to predict local topological changes for dividing cell neighbor pairs of (B) wild-type SAM
training (blue) and validation (green) in 24 h time steps, and (C) testing wild-type (dark orange) and ktn mutant (dark purple) SAMs in 24 h time steps, and
wild-type (light orange) and ktn (light purple) floral meristem in 12 h time steps. (D) Area under the curve (AUC) of the receiver operating characteristic based
on the wild-type SAM test data for the local neighborhood prediction of all classes (blue), and for the class of neighbors adjacent to the daughter cell (cell A,
see legend in B) closer to the SAM center (denoted as class 0; cyan), adjacent to the daughter (cell B, see legend in C) farther from the center (denoted as
class 1; orange) or adjacent to both cells (denoted as class 2; magenta). The classifiers are trained on topo, bio, topo+bio, reduced set of topological
features that show an absolute Pearson correlation coefficient with all biological features smaller than 0.3 (r<0.3), and unweighted topological features
(unweighted; derived from the unweighted network scenario). The performance on the training and validation set is determined from sixfold cross-validation
as mean±s.d. Different letters indicate significance between groups using Benjamini-Hochberg adjusted two-tailed paired t-test: P<0.05. Statistical testing for
differences of classifier performance for the training, validation and test sets was conducted separately (lowercase letters without prime, lowercase letters
with prime and uppercase letters, respectively). Lines indicate a Benjamini-Hochberg adjusted two-tailed Student’s t-test between test wild type and other
central apical meristems. ns, non-significant, *P<0.05, ***P<0.001. NWT=28 (20 tissue time steps for training-validation and eight for testing); Nktn=5;
NWT_floral=8; Nktn_floral=7; nWT=2103 and 912 train-validation and test cells, respectively; nktn=1042; nWT_floral=1646; nktn_floral=2003.
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For comparison, given the same test plant observed topologies,
we selected all non-dividing cells predicted to divide and randomly
connected the neighbors with the divided cells, which reoriented
the local neighborhood; we then repeated the correlation analysis
of the resulting topology with the observed topology. This ‘random
propagation’ scenario allowed us to construct and investigate the
most opposite example to our predictions (Fig. 4D, orange bars).
Comparing the predicted and random propagation correlations

showed that six out of 17 topological features had a higher
correlations and eight had a lower correlation (one sample t-test with
Benjamini-Hochberg correction, P<0.05). Although local features
(calculated on the second neighborhood, i.e. the topology induced
by cells in a radius of two cells around a specific cell), such as size
(number of neighborhoods) and relative graph density (average
number of neighbors per cell), showed small correlations,
suggesting a need for a correction in the case of erroneous

Fig. 4. Concordance between observed and predicted topologies. The cell connectivity network of the two test plants was predicted by applying
classifiers for division event and topology prediction. (A) Illustration of the procedure applying the division and local topology classifiers to generate the
topology of the next time point (24 h time interval). After division and topology prediction, a dividing cell (brown dot ) is selected along with its neighbors (blue
circles) and its adjacency relationship (edges, black lines) (left schematic). The selected cell (predicted to divide) along with the edges incident to the
corresponding node are removed and replaced by the divided daughter cells (‘A’ and ‘B’; representing the cell closer and farther away from the SAM center)
that are adjacent to each other (middle three schematics). The daughter cells are connected with their neighbors based on the prediction from the local
topology classifier (right schematic). The next dividing cell is randomly selected and the previous steps are repeated until all dividing cells are selected.
(B) One example of the predicted local topology with an overall accuracy of 66.6% for the full local topology is compared with the observed local topology.
The divided daughter cells ‘A’ and ‘B’ (brown) are adjacent to the predicted or observed cells (numbers indicate the same cells) coloring their respective
parent-neighbor class (cyan or orange indicate a cell connected only with daughter ‘A’ or ‘B’, respectively; magenta indicates a cell adjacent to both daughter
cells). (C) Histogram and density plot of the percentage of correctly estimated neighbors per local topology of cells predicted as dividing in the test plants
(blue) are compared with the density plot of randomly assigned parent-neighbor classes (orange). The difference between distributions is tested using a
Kolmogorov–Smirnov test, P<0.001. N=8 tissue time steps, n=59 local topologies. (D) The concordance between the observed and predicted topologies was
quantified (mean, blue) for non-dividing cells in both topologies by calculating and ranking the Pearson correlation coefficient based on 17 topological
features from the unweighted networks (see Fig. 1C; Table S1). The procedure was repeated dividing all cells predicted to be non-dividing, randomly
assigning classes to the neighbors and calculating the correlation as described before (data are mean±s.d, yellow). Benjamini-Hochberg-corrected two-tailed
one-sample t-test: *P<0.05; ns, non-significant. (E) The observed information centrality is plotted against the predicted information centrality for all
non-dividing cells and the best linear fit (solid line) with its function f(x) and the respective Pearson correlation coefficient (r) is overlaid. NWT=8 tissue time
steps, nWT=290 cells not dividing in both observed and predicted tissue.
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topology recreations (e.g. creating non-planar topology), the overall
structure in terms of flow centralities showed more and stronger
correlations for the predicted propagation (Fig. 4D, blue versus
orange bars).
To further investigate the performance of the local topology

prediction on the test plant, we calculated the percentage of correctly
predicted neighbors for each cell dividing in the predicted and
observed tissue (example in Fig. 4B). The distribution of correctly
labeled neighbors per dividing cell was significantly shifted towards
higher accuracy when comparing the predicted and random
topology (Fig. 4C).

DISCUSSION
The biochemical pathway of cell division control has been
extensively studied (Dewitte and Murray, 2003), but only recently
have external cues also been considered in order to understand the
effect of cell divisions in tissues (Hartig and Beck, 2006;
Shimotohno et al., 2021). It is known that the outer epidermal cell
wall resists most forces (Beauzamy et al., 2015), and, thus, division
in the SAM outer layer needs to serve a meristematic function and
provide mechanical protection. This raises the issues of whether cell
division and the subsequent local topology rearrangement are
affected by tissue topology and whether tissue topology contains
sufficient information for its accurate prediction.
Based on our extensive network-based modeling, we showed

that both surface area, as an approximation of cell size, as well as
the characteristics of topology, allow for prediction of cell
division events in the central epidermal region of A. thaliana
SAM, in contrast to earlier reports showing only an increase in
size between dividing and non-dividing cells (Jackson et al., 2019).
With the local topology rearrangement predicting model, we
provide an alternative and network-based model to infer the
changes applied to the network due to cell divisions. In addition,
we successfully applied the division and local rearrangement
classifier trained on wild-type SAM to the central region of the
wild-type floral meristem, suggesting a similar mode of action. At
the molecular scale cyclin-dependent kinase (CDK) G1 is known to
bind DNA and serves as a ruler after cell division, allowing for
size-dependent division in C. reinhardtii (Li et al., 2016), whereas
KIP-related protein 4 has a similar function in the A. thaliana
SAM niche (D’Ario et al., 2021). Modeling cell division in the
SAM of A. thaliana also revealed the importance of CDKs in G1-S
and G2-M phase transition (Jones et al., 2017). Furthermore, the
work of Willis et al. (2016) showed that cell division events
in SAMs of Arabidopsis treated with naphthylphthalamic acid, an
inhibitor of auxin transport that generates naked meristem, are
influenced by both cell size increase and a cell size threshold.
Both models explain the importance of surface area in predicting
cell division events, but they do not explain the importance of
topological features. Here, the mechanical feedback loop,
manifested by the ability of cells to react to changes in turgor
pressure produced by microtubules and cell wall rearrangement
affecting cell divisions (for details of the feedback loop, see
Sampathkumar, 2020), could explain the link between topology
and the summed turgor and supracellular mechanical stress.
Alternatively, the predictive ability of topological properties
may result from long-distance communication of different
phytohormones (Shimotohno et al., 2021) or could be due to
cell-to-cell communication by plasmodesmata (Kitagawa and
Jackson, 2017).
However, both cell division and the cell wall positioning affect

tissue organization; a prime example is the effect of division

patterning in lateral root initiation (von Wangenheim et al., 2016).
Our study relies on the adjacency of cells in the tissue topology, in
contrast to other cell wall models, such as the generalized Errera’s
rule (Besson and Dumais, 2011), the spring-based model (Gibson
et al., 2011) and the mechanical stress related model (Louveaux
et al., 2016), that predict the placement of the cell wall based on the
individual cell geometry. Our classifier employs the biological
feature set composed of six cellular features, with limited
information about the dividing and neighbor cell geometry, and
allows reliable prediction of changes in the local topology. These
local changes in the topology mirror the effect of cell wall
placement on the tissue. In addition, we show that topological
features alone suffice to accurately predict local topological
changes. Although single topological properties are already used
to estimate cell wall placement, the percentage of dividing
epidermal cells in this study was only 5.2% (total n=32/582
dividing and non-dividing cells) per tissue every 11 h (Jackson
et al., 2019). In contrast, our results rely on experiments in which
cells divided more regularly, with an average of 28.9% of dividing
cells per tissue every 24 h (total n=605/1458 dividing and non-
dividing cells), allowing us to train robust classifiers. We show that
the combination of both feature sets boosts performance of local
topology reorientation prediction (Fig. 3), indicating that the
inclusion of multiple viewpoints of information available to cells
needs to be involved to solve the problem of cell wall placement in
the SAM. This raises the question of how information of the
topology is biologically transferred over the tissue, either via
mechanical or via active and passive transduction of biochemical
signals.

To demonstrate the generalizability of the classifiers, we show
that they can be used to make accurate predictions for ktn mutants
that are defective in mechanical feedback regulation. Our results
indicate similar performance for the classifiers with biological
feature sets fromwild type and ktn. In contrast, the classifiers trained
on topological features show reductions in performance in ktn
compared with wild type. This difference in performance is not due
to differences in topological features, as the normalized features
showed similar distributions (Fig. S9). These results suggest a
potential role for KATANIN in linking sub- and supracellular
mechanical stress, which are known to affect leaf epidermal cells
(Eng et al., 2021), and a role in positioning of the preprophase band,
spindle and phragmoplast (Komis et al., 2017). In addition, the cell
geometry of the ktnmutant differs from the wild type and might also
influence the topology. Therefore, the combination of network-
based modeling with machine learning provides a method for
screening SAMs under different conditions and mutants. More
specifically, reduction in test performance of the classifiers trained
either on mutant surface area or on topological features compared
with the wild type could suggest effects that disturb only functions
related to the cell cycle or to a topological effect.

When combining division prediction and the resulting changes to
the tissue, previous studies mostly focused on single cell division or
on propagating tissues based on division likelihoods using the
number of neighbors (Gibson et al., 2011) or using only area as a
fixed threshold (Sahlin and Jönsson, 2010; Alim et al., 2012). Our
classifier, on the other hand, incorporates more diverse tissue-level
information. Here, we have combined our best classifiers to predict
future tissue topology using the combined topological and
biological features. Although the results of this propagation of
classifiers are promising, the careful inspection of the findings,
particularly with respect to planarity and topological properties of
the reconstructed topologies indicate that further research should
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consider simultaneous modeling of cell neighborhoods of higher
orders to improve the reconstruction.
Furthermore, as information is not only being passed along the

epidermis (L1-layer), the assessment of cell division events and
their effects on the topology could be expanded beyond the
epidermis of the SAM, as we know that the L2 and L3 layers play a
vital role in supporting the meristematic function through the
feedback of CLAVATA and WUSCHEL (Schoof et al., 2000).
Transferring the classifiers to other plant species, such as maize
(which has only two distinct layers forming the SAM), may provide
insights into how meristematic function can be conserved with
fewer cells. As other tissues and organs are also experiencing
mechanical stresses, hormone gradients and other transport related
feedbacks, e.g. growth-related mechanical stress (Sampathkumar
et al., 2014), auxin gradients (due to PIN; Shi et al., (2018)), soil
density in roots and bending through wind in the stem, there are
bound to be feedback loops of cells and tissues to sense and react to
those cues on a topological level to integrate this information into
the plants development.

MATERIALS AND METHODS
Plant materials and growth condition
We grew Arabidopsis thalianawild-type (Wassilewskija ecotype) plants with
the membrane reporter pUBQ10::acyl-YFP (previously described by Willis
et al., 2016) and katanin1-2 mutant in Columbia-0 background with the
membrane reporter Lti6b-GFP (Eng et al., 2021) in short day (8 h/16 h day/
night), 20°C/16°C conditions for 3 weeks and then transferred to long day
(16 h/8 h day/night), 20°C/16°C conditions until shoot apical meristem
sampling.We cultured sampled shoot apicalmeristems (SAMs) in transparent
imaging boxes containing apex culture media under long day, 22°C
conditions as previously described (Wang and Sampathkumar, 2020).

Time-lapse data acquisition and pre-processing
We acquired confocal z-stacks (3D images) at an excitation wavelength of
514 nm and 488 nm for imaging YFP and GFP, respectively, with a 40×/0.8
water immersion objective of wild-type SAMs every 24 h for 5 days or ktn
SAMs every 24 h for 3 days, and floral meristems of wild type and ktn
every 12 h. Next, we used MorphoGraphX (MGX) (Barbier de Reuille
et al., 2015) to obtain a 2.5 D surface mesh of the meristem L1 layer from
the 3D images with at least two dividing cells; from there, we extracted the
cellular connectivity network (topology). In addition, we measured the shared
cell wall of the neighboring cells (MGX function: Mesh/Export/Save Cell
Neighborhood 2D), the surface area and cell positions (MGX: Mesh/Heat
Map/Heat Map Classic). The cellular connectivity network is composed of
nodes, representing the centroids of the extracted cells. Edges connect two
nodes if the corresponding cells are adjacent to each other, e.g. share a cell
wall. We lineage tracked all cells for 1-day for SAMs and in 12 h time steps
for floral meristems manually in MGX, resulting in tissue time steps with
distinct topologies (Fig. 1A). We refer to dividing cells, at time t (days), as
parent cells, and to their descendants, at time t+1 (days), as daughter cells. To
select the cells for the downstream analysis, we first manually determined the
cells closest to the center of the SAM surface, approximated by the highest
curvature, then determined the largest distance to the boundary regions and
emerging primordia. To this end, we compared the positions of cells with the
average position over all cells.

Prediction of dividing cells
To predict cell division events (n) of central and non-peripheral cells, we
employed python 3.8.1 for all further steps, e.g. to select all cells in a radius
of 30 µm around the center for SAMs and 15 µm for floral meristems
(Fig. 1B). Accordingly, we analyzed central cells and excluded peripheral
cells. We considered a cell as peripheral with respect to a connectivity
network when the topology induced by the adjacent nodes did not form a
cycle. We then labeled each of the selected cells as a dividing (1) or non-
dividing (−1) cell within each time step. In addition, we determined six sets
of features (see below; for unreduced sets, see Fig. S1) for each cell.

Four out of five feature sets are based on entire tissue topology (i.e.
including peripheral cells as well as cells outside the central region from the
cellular connectivity network) and consist of topological features for all
central cells; the fifth set includes only the surface area of the central cell.
When calculating the topological properties, we considered different
scenarios for weighting the edges. In the case of the unweighted
topology, we weighted all edges equally (edge weight=1). For the area-
induced topology, we used the inverse of the mean surface areas of the two
adjacent cells as edge weight. For the wall-induced topology, we defined the
edge weights as the inverse of the shared cell wall area between two cells.
For the distance-induced topology, we determined the distance between the
centroid positions of two adjacent cells as the edge weight (Fig. 1C). We
calculated ten topological properties for each central cell and network
scenario (see Table S1). Furthermore, we considered topological properties
based on the induced subgraph of the first neighborhood (see Table S1). We
estimated all properties in python using the networkx 2.4 package.

To train the classifiers for prediction of division events between two
successive time points, we split the wild-type data from the eight plants into
two datasets, a training-validation and a testing set, with six and two plants,
respectively, while keeping three ktn plants, and two wild-type and three ktn
floral meristems as a separate test set (resulting in 20 training-validation and
8 testing wild-type SAM, 5 ktn SAM, 8 wild-type and 7 ktn floral meristem
tissue time steps, N ). We split the data into training-validation and test sets
to ensure no overfitting was carried out and rigorously examined our
classifiers. As there are fewer dividing cells, their class is the minority class
and we account for the imbalance by weighting the classifier and
performance measures accordingly. We applied a support vector machine
(SVM) with a linear kernel to predict the occurrence of cell division events
within one time step, e.g. 1 day. To this end, we used the five different
feature sets, the unweighted topological features (unweighted topology), all
topological features combined (topo), the surface area (surface area),
topological features and area (topo+area), as well as two reduced feature
sets, including only topological features with Pearson correlation
coefficients with a surface area smaller than 0.3 (denoted by r<0.3) (Fig.
S1A). We trained each classifier with the topological properties as features
of the training-validation set using six-fold cross-validation and always kept
one plant as a validation set.

To this end, we z-normalized [(X-mean)/s.d.] the topological properties
with the corresponding mean and standard deviation (s.d.) for the train-
validation and the wild-type test datasets. The ktn data were z-normalized
using means and standard deviations. We estimated the hyperparameters on
the training set by sixfold cross-validation using a grid search (sklearn
0.22.1, model_selection.GridSearchCV) with 100 regularly spaced hyper-
parameters for each power of 10 (C: 10−4-101). We further tested the
classifiers by retraining the SVMs on all training-validation data with newly
selected parameters and applied them on the unseen test data. We quantified
the performance of the classifiers by calculating five measures of
performance, including: the accuracy, F1-score, true positive rate, false-
positive rate and area under the curve (AUC) of the receiver-operator
characteristic (ROC). For comparative analysis between two performance

measures, p1 and p2, we used the relative difference (100
j p1 � p2 j

meanð p1; p2Þ).
We quantified the difference between feature sets of training, validation or
testing using a paired t-test (scipy 1.8.0, stats.ttest_rel) and the difference
between testing of wild-type SAM and ktn SAM, and wild-type and ktn floral
meristem using Student’s t-test (scipy.stats.ttest_ind) with Benjamini-
Hochberg testing correction (statsmodels 0.13.2, stats.multitest.multipletests).

To further inspect the training of the classifiers, we generated the learning
curves by retraining each classifier on a different number of training data
(keeping the hyper-parameters from above). We further determined the
feature sets information content by shuffling the labels 100 times, retraining
the classifier using the default linear SVM parameters (sklearn 0.22.1,
svm.SVC) on each set of shuffled labels, and calculating the performance of
the resulting classifiers.

Recreating of local topology after cell division
For the prediction of the changes in local topology of dividing cells, we
automatically selected all non-peripheral neighbor-parent pairs of dividing
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cells (n). Next, we categorized the adjacency of these neighbors with respect
to the newly divided (daughter) cells. To this end, we inspected whether the
neighbor of a neighbor-parent pair is adjacent to only one or both of the
daughter cells.

To automate the procedure, we distinguished the divided daughter cells
into the daughter closer to the center of the SAM, which we termed cell ‘A’
and the second daughter cell we named cell ‘B’. We labeled each neighbor
cell in a neighbor-parent pair as class 0, 1, or 2, according to whether it is
adjacent to only cell ‘A’ or only cell ‘B’, or to both. We then predicted the
local topology excluding and including dividing neighbors using five
feature sets, similar to the analysis above.

To distinguish neighbor-parent pairs that are adjacent to two dividing
cells, we considered the difference of topological features between neighbor
and dividing parental cells in addition to the parental topological properties
as features (Fig. S1B). As a result, we obtained the following feature sets:
unweighted topology, topological features from all weightings (topo),
biological features (bio, consisting of surface area and perimeter from
neighbor and parent, as well as the shared cell wall and distance between the
two), the combination of all topological and biological features (topo+bio),
and a reduced feature set (r<0.3) including only topological features with
r<0.3 with all biological features. We performed training, validation and
testing, and inspected the learning curves and estimated the information
content of the used features, as specified in the analysis above for wild-type
data using a linear kernel. Additionally, we tested the classifiers on the ktn
SAM, and wild-type and ktn floral meristem data.

Application of the classifiers for division event and local
topology
To combine the predictions of division events and local topology changes,
we used the previously developed classifiers and applied them to predict
how the topology of the test plants would change. To this end, we selected
the classifiers including both topological and biological features (based on
validation performance), and applied them one after another on to the test
tissues to generate the topology of the next time points. Here, the predictions
were made for only one time step (24 h), as longer periods required us to
estimate changes in the biological features as cells predicted to divide would
not necessarily divide in the observed tissue one step later.

To arrive at the predicted cellular connectivity network, we determined
the cells predicted to divide and the future adjacency of divided cells with
their neighbors. Next, we repeated the following four steps for all cells
predicted to divide at time t, starting with a random cell: (1) we removed the
dividing cell along with the edges connecting the neighbors that is dividing;
(2) we added the daughter cells representing the cell closer (cell A) and
farther (cell B) away from the SAM center; and (3) we connected the
daughter cells with their neighbors based on the prediction from the local
topology classifier (Fig. 4A).

To evaluate the performance of the combined application of division and
topology prediction, we calculated all unweighted topology features for the
cells that are dividing in neither the predicted nor the observed topology.
Next, we plotted the non-dividing cells observed against the predicted
features, determined best linear fit and r for all unweighted topological
properties. In addition, we divided all predicted non-dividing cells,
randomly assigned labels to the neighbors of dividing cells depending on
how they will be connected to the divided cells based on the training-
validation set representation. We then repeated the correlation analysis from
above 100 times (differently reconnecting topologies) and compared the
correlations between predicted and random topology propagation using a
one sample t-test (scipy.stats.ttest_1samp) and Benjamini-Hochberg testing
correction.

To evaluate the local recreation of the topology around dividing cells, we
also compared the first neighborhoods of cells dividing in the predicted and
observed tissue of the test plant by calculating the percentage of correctly
labeled neighbors. The distributions of predicted accuracies are compared
with an estimated random labeling of the neighbors using Kolmogorov–
Smirnov-Test (scipy.stats.ks_2samp).
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