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The origin and mechanisms of smooth muscle cell development
in vertebrates
Michael Donadon and Massimo M. Santoro*

ABSTRACT
Smooth muscle cells (SMCs) represent a major structural
and functional component of many organs during embryonic
development and adulthood. These cells are a crucial component of
vertebrate structure and physiology, and an updated overview of the
developmental and functional process of smooth muscle during
organogenesis is desirable. Here, we describe the developmental
origin of SMCs within different tissues by comparing their specification
and differentiation with other organs, including the cardiovascular,
respiratory and intestinal systems.We then discuss the instructive roles
of smoothmuscle in the development of such organs through signaling
and mechanical feedback mechanisms. By understanding SMC
development, we hope to advance therapeutic approaches related to
tissue regeneration and other smooth muscle-related diseases.
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Introduction
Smooth muscle cells (SMCs) are specialized cells found mainly in
thewalls or in proximity of hollow organs, including the circulatory,
respiratory and digestive systems (Halayko et al., 1996; McHugh,
1995; Owens et al., 2004; Sparrow and Lamb, 2003). Although not
discussed in detail in this Review, SMCs are also present in
reproductive system (oviduct and epididymis), urinary tracts, skin
and eyes (Jahoda et al., 1991)
Depending on the organ of interest, SMCs can be found as single

cells or they can be organized into layer-forming sheet of
intertwined and elongated cells (Burnstock, 1970; Gabella, 1981).
Unlike skeletal muscle, smooth muscle (SM) tissue does not have
sarcomeres or striations, but does have actin and myosin proteins
that both form and control their contractile apparatus. The
contraction of SM is initiated by calcium ions (Ca2+), which are
released from sarcoplasmic reticulum and Ca2+-calmodulin-myosin
systems (Hill-Eubanks et al., 2011). SM tissues are not controlled
voluntarily, and the regulation of contraction is dependent on
hormones, on parasympathetic nerves through the autonomic
nervous system (ANS) and on locally released signals, such as
nitric oxide (NO). In addition, the epithelium and endothelium have
been linked to the regulation of SM contraction (Box 1). Often, the
stretching-relaxation control response (stretching the muscle to
induce its contraction) can regulate SM contraction in certain
visceral organs (Chevalier, 2018). It is this contraction and
relaxation of SMCs that regulates the function of the organs in
which they are found (Huycke et al., 2019).

SMCs are identified through the expression of specific markers,
such as α smooth muscle actin (αSMA/ACTA2), transgelin
(TAGLN/SM22), smooth muscle-myosin heavy chain (SM-MHC/
MYH11), caldesmon, serum response factor (SRF), myocardin and
other signaling molecules (Table 1). Most of these markers are
shared among SMCs; however, in principle, different combinations
of them can be used to distinguish the different types of SM tissue
present in circulatory (vascular SMCs and pericytes), respiratory
(airway SMCs) and digestive (visceral/intestinal SMCs) systems
(Table 1).

SMCs play crucial roles during organ development and
morphogenesis, and provide different functions in adulthood
depending on their location and organ distribution. In order to
understand how a complete organ or tissue develops, it is crucial to
reveal the mechanisms of SMC specification and differentiation
(Badri et al., 2008; Majesky, 2007; McHugh, 1996; Nakano et al.,
2011; Wang et al., 2015). Here, we describe the origin of SMC
populations and the steps leading to SMC differentiation during the
development of the cardiovascular system, airways and intestine.
We describe how SMCs shape organogenesis and discuss how
heterogeneities in the origins of SMCs could be used as an
innovative therapeutic approach to treat SMC-related diseases.

Organization, function and developmental origin of smooth
muscle cells
Although SMCs share similar characteristics, in vertebrates SMCs
arise from a wide range of embryonic structures that not only vary
between different organs, but also within the same tissue. In this
section, we describe the organization and function of SMCs
in different organs. We review some of the key fate-mapping
experiments that have identified the prominent populations that give
rise to SMCs in the cardiovascular system, the respiratory system
and intestinal tract in zebrafish, chicken and mice (Jiang et al., 2000;
Le Liev̀re and Le Douarin, 1975; Santoro et al., 2009; Wasteson
et al., 2008) (Fig. 1). Some of the specific genetic and molecular
tools that have been used to investigate the developmental origin of
SMCs are summarized in Table 2.

Smooth muscle cells in the cardiovascular system
SMCs that surround the circulatory system are called vascular mural
cells and can be divided between vascular smooth muscle cells
(vSMCs) and pericytes (Gaengel et al., 2009).

Vascular smooth muscle cells
vSMCs are the most well-studied population among SMCs because
their function is essential for arterial physiology and pathology
(Basatemur et al., 2019). vSMCs are organized into concentric
layers within the walls of arteries and veins (Carmeliet, 2000;
Herbert and Stainier, 2011), where they play an essential role in
establishing and stabilizing blood vessels during embryonic
development (Fig. 2). Furthermore, vSMCs act as crucial
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regulators of vessel wall assembly and vessel maturation, because
they are involved in the production and maintenance of the
basement membrane of blood vessels, as well as promoting
endothelial cell (EC) quiescence and abolishing responsiveness to

vascular endothelial growth factor (VEGF) (Korff et al., 2001;
Wagenseil and Mecham, 2009). In the adult, they also provide
structural and functional support to vessels to maintain correct blood
pressure and tissue perfusion.

It is worth mentioning that the embryonic origins of vSMC
progenitors are highly heterogeneous compared with other types of
SMC. As we discuss below, vSMC progenitors derive from several
lineages depending on the vascular region (Fig. 1). The first insights
into the embryonic origin of vascular SM have been derived from a
lineage map study for neural crest cells (NCCs) using chick-quail
chimeras (Le Liev̀re and Le Douarin, 1975). Through this lineage-
tracing strategy, it has been possible to visualize that cranial and
cardiac NCC migrate toward the pharyngeal arch complex and
differentiate into vSMCs associated with the branchial arch arteries.
These NCCs also provide SMC progenitors at the level of the right
and left common carotid arteries, right subclavian artery (but not the
left one), the ducts arteriosus, as well as the ascending aorta and
aortic arch (Jiang et al., 2000; Kulesa and Fraser, 2000; Lumsden
et al., 1991). Interestingly, substituting the cranial neural crest
population with cells from trunk neural crest does not produce
vSMCs in those anatomical regions, indicating that environmental
cues alone are not sufficient to induce SMC differentiation and that
intrinsic factors are necessary (Bookman et al., 1987; Kirby, 1989).

Conversely, it has been shown that vSMCs located at the level of
the descending aorta (DA) derive from both splanchnic mesoderm
and the somitic compartment, called the sclerotome (Jiang et al.,
2000; Pouget et al., 2006; Wasteson et al., 2008; Wiegreffe et al.,
2007) (Fig. 1). Lineage-tracing experiments have revealed two
different populations of vSMCs in the DA during chick and mouse

Box 1. Epithelium and endothelium as regulators of
smooth muscle contraction and function
Researchers have long been exploring the role of the endothelium and
epithelium in regulating smooth muscle (SM) contraction. In the late
1970s, researchers began to collect evidence showing that the sole
epithelium from several organs may influence SM contraction. These
studies reached this conclusion by splitting the epithelium from the SM
tissue in organ-bath experiments in rat, rabbit or guinea pig (Farmer et al.,
1987; Whalley, 1978). In the lung, the ability of the mesenchymal cells to
stretch over a surface is important in promoting aSMC differentiation
(Yang et al., 2000). Here, it has been shown that sustained stretch-
induced expression of SM proteins in undifferentiated mesenchymal
cells accelerated the differentiation of mouse and human aSMCs. Later,
more complex studies on mammals reinforced the notion that the
epithelium and endothelium regulate SM contraction in vivo by releasing
specific factors, such as acetylcholine, histamine or PGF2 (Gillman and
Pennefather, 1998; Okpalaugo et al., 2002). Similarly, the endothelium is
a source of molecules that either stimulate or inhibit the contraction of
underlying SM cells, such as heparin/heparan sulfate, cytokines and
growth factors, as well as nitric oxide and endothelins that influence
vascular tone and SMC contraction/relaxation. Such factors may act
together with other stimuli like proliferation, migration and differentiation
(Forstermann and Sessa, 2012; Furchgott and Vanhoutte, 1989;
Stratman et al., 2020; Wilson et al., 2016; Yanagisawa et al., 1988).

Table 1. Smooth muscle cell markers and their functions

Marker Function vSMC PC aSMC iSMC

α-Smooth muscle actin (αSMA/ACTA2) Cytoskeletal element involved in fiber contraction ✓ x ✓ ✓
γ-Smooth muscle actin (γSMA/ACTA2) Cytoskeletal element involved in fiber contraction ✓ x ✓ ✓
Smooth muscle myosin heavy chain
(SMMHC/MYH11)

Smooth muscle myosin containing heavy chain and involved in fiber
contraction

✓ x ✓ ✓

Smooth muscle protein 22α (SM22α/
transgelin)

Cytoskeletal element associated with actin filament and involved in fiber
contraction

✓ x ✓ ✓

Calpolin Calcium-binding protein involved in the regulation of smooth muscle
contraction

✓ x ✓ ✓

Caldesmon Calmodulin-binding protein involved in the regulation of smooth muscle
contraction

✓ x ✓ ✓

Serum response factor (SRF) Transcriptional factor that interacts with different cues inducing SMC
differentiation

✓ x ✓ ✓

Myocardin Transcriptional co-activator of serum response factor ✓ x ✓ ✓
Vimentin Intermediate filament highly expressed during embryonic development ✓ x ✓ ✓
Desmin Intermediate filament highly expressed after muscle differentiation and

involved in the proper muscle structure
✓ x ✓ ✓

Meta-vinculin Vinculin-related protein involved in vinculin binding ✓ x ✓ ✓
Smoothelin A Acting-binding protein involved in the contraction of the muscle ✓ x ✓ ✓
Smoothelin B Acting-binding protein involved in the contraction of the muscle ✓ x x x
Neuron-glial antigen 2 (NG2) Transmembrane proteoglycan involved in the proliferation and migration of

the cell
✓ ✓ x x

Platelet-derived growth factor receptor β
(PDGFRβ)

Receptor tyrosine kinase that acts like homo- or hetero-dimers involved in
SMC proliferation, migration and differentiation

✓ ✓ x x

Regulator of G-protein signaling 5 (RGS5) Regulator of G-protein signaling that inhibits signal transduction ✓ ✓ x x
Enhancer of zeste homolog 2 (EZH2) Histone-lysine N-methyltransferase involved in the methylation and

repression of target genes
x x ✓ x

Leucine-rich repeat-containing G-protein
coupled receptor 5/6 (LRG5/6)

Receptor involved in the Wnt signaling pathway and a marker for aSMC
progenitors

x x ✓ x

miR143/145 Controllers of SMC differentiation involved in the expression of SMC
markers

✓ x x ✓

aSMC, airway smooth muscle cell; iSMC, intestinal smooth muscle cell; miR, microRNA; PC, pericytes; SMC, smooth muscle cell; vSMC, vascular smooth
muscle cell.
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development (Wasteson et al., 2008; Wiegreffe et al., 2007, 2009):
during early development, upon aortic fusion, splanchnic
mesoderm-derived cells colonize the ventral regions of the DA

and start to express transgelin, a marker of SMC differentiation.
These cells are referred to as ‘primary SMCs’ (Wiegreffe et al.,
2007). Soon after, sclerotome-derived cells invade and colonize the

NCC

Sclerotome

Secondary heart field

Pro-epicardium

Pulmonary mesenchymal cells

Splanchnic mesoderm

Key

Blood vessels

Pericytes

Blood vessels

Pericytes

Airway smooth 
muscle cells 

Bronchioles

Alveloli

Intestinal smooth 
muscle cells 

Mucosa

Longitudinal
SMCs

Circumferential
SMCs

Intestinal
lumen

Connective
tissue

Serosa

Endothelial
cell

Subendothelium 
and internal elastic 

membrane

External elastic 
membrane and 
tunica externa

Brain

Hindbrain

Vascular smooth 
muscle cells 

Arterial
lumen

Subendothelium 
and internal elastic 

membrane

Fig. 1. Schematic representation of the developmental fate map for smooth muscle (SM) lineages. The different colors represent the different embryonic
origins for the smooth muscle cells (SMCs). Vascular SMCs (vSMCs) are located at the level of arteries and veins as multi-layers of cells in the tunica media,
and they showawide spectrum of origins: the secondary heart field (orange) gives rise to vSMCs at the level of the base region of the aorta; and to neural crest cells
(NCCs, blue) at the level of the right and left common carotid arteries, the right subclavian artery, the ductus arteriosus, the ascending aorta and aortic arch.
Sclerotome (green) and splanchnic mesoderm (red) give rise to vSMC at the level of the descending aorta. A source of vSMCs for the coronary vasculature is the
pro-epicardium (yellow). Pericytes are present at the level of the smaller capillaries (small arterioles and venules): they wrap around the endothelial cells but
do not completely cover them. They extend primary and secondary processes along the surface of the endothelium. Pericytes have twomain origins: NCCs (blue)
give rise to pericytes located in the brain (except for pericytes located at the level of the hindbrain), while splanchnic mesoderm (red) gives rise to pericytes
located along the trunk. Airway SMCs (aSMCs) surround the bronchial tree derived from the pulmonary mesenchyme (violet). Intestinal SMCs (iSMCs) are derived
from the splanchnic mesoderm (red) and they form circumferential and longitudinal layers located in the inner and outer layer of the gut, respectively.
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Table 2. Tools to study smooth muscle cell origins in vertebrates

Tissue
SMC progenitor
source

Vertebrate
model Target tissues Tools Techniques Reference

Cardiovascular
system

Early migratory
NCCs

Mouse Pharyngeal arch arteries,
ascending aorta, right
and left common
carotid arteries, right
subclavian artery,
ductus arteriosus and
aortic arch

Wnt1-Cre transgene
and R26R-LacZ
reporter allele

Cre/lox recombination Jiang et al.
(2000)

Cardiac
pericytes and
vSMCs

Mouse Coronary vasculature Pdgfrb-Cre and
Rosa26-mT/mG

Cre/lox recombination Chen et al.
(2016)

Lateral plate
mesoderm

Mouse Descending aorta Hoxb6-Cre transgenic
and ROSA26-LacZ
reporter allele

Cre/lox recombination Wasteson et al.
(2008)

Lateral plate
mesoderm

Zebrafish vSMC Transgelin antibodies,
and hand2 and
cloche mutants

Immunofluorescence and
ENU mutagenesis

Santoro et al.
(2009)

NCCs Chick Branchial arches In ovo long-term time-
lapse confocal
microscopy

DiI labeling Kulesa and
Fraser (2000)

Zebrafish PC TgBAC(pdgfrb:
Gal4FF); Tg(UAS:
loxP-mC-loxP-
mV)×Tg(sox10:Cre)

Cre/lox recombination
and lineage-tracing
analysis

Ando et al.
(2016)

NCCs (cardiac) Mouse Ascending aorta Mef2c-Cre transgene
and ROSA26-LacZ
reporter allele

Cre/lox recombination Sawada et al.
(2017)

NCC (cranial) Chick Branchial arches Fluorescence
microscopy in fixed
embryos

DiI labeling Lumsden et al.
(1991)

NCCs (cranial
and cardiac)

Chick and
quail

Branchial arch arteries Chicken (Gallus
gallus)-Japanese
quail chimeras

Isotopic and isochronic
grafts

Le Lie ̀vre and
Le Douarin
(1975)

Pro-epicardium Chick and
quail

Coronary vasculature Chicken (Gallus
domesticus)-
Japanese quail
chimeras

Isotopic and isochronic
grafts

Gittenberger-de
Groot et al.
(1998)

Chick Coronary vasculature Targeting in ovo or
tagging dissected
pro-epicardial cells in
vitro followed by
transplantation

DiI labeling, retrovirus
encoding β-
galactosidase

Mikawa and
Gourdie
(1996)

Mouse Coronary vasculature Gata5-Cre transgene
and PDGFRβ-lox/lox

Cre/lox recombination Mellgren et al.
(2008)

Gata5-Cre transgene,
PDGFRβ-lox/lox;
WT1-Cre, R26R-
YFP; WT1-Cre and
PDGFRα-GFP

Cre/lox recombination Smith et al.
(2011)

Sclerotome Chick and
quail

Descending aorta Chicken (Gallus
domesticus)-
Japanese quail
chimeras

Homotopical and
unilateral grafts

Wiegreffe et al.
(2007)

Chick and
quail

Descending aorta Chicken (Gallus
gallus)-Japanese
quail chimeras

Orthotopic, isochronic,
unilateral or bilateral
grafts

Pouget et al.
(2006)

Mouse Descending aorta Meox1-Cre transgenic
and ROSA26-LacZ
reporter allele

Cre/lox recombination Wasteson et al.
(2008)

Zebrafish vSMCs Tg(ola-twist1:gal4); Tg
(UAS:Kaede)

Gal4:UAS transgenesis
and photoconversion

Stratman et al.
(2017)

Secondary
heart field

Chick and
quail

Base region of the aorta
and the pulmonary
trunk

Chicken (Gallus
gallus)-Japanese
quail chimeras

Isotopic and isochronic
grafts

Waldo et al.
(2005)

Human
embryo

Base region of the aorta
and the pulmonary
trunk

None available Immunohistochemistry Yang et al.
(2013)

Continued
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dorsal region of the DA, and begin also to express transgelin. This
population, referred to as ‘secondary SMCs’, migrates along the
ventral region of the DA, replacing the primary SMCs located in the
ventral region of the vessel. The reason for two different populations
is unknown; however, it has been suggested that a dual origin for
cells that support the aortic wall could be advantageous during
animal evolution, because failure of tissue to develop from one
origin could be compensated for by the second origin (Wiegreffe
et al., 2009).
Although NCCs give rise to vSMC progenitors at the level of the

ascending aorta, SMCs in the heart vasculature have different
developmental origins. Using quail-to-chick chimeras and human
embryos, it has been demonstrated that, after the formation of the
septation of the aortic sac, cells derived from the secondary heart
field (SHF) surround the base region of the aorta and the pulmonary
trunk and begin to express ACTA2 (Waldo et al., 2005; Yang et al.,
2013) (Fig. 1). Using ROSA26:LacZ reporter mouse lines crossed
with Wnt1-Cre and Mef2c-Cre animals (for cardiac NCC and SHF
tracing, respectively), the SHF has been shown to contribute to the
outer medial cells of the ascending aorta, while the inner medial
cells are derived from cardiac NCCs (Sawada et al., 2017).
A further source of vSMC for the coronary vasculature in

mammals is the pro-epicardium, a transient embryonic structure
located dorsally in the developing heart tube. After the formation of
the epicardial layer in the surface of the developing heart, epicardial
cells undergo epithelial-to-mesenchymal transition (EMT), migrate
into the heart and provide vSMC progenitors (Gittenberger-de
Groot et al., 1998; Mellgren et al., 2008; Mikawa and Gourdie,
1996; Smith et al., 2011; Vrancken Peeters et al., 1999) (Fig. 1).
In addition to chick and mouse models, the zebrafish has become

another important system with which to study the origin and
function of vascular mural cells during cardiovascular development
(Santoro et al., 2009). ACTA2 and transgelin expression can be seen
as early as 60 hpf (hours post-fertilization) around the trunk
vasculature and transgenic zebrafish reporter lines can mark
vSMC throughout adulthood (Santoro et al., 2009; Whitesell
et al., 2014). Using mural cell-specific elements [such as the acta2
promoter/enhancer element, sm22α-b (transgelin1) enhancer
element, the abcc9 promoter and the pdgfrb promoter], different
groups have been able to trace vSMC origin and differentiation in

living zebrafish (Ando et al., 2016, 2019; Chen et al., 2017b;
Whitesell et al., 2019, 2014). Similar to mammals, zebrafish vSMC
derive from the lateral plate mesoderm and, more precisely, from a
population of cells adjacent to the sclerotome region (Kelley et al.,
2019; Santoro et al., 2009; Stratman et al., 2017). The advantages of
the zebrafish system for live imaging have also shown the
contribution of hemodynamics and NOTCH signaling for the
recruitment of vSMC to the dorsal aorta (Ando et al., 2019; Chen
et al., 2017b).

A final source of vSMCs is the mesenchyme, which also
contributes to airway and intestinal SM lineages (discussed below).
Using Cre reporter mouse lines, it has been shown that WT1+ and
Tbx4+ mesenchymal lineages contribute to distinct subpopulations
of bronchial SMCs and vSMCs, which are dependent on active Hh
signaling (Dixit et al., 2013; Zhang et al., 2013; Moiseenko et al.,
2017). Parallel studies have demonstrated that WT1+ serosal
mesothelial cells can also give rise to SM of all major blood
vessels in the mesenteries and gut (Wilm et al., 2005).

Pericytes
Although pericytes share similarities with vSMCs in terms of gene
expression markers, functionally they are very different. The role of
pericytes is to control the formation and permeability of the blood-
brain barrier (BBB) (Armulik et al., 2010; Daneman et al., 2010),
regulate capillary blood flow (Hall et al., 2014) and, finally, control
vessel stabilization (Lindahl et al., 1997a).

While vSMCs wrap around large endothelial tubes, producing
basement membranes located between the SMC and EC, pericytes are
solitary cells located sporadically along the arterioles, venules and
capillaries (Armulik et al., 2011). They do not completely cover the
smaller vessels and instead extend primary and secondary cytoplasmic
processes along the surface of the endothelium (Hartmann et al., 2015)
(Fig. 1). Furthermore, pericytes are embedded within the vascular
basement membranewith a peculiar rounded cell body, long dendrite-
like process and attached to the longitudinal axis of capillaries (Sims,
1986;Attwell et al., 2016). Pericytes interactwithECsboth physically,
by means of gap junctions, and through paracrine signaling (Armulik
et al., 2005; Gaengel et al., 2009).

Although pericytes and vSMCs share some markers, specific
markers can be used to distinguish between them (Table 1).

Table 2. Continued

Tissue
SMC progenitor
source

Vertebrate
model Target tissues Tools Techniques Reference

Mouse Ascending aorta Wnt1-Cre transgene
and ROSA26-LacZ
reporter allele

Cre/lox recombination Sawada et al.
(2017)

Respiratory
system

Pulmonary
mesenchymal
cells

Mouse Airway branches mWt1/IRES/GFP-Cre
(Wt1-Cre) and R26R-
EYFP

Cre/lox recombination Cano et al.
(2013)

Wt1-Cre Cre/lox recombination Dixit et al.
(2013)

Tbx4LME-Cre Cre/lox recombination Kumar et al.
(2014)

Intestinal
system

Lateral plate
mesoderm

Zebrafish Intestinal tube Tg(hand2:EGFP)pd24 Tol2-mediated
transgenesis and
confocal microscopy

Gays et al.
(2017); Yin al.
(2010)

Tg(draculin:creERT2) Cre/lox recombination Prummel et al.
(2020); Gays
et al. (2017)

Chick and
quail

Midgut Cultured chicken
midgut explant

Ex vivo organ
manipulation

Huycke et al.
(2019)

ENU, N-ethyl-N-nitrosourea; NCC, neural crest cell; PC, pericytes; vSMC, vascular smooth muscle cell.
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Fig. 2. Signaling and mechanical forces involved in vSMC recruitment and differentiation. Schematic regulation of cell signaling pathways involved in the
recruitment and differentiation of vascular smooth muscle cells (vSMCs). (A) In zebrafish endothelial cells (ECs), an autocrine CXCR4/CRCL12 chemokine
signaling axis promotes vSMC recruitment through an increase of PDGFβ secretion. The PDGFβ gradient produced by ECs stimulates vSMCs to migrate in the
direction of this cue. (B) Cilia on zebrafish ECs sense blood flow and lead to activation of the NOTCH pathway, which induces the transcription factor FOXC1B to
promote vSMC recruitment, possibly through secretion of PDGFβ molecules. (C) It has been shown that stretching the vascular wall may induce vSMC
differentiation while they are in contact with ECs; indeed, mechano-stretch by blood flow stimulates the Rho/ROCK pathway through integrin and fibronectin
interaction, and promotes actin polymerization by inhibiting cofilin. In this way, myocardin-related transcription factors (MRTFs) are released by globular actin (G-
actin) and translocate into the nucleus. Interaction of MRTF with serum response factor (SRF) promotes transcription of different SMC markers, such as SM22α,
SMMHC and α-SMA. (D) Blood flow induces transcription of KLF2 through the MEK/ERK/MEF pathway in ECs. The mechanosensor involved in this process is
unknown, but PIEZO1 is a possible candidate. In turn, KLF2 induces transcription of miR143 and miR145, which are transported through extracellular vesicles
secreted by ECs in vSMCs where they induce inhibition of KLF4 and ELK1. In this way, myocardin andMRFT can translocate into the nucleus and, in association
with SRF, induce the transcription of vSMC markers. αSMA, α smooth muscle actin; CXCR, chemokine receptor; CXCL, chemokine ligand; ERK, extracellular
signal-regulated kinase; EIK1, ELK, ETS domain-containing protein Elk1; FOXC1B, forkhead box C1B; KLF, Kruppel-like factor; MAPK, mitogen-activated
protein kinase; MEF, myocyte enhancer factor; NICD, NOTCH intracellular domain; PDGF, platelet-derived growth factor; SM22α, transgelin; SMMHC, smooth
muscle-myosin heavy chain;

6

REVIEW Development (2021) 148, dev197384. doi:10.1242/dev.197384

D
E
V
E
LO

P
M

E
N
T



In mammals, these markers include platelet-derived growth factor
receptor β (PDGFRβ), which is involved in the proliferation and
recruitment of pericytes (Hellstrom et al., 1999; Olson and Soriano,
2011), the nerve-glial antigen 2 (NG2), which is involved in the
recruitment of pericytes to the BBB and tumor vasculature (Ozerdem
et al., 2001; Stallcup, 2018), the GTPase activating protein regulator
ofG-protein signaling 5 (RGS5) (Mitchell et al., 2008), and CD146, a
transmembrane glycoprotein that functions as an adhesion molecule
(Chen et al., 2017a).
Although pericytes play a crucial role in the vascular

development, maturation, stabilization and remodeling, their
developmental origin is heterogenous. Pericytes in the mouse
liver (Asahina et al., 2011), lung (Que et al., 2008) and gut (Wilm
et al., 2005) have been traced from the mesothelium, an epithelial
monolayer that lines the lung. Pericytes in most other organs
originate from the ectoderm. Chick-quail chimera analyses indicate
that pericytes in the central nervous system originate from NCCs
(Etchevers et al., 2001). Supporting this, genetic lineage-tracing
experiments in zebrafish and mice using neural crest-specific Cre
recombinase transgenic lines (such as Wnt-1-Cre and Sox10-Cre in
combination with loxP-mediated fluorescent reporter line) have
demonstrated that brain pericytes are neural crest derived (Ando
et al., 2016; Foster et al., 2008). Trans-differentiation from ECs into
pericytes has also been suggested to occur in birds (DeRuiter et al.,
1997), although this is not a major route of pericyte formation
during embryonic development in other vertebrates (Santoro et al.,
2009). Recent work in the zebrafish has confirmed that the pericytes
that interact with vessels in the brain are derived from NCCs, except
for those in the hindbrain, where pericytes are instead derived from
the mesoderm (Ando et al., 2016) (Fig. 1). Interestingly, genetic
fate-mapping analysis in embryonic mice has revealed that tissue
myeloid progenitors give rise to pericytes in the skin, by showing
that the number of pericytes is reduced in Pu.1 (Spi1−/−)
homozygous knockout mice, which lack myeloid progenitors
(Yamazaki et al., 2017).
Overall, the ontogeny of pericytes and vSMCs is very distinct

from that of other specialized SMC types and recent genome-
wide quantitative transcriptomes studies have highlighted the
complexity of this mural cell population in adult organs (Muhl
et al., 2020; Vanlandewijck et al., 2018). Interestingly, single-cell
transcriptomic analyses of the adult mouse brain have led to the
identification of a population of perivascular fibroblast-like cells that
are present on all vessel types, except capillaries (Vanlandewijck
et al., 2018).

Smooth muscle cells in the respiratory system
SMCs that surround the respiratory system are called airway smooth
muscle cells (aSMCs). aSMCs encircle the bronchial tree, and play a
vital role in airway structure and function, such as in the regulation
of bronchomotor tone and in the control of the airway caliber
(Stephens, 2001). They form layers that circumferentially surround
the bronchial tree, with differences in organization between the
upper and lower airways (Amrani and Panettieri, 2003) (Fig. 1).
Moreover, aSMCs contribute to the support and homeostasis of the
lung function during embryonic development (Jesudason, 2009).
aSMC peristalsis (involuntary wave-like contractions) has been
observed in a number of species ranging from chicks to humans
(McCray, 1993; Parvez et al., 2006), and early impairment in
differentiation of this cell lineage can lead to respiratory dysfunction
at birth (Lindahl et al., 1997b). aSMC express similar markers to
vSMCs, such as ACTA2, SM-MHC, desmin, SRF and myocardin
(Table 1).

Several studies have reported that aSMCs are derived from
mesenchymal progenitors that relocate around the developing lung
epithelium (El Agha et al., 2014; Yang et al., 1999). Early reports
have suggested that during mammalian embryogenesis, aSMCs
originate from NCCs and mesenchymal cells before vSMCs (Low
and White, 1998). Furthermore, studies in mice using a LacZ-Fgf10
transgenic reporter line, which specifically labels the distal lung
mesenchyme, have revealed that Fgf10+ cells include progenitors of
the parabronchial SMCs (Mailleux et al., 2005). Another study has
indicated that a subset of aSMCs cells might originate from
proximal lung mesenchyme (Shan et al., 2008). By using the Wt1-
CreERT2 transgenic line to lineage trace and visualize mesothelial
cells during murine development and differentiation, Dixit and
colleagues have been able to show that Wt1+ mesothelial cells
migrate and enter the fetal lung to provide different lung
progenitors, such as aSMCs, vSMCs and fibroblasts (Cano et al.,
2013; Dixit et al., 2013). More recently, however, an in vivo lineage-
tracing study using reporter lines that mark different progenitors has
shown that Fgf10+ (distal lung mesenchyme) and Wt1+

(mesothelium) provide only a minor contribution to the SMC
lineage, whereas Axin2+ and Gli1+ cells, which are enriched in sub-
epithelial mesenchyme, produce most of the aSMCs during
embryonic development, but with low specificity (Moiseenko
et al., 2017).

Organ culture and single-cell studies have described that such
mesenchymal progenitor niches are in close proximity to the
budding and bifurcating airway branches (Kim et al., 2015; Kumar
et al., 2014). Furthermore, recent studies coupling genetic lineage
tracing, single-cell RNA sequencing and organoid culture have
indicated that, in the lung, a subset of mesenchymal cells express
LGR5 and LGR6, knownmarkers of epithelial stem cells. A specific
subset of these mesenchymal cells (LGR6+) are progenitors for
aSMCs and promote airway differentiation of epithelial progenitors
via WNT-FGF10 cross talk (Lee et al., 2017). During development,
the lung mesoderm also generates vSMCs. Recent findings have
revealed that EZH2 is a crucial molecular determinant required to
restrict SM differentiation in the developing lung mesothelium
(Snitow et al., 2016).

Overall, compared with vSMCs, the embryonic origins of
aSMCs have been less intensively studied. Considering the
different experimental approaches and transgenic lines that have
been used, the extent to which mesenchymal and mesothelial
progenitors contribute to the aSMC lineage is far from
understood. Further studies are still needed to unveil and
elucidate the complete process of airway myogenesis, as well
as to decode how the integration of mechanical and biological
signaling shape this tissue.

Smooth muscle cells in the intestinal system
SMCs embedding the walls of visceral organs are commonly called
intestinal (or visceral) smooth muscle cells (iSMCs). They regulate
peristalsis: the involuntary movement of the longitudinal and
circular muscles that occur in progressive wavelike contractions in
esophagus, stomach and intestines allowing movement of food
through the digestive system. Studies in chicken and zebrafish
embryos have described the emergence, propagation and
physiological-molecular development of SM-dependent gut
peristalsis in the lower digestive tract (Abrams et al., 2012;
Chevalier et al., 2020, 2017; Gays et al., 2017). During murine
embryonic development, it has been shown that iSMCs confer
shape and mobility of the intestine through peristaltic movements
(Gabella, 2002), facilitated by the presence of circumferential and
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longitudinal layers of iSMCs that wrap around the gut tube
(Kedinger et al., 1990). The events leading to this final anatomical
structure of SM around the gut have been clearly described in
mammals: an inner layer of circumferentially smooth muscle is
established and, later, an outer longitudinal layer is formed and
aligned (McHugh, 1995, 1996).
In vertebrates, endodermal epithelium is surrounded by layers of

SMCs derived from splanchnic mesoderm. After the closure and
maturation of the epithelium, the splanchnic mesoderm gives rise to
mesenchymal cells that surround the primitive gut and form two
different layers of SM with the circumferential and longitudinal
orientations. In the mouse, circular iSMCs differentiate at E13,
while longitudinal layers differentiate at E16 (Walton et al., 2016).
In addition, in chicken, circular and longitudinal iSMCs do not
differentiate simultaneously, with circular iSMCs developing at E6
and longitudinal iSMCs at E13 (Le Guen et al., 2015). Recent
studies have helped to understand how the muscle layers are
specified at the correct time andwith the correct orientation (Huycke
et al., 2019), and the development of iSMCs in the human
gastrointestinal tract (Wallace and Burns, 2005).
The development and patterning of iSMCs have also been studied

and characterized in the zebrafish model, which has many features
that can be considered homologous to amniotes. The zebrafish
intestine has a single layer of epithelial cells facing the lumen
attached tomesenchyme and surrounded by circular and longitudinal
SM. Here, circular layers of iSMCs develop and differentiate at
around 72 hpf, while longitudinal layers develop at 120 hpf
(Georgijevic et al., 2007; Wallace et al., 2005). Recently, genetic
lineage tracing of zebrafish embryos has shown that visceral iSMCs
originate from the lateral plate mesoderm (Prummel et al., 2020).
Studies in zebrafish embryos have also shed light on early embryonic
events leading to the formation of the first circular layer of iSMCs
(Horne-Badovinac et al., 2003). It has been shown that the lateral
plate mesoderm undergoes a partial EMT; unlike canonical EMT,
lateral plate mesoderm migrates as a cohesive layer of mesenchymal
cells, retaining features of both epithelial (such as cell-cell
adhesions) and mesenchymal (such as the ability to migrate) cells,
surrounding first the dorsal and then the ventral region of the
primitive gut (Gays et al., 2017). Although the precise signals
driving such cellular interactions remain to be determined, a variety
of extracellular matrix molecules (e.g. laminin) and growth factors
(e.g. transforming growth factor β TGFβ), have been shown to be
involved during this process during zebrafish embryonic
development (Gays et al., 2017; Yin et al., 2010).

Signaling and mechanical forces involved in smooth muscle
cell differentiation
Once SMC progenitors are established, they then differentiate and
cover the tissue of interest in a process called myogenesis.
Myogenesis not only involves canonical cell signaling, but also
mechanical forces that drive SMC differentiation and recruitment
(Table 3).

Vascular mural cells
Studies in vertebrates have shown that different signaling pathways,
such as PDGF, TGFβ, NOTCH, Sonic hedgehog (Shh), WNT and
chemokine/NF-kB signaling, are involved in mural cell (vSMC and
pericyte) differentiation, recruitment and stabilization. As most of
these pathways have been reviewed in detail previously (Armulik
et al., 2011; Badimon and Borrell-Pages, 2017; Döring et al., 2014;
Gaengel et al., 2009; Goumans and Ten Dijke, 2018), we focus on
the most exciting ones.

Disruption of PDGFRβ signaling strongly affects mural cells
recruitment and causes abnormal aortic expansion and elasticity in
vertebrates (Hellstrom et al., 1999; Olson and Soriano, 2011;
Shimada et al., 1998; Stratman et al., 2017). An interesting signaling
crosstalk between PDGF, the CXCR4 chemokine receptor and its
associated ligand CXCL12 (also known as SDF1α) has been
proposed, because SDF1α expression has been shown to be
stimulated by PDGFβ (Song et al., 2009). Knockout of Cxcr4 in
mice results in defective arterial patterning with associated defects
in mural cell coverage of the vasculature (Li et al., 2013). Additional
evidence for an involvement of the SDF1α/CXCR4 axis in vSMC
recruitment has recently been provided in zebrafish (Fig. 2).
Here, it has been shown that sdf1a/cxcr4 zebrafish mutants have
fewer vSMCs associated with the dorsal aorta, suggesting that
SDF1α/CXCR4 autocrine activity leads to increased production
of PDGF by ECs (Stratman et al., 2020). Overall, chemokine
signaling in vSMC recruitment and vascular maturation is
evolutionarily conserved (Stratman et al., 2020; Li et al., 2013;
Song et al., 2009).

Hemodynamic forces (also called shear- or mechano-stress) are
essential for the vascular maturation and the induction of vascular
myogenesis in vertebrates (Chen et al., 2017b; Wu et al., 2008). The
gene encoding the transcription factor KLF2 is one of the best
known flow-response genes (Huddleson et al., 2004). Studies using
Klf2-null mice indicate that KLF2 is required for vSMC migration,
and have elucidated a novel mechanism involving communication
between PDGF and CXCR4 in vascular maturation (Wu et al.,
2008). Studies in zebrafish further support the role of shear stress on
vascular myogenesis (Chen et al., 2017b). After arterialization,
blood flow causes hemodynamic forces that stimulate
endothelial primary cilia to activate Notch signaling, as shown
by previous studies that have reported the ciliary localization of
Notch1 and Notch3 receptors (Ezratty et al., 2011; Leitch et al.,
2014). Endothelial Notch activation leads then to Foxc1b
expression, which promotes vSMC recruitment and
differentiation (Chen et al., 2017b). Our knowledge of shear
stress in driving mural cell recruitment is limited and requires
further characterization.

Interestingly, expression of two master regulators of mural cell
differentiation, SRF and microRNAs (miRNAs or miRs), are also
mechanosensitive (Kumar et al., 2014; Turczyńska et al., 2013). For
example, ex vivo experiments in mouse portal veins have shown a
role for stretching of the vascular wall in driving the expression of
vSMC markers, mediated by Rho activity and actin polymerization
through a SRF-dependent mechanism (Albinsson et al., 2004)
(Fig. 2). Indeed, during vSMC differentiation, many signaling
pathways converge on the regulation of SRF and its co-factor
myocardin and myocardin-related transcription factors (MRTFs)
(Olson and Nordheim, 2010; Owens et al., 2004). SRF and
myocardin form a key regulatory complex for vSMC differentiation
by binding to CArG box DNA elements, thereby regulating vSMC-
specific markers (Majesky, 2007) (Fig. 2). A lack of, or reduction
in, SRF has been directly linked to a SMC phenotype characterized
by impairment of SM differentiation, proliferation and migration
in both the cardiovascular and gastrointestinal systems (Browning
et al., 1998). Similarly, myocardin loss of function is lethal in
mouse embryos due to the lack of vSMCs in the dorsal aorta, which
leads to severe vascular abnormalities (Amrani and Panettieri, 2003).
Seminal work has suggested that actin polymerization triggers
the nuclear localization of MRTF to stimulate SRF-dependent
transcription of the master regulators involved in SMC differentiation
(Miralles et al., 2003).
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Similarly, numerous studies have identified that miRs are potent
regulators of vSMC biology. Among these, miR-143 and miR-145
control vSMC differentiation. Indeed, Boettger and colleagues have
reported that the mir-143/145 gene cluster promotes a contractile
phenotype of murine vSMCs (Boettger et al., 2009). Furthermore, it
has been shown by in vivo and in vitro studies that miR-145 and
miR-143 regulate vSMC fate and plasticity by directly targeting a
network of transcription factors, including KLF4 (Kruppel-like
factor 4), myocardin and ELK1 (member of ETS oncogene family),
and dysregulating the TGFβ signaling cascade, including SMAD2,
SMAD3 and TGFβ ligands (Cordes et al., 2009; Zhao et al., 2015)
(Fig. 2). A role for miR-143 and miR-145 in mediating the
communication between vSMCs and ECs to modulate angiogenesis
and vessel stabilization has also been proposed (Climent et al.,
2015). Moreover, it has been shown that miR-143 and miR-145 are
among those mechano-sensitive miRNAs, and the mir-143/145

cluster is regulated through KLF2 (Hergenreider et al., 2012). Here,
the authors have proposed a mechanism through which flow
promotes the transfer of endothelial-derived miR-143/145 to
adjacent mural cells via extracellular vesicles. Another miRNA,
miR26a, has been proposed to regulate mural cell differentiation and
function, both in zebrafish and in mice (Leeper et al., 2011).
Although the mechanism and the cell-autonomous function of this
miRNA is still controversial, miR-26a acts at the intersection
between PDGF and the BMP/TGFβ family during vSMC
maturation (Watterston et al., 2019; Yang et al., 2017).

The molecular mechanisms that regulate epigenetic control of
vSMC differentiation are also currently under intense study, but
many pathways and factors still need to be identified. Innovative
new tools and approaches, such as single-cell RNA sequencing and
epigenetic assays, are allowing the identification of mural cell
heterogeneity (Vanlandewijck et al., 2018), specific intermediate

Table 3. Signaling pathways and molecules involved in smooth muscle cell development and differentiation

Tissue
Signaling
pathway Molecule SMC function Reference

Vascular PDGF PDGFR Pericyte recruitment Olson and Soriano (2011)
PDGF-BB SMC recruitment Hellstrom et al. (1999); Stratman et al.

(2017)
TGFΒ TGFβ SMC differentiation Grainger et al. (1998); Chen and

Lechleider (2004)
NOTCH NOTCH2/3 SMC differentiation Wang et al. (2012)

NOTCH3 Expansion of the brain pericytes Wang et al. (2014)
NOTCH vSMC recruitment and differentiation Chen et al. (2017a,b)

EGF HB-EGF SMC recruitment Iivanainen et al. (2003)
Pericyte recruitment Stratman et al. (2010)

SHH SHH SMC progenitor recruitment Dixit et al. (2013)
SMC differentiation Miller et al. (2004)

WNT WNT7B Mesenchymal differentiation in SMC lineage Cohen et al. (2009)
SMC development and homeostasis Wang et al. (2005)

Lung SHH SHH SMC differentiation Miller et al. (2004)
Differentiation of lung mesenchyme into smooth
muscle

Weaver et al. (2003)

Smooth muscle formation Pepicelli et al. (1998)
Smooth muscle specification Wan et al. (2005)
SMC progenitor recruitment Dixit et al. (2013)

BMP BMP4 Parabronchial smooth muscle lineage induction Mailleux et al. (2005)
SMC differentiation Weaver et al. (2003)

WNT WNT1 Migration, recruiment and smooth muscle cell
differentiation

Kumar et al. (2014)

WNT7B Mesenchymal differentiation in SMC lineage Cohen et al. (2009)
SMC development and homeostasis Wang et al. (2005)

FGF FGF10 Parabronchial smooth muscle lineage induction Mailleux et al. (2005)
Progenitor cell proliferation Ramasamy et al. (2007)

FGF9 Undifferentiated or multipotent state maintenance Weaver et al. (2003)
Prevent differentiation of the mesenchymal cells into
smooth muscle cells

del Moral et al. (2006)

PDGF TNC Proliferation of pulmonary SMC precursors and
differentiation

Cohen et al. (2009)

Intestine TGFβ ALK5 Migration of SMC progenitors Gays et al. (2017)
SHH SHH SMC lineage specification Cotton et al. (2017)

Delineation of concentric and orthogonal layers of
SMCs

Huycke et al. (2019)

Growth of mesenchymal progenitors Mao et al. (2010)
SHH/IHH SMC development Ramalho-Santos et al. (2000)

Hippo YAP/TAZ Spatial-temporal SMC differentiation Cotton et al. (2017)
MYOCD MYOCD SMC lineage specification Cotton et al. (2017)
BMP BMP2, BMP7, NOGGIN

and GREM1
Delineation of concentric and orthogonal layers of
SMCs

Huycke et al. (2019)

ALK5, TGFβ type I receptor; BMP, bone morphogenetic protein; EGF, epidermal growth factor; FGF, fibroblast growth factor; HB-EGF, heparin-binding EGF-like
growth factor; IHH, Indian hedgehog; PDGF, platelet-derived growth factor; PDGFR, PDGF receptor; SHH, sonic hedgehog; SMC, smooth muscle
cell; TGFβ, transforming growth factor β; TNC, troponin C; YAP, yes-associated protein 1.

9

REVIEW Development (2021) 148, dev197384. doi:10.1242/dev.197384

D
E
V
E
LO

P
M

E
N
T



(progenitor) cell subpopulations of mural cells (Liu et al., 2019), as
well as novel molecular determinants of vSMC during development
and disease (Muhl et al., 2020; van Kuijk et al., 2019).

Airway smooth muscle cells
For aSMCs, the mesenchymal progenitor niches are located at
the branch tip of the developing lung, and different studies have
demonstrated a role for epithelial-derived morphogens in their
recruitment and differentiation (Kumar et al., 2014; Mailleux et al.,
2005). Although the precise mechanisms are not yet completely
defined, different studies have demonstrated the involvement of
FGF9, FGF10, SHH, BMP and WNT signaling in this process
(Fig. 3). Expression of these molecules at the level of the pulmonary
mesothelium, airway stalks and mesenchymal progenitors leads to
aSMC recruitment, differentiation and envelopment of the
epithelium. Blocking FGF9 signaling by knocking out its receptors
in the airway mesenchyme results in ectopic SM differentiation and
impaired epithelial morphogenesis (Yi et al., 2009). Mutant mice
lacking Shh, which is normally expressed in the embryonic lung
epithelium at the distal bud tips, show an absence of aSMCs (Miller
et al., 2004), while exogenous recombinant Shh induces aSMC
differentiation (Weaver et al., 2003). Fgf10 hypomorphic embryos
have diminished aSMCs recruitment, although thismay be an indirect
effect due to impaired Shh epithelial expression (Ramasamy et al.,
2007). FGF10 is expressed by early SMC progenitors and is involved
in BMP4 expression at the level of the epithelium, which is required
for entry into the aSMC lineage (Mailleux et al., 2005). The interplay
between FGF10 and SHH signaling during mesenchymal
differentiation and lung morphogenesis has been investigated, but
remains unclear (Herriges et al., 2015) (Fig. 3).
Although these signaling cues are necessary for SMC

differentiation, they are not sufficient. Yang and colleagues have
demonstrated that, in absence of mechanical tension, mesenchymal
progenitors do not differentiate in the SM lineage, while mechanical
stretch (in the form of cell spreading, elongation or stretching)
induces the expression of SM markers (Yang et al., 2000); αSMA,
SM22α and desmin expression levels increase when uniaxial
continuous stretching is induced through the use of a silastic
membrane, and in ex vivo experiments, the numbers of αSMA-
positive cells surrounding the bronchial tree increases. The authors
have identified that SRF and its antagonist SRFΔ5 are key players
involved during this tension-induced myogenesis, which has been
confirmed by analyzing two different human hypoplastic lung
pathologies (Yang et al., 2000). The same group have also identified
a set of stretch-responsive factors, designated as tension-induced/
inhibited proteins (TIPs), that are able to promote myogenesis
possibly through chromatin remodeling and histone acetylation
(Jakkaraju et al., 2005).

Intestinal smooth muscle cells
Numerous signals are implicated in differentiation of SMCs in
developing gut (Fig. 4). In particular, endodermal-derived SHH and
Indian hedgehog (IHH) signaling act on the surrounding
mesenchyme to control its differentiation into iSMCs (Kim and
Choi, 2009; Mao et al., 2010). However, opposing results have been
obtained from chicken versus mouse. Tissue-grafting experiments
and pharmacological modulation of the Hedgehog (Hh) pathway in
chick explant culture suggests that this pathway inhibits SM
differentiation (Sukegawa et al., 2000). Conversely, studies in
mouse reveal that Hh signaling promotes SM formation via the
direct activation of myocardin, a master regulator of SM
differentiation (Ramalho-Santos et al., 2000; Zacharias et al.,

2011). Another secreted factor that is implicated in gut SM
formation is BMP signaling (de Santa Barbara et al., 2005). It has
been proposed that BMP4 inhibits gut myogenesis: BMP4
overexpression results in reduction of mesenchymal layers and
decreased SM in developing chick gut. BMP4 is activated by and
dependent on Hh secretion by the adjacent endoderm, suggesting a
level of integration between the two pathways in this context
(Roberts et al., 1998).

Recently, Huycke and colleagues have demonstrated that the
correct orientation of the circumferential and longitudinal layers is
driven by unique mechanical forces and Shh signaling at different
stages of gut development in chick. The authors have demonstrated
that the orientation of the first (circumferential) SM layer is driven by
residual strain created by differential growth of the mesenchyme, with
cells in the inner mesenchyme having shorter cell cycles than cells of
the outer mesenchyme (Huycke et al., 2019). Conversely, the
longitudinal orientation is driven by cyclic contraction of the inner
layer that induces SMCs of the outer layer to align perpendicular to
the axis of strain. During this process, cell signaling involving SHH,
BMP and BMP antagonists (such as noggin and gremlin 1)
orchestrate the timing and location of these SM layers along the
gastrointestinal tract (Huycke et al., 2019) (Fig. 4).

Studies in zebrafish have identified a crucial role for miR-145 in
iSMC differentiation (Zeng et al., 2009; Zeng and Childs, 2012).
miR-145 governs expression of BMP4 morphogens that drive both
epithelial and SMC differentiation in intestine through autocrine
and paracrine mechanisms (Zeng and Childs, 2012) (Fig. 4). TGFβ
has been identified as a crucial player in the migration of SMC
progenitors from the lateral plate mesoderm in the direction of
developing tube (Gays et al., 2017). TGFβ acts through two distinct
genes, Zeb1 and Foxo1, that encode a zinc-finger and homeodomain
transcription factor, and a Forkhead family transcription factor,
respectively. During iSMC development and differentiation, ZEB1
(which is known to function in EMT) controls lateral plate
mesoderm migration, while FOXO1A is involved in maintaining
mesodermal progenitor stemness. TGFβ-induced miR-145
negatively regulates zeb1 and foxo1a expression and, therefore,
blocks EMT and mesodermal stemness; these biological processes
need to be terminated in order to allow LPM differentiate in mature
iSMCs (Gays et al., 2017) (Fig. 4).

The cardiovascular, respiratory and gastrointestinal systems are
constantly subjected tomechanical stimuli; blood, gas and food create
two types of mechanical forces on the internal wall of these organs:
shear stress and pressure. Both forces affect the endothelium and
epithelium, but also SMCs. A process calledmechano-transcription is
currently the focus of intense study. For example, it has been shown
that vSMCs possess a mechanosensitive cell cycle regulation
through the transcriptional regulation of p27Kip1 (Sedding et al.,
2003), emerin and lamin A/C, two important components of
nuclear envelope proteins localized beneath the inner nuclear
membrane (Qi et al., 2016). It has been shown that mechanical
forces are crucial also for iSMC differentiation by regulating
transcription directly in these cells (Shi, 2017).

Some studies have shown a role for the mechano-sensors and
mechano-transducers YAP and TAZ in growth and differentiation of
gut mesenchyme (Cotton et al., 2017). The Hippo and YAP and
TAZ pathways (YAP/TAZ) are regulated by mechanical cues and
are involved in the regulating of the organ size and tumor growth
(Dupont et al., 2011; Moya and Halder, 2019). Genetic analyses
using mice genetic models have highlighted the functional interplay
between Hippo and SHH pathways in gastrointestinal development
(Cotton et al., 2017). Specifically, it has been proposed that
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myocardin expression is driven by SHH signaling, but it is inhibited
by YAP/TAZ, which spatially and temporally regulate iSMC
differentiation (without affecting SHH transduction). When YAP/
TAZ are downregulated in specific restricted zone, myocardin
expression occurs, enabling iSMC lineage specification (Cotton
et al., 2017) (Fig. 4).

Smooth muscle cells as drivers of organogenesis
Mechanical forces produced by the cellular environment have
important roles in the differentiation and recruitment of SMCs. On
the other hand, several studies have demonstrated that mechanical
forces produced by SMCs instruct the morphogenesis of different
organs during their development.
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Fig. 4. Signaling pathways regulating iSMCs
differentiation in gut development. During
embryonic development, different signaling
pathways coordinate the spatial-temporal control
of intestinal (or visceral) smooth muscle cell
(iSMC) differentiation. (A) During the early
embryonic development, the intestinal tube is
formed by an inner endodermal-derived
epithelium, an outer mesothelial layer and the
mesenchyme in the middle. SHH/IHH secreted by
the epithelium induces the production of BMP4
in the subepithelial mesenchyme, while
mesothelium induces secretion of BMP2/7. In
coordination with the Hippo pathway, which
promotes cell proliferation and stemness, these
different gradients inhibit the differentiation of
iSMC progenitors present in the mesenchyme,
except in a middle region in which BMP
concentration is low (region between dashed
lines). Here, SHH/IHH signaling induces the
differentiation of iSMC progenitors, which
circumferentially align through mesenchymal cell
proliferation that produces a strain induced by their
amplification. (B) After the formation of the inner
iSMC layer, it secretes BMP antagonists that
inhibit BMP2/7 activity and induce the outer iSMC
layer, which is driven by SHH/IHH signaling.
(C) Spontaneous contractions of the inner smooth
muscle layer induce outer iSMCs to longitudinally
align. (D) TGFβ/ALK5 signaling induces
expression of zeb1a and foxo1a. ZEB1A drives
lateral plate mesoderm migration in the direction
of the endodermal, while FOXO1A drives its
proliferation and maintenance, preparing iSMC
progenitors to their differentiation. Once lateral
plate mesoderm migrates around endodermal-
derived epithelium, TGFβ signaling induces
transcription of miR145, which switches off zeb1a
and foxo1a translation and induces iSMC
differentiation. BMP, bone morphogenetic protein;
IHH, Indian hedgehog; SHH, sonic hedgehog.
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Although aSMCs are mainly known to play a crucial function
postnatally, their role in lung morphogenesis has been studied in
mammals (Kim et al., 2015). Indeed, localized SM differentiation
contributes to shaping lung branches: the position and morphology
of domain branches are highly stereotyped, as is the pattern of
SM that differentiates around the base of each branch (Goodwin
et al., 2019).
Shyer and colleagues have shown that differentiating SM layers

play crucial roles in the formation of villi in the human and chick
gut. The circular inner SM layer prevents expansion of the
gut tube and causes compressive forces in the epithelium, which
induce longitudinal ridges and intestinal folding. Meanwhile, the
longitudinal outer SM layers fold the ridges into parallel zigzags,
leading to villi formation (Shyer et al., 2013). These studies
conclude that it is possible that the formation of human and chick
villi occurs through similar steps. In addition to promoting
villification, circular SM tone and contractions are also necessary
for the anisotropic growth of the gut, which in turn is essential for
high-aspect ratio of the organ, increased epithelial surface and
compartmentalization of digestion (Khalipina et al., 2019).
Another important aspect to keep inmind is that the SMCs interact

with their environment. Different in vitro studies have demonstrated
that the co-culture of ECs and SMCs inhibits EC growth and
movement by inducing EC quiescence. These responses are
mediated by TGFβ action and abrogated VEGF responsiveness
(Antonelli-Orlidge et al., 1989; Korff et al., 2001; Sato and Rifkin,
1989). Furthermore, Fortuna and colleagues have shown that, in
zebrafish, vSMC recruitment to the dorsal aorta is required for the
acquisition of noradrenergic specification by sympathetic precursors
(Fortuna et al., 2015). Overall, SMCs support and regulate organ
development and differentiation throughout the vertebrate body.

Perspectives and conclusions
In this Review, we have discussed how the SM of different organs
share similarities, such as the expression of common markers and
performing their function by constricting the hollow organs they
ensheathe (e.g. circulatory, respiratory and digestive systems).
However, specific differences do exist in the organization, origin,
signaling between vSMC, aSMC and iSMC that reflect the
specialization and functions of the organs and tissue with which
they interact. The SMCs of different organs might be organized very
differently and perform specialized functions, as well as expressing
both specific and unique marker genes. Furthermore, the population
of SMCs present within circulatory, respiratory and digestive
systems are not homogenous; they have different origins and rely on
different signals for specification. Overall, should we think of
smooth muscle cells as a single cell type or do we need to consider
them as heterogeneous populations? So far, we probably do not
know enough about SMCs to fully address this question; we need to
better understand their heterogeneity. It is these types of questions,
however, that make SM a puzzling and exciting tissue to study.
The recent progress in understanding the origin, function and

signaling of SMC development in a variety of organs can provide
the basis for a better understanding, modeling and treatment of
pathologies based on SMC abnormalities. For regenerative vascular
medicine, there is a pressing need for new model systems to
investigate vSMC development and heterogeneity (Sinha and
Santoro, 2018). Induced-pluripotent stem cells (iPSCs) are an
exciting, clinically relevant candidate for cell-based applied
therapy. In particular, human IPSC-derived vSMCs are being
used to regenerate or tissue-engineer both large vessels and the
microvasculature (Cheung et al., 2012). Single-cell transcriptomics

is emerging as an essential technique, enabling researchers to
investigate different cell populations in more depth than ever before
(Jakab and Augustin, 2020). As we have discussed, recent work has
demonstrated that this new technology can be used to identify
disease-relevant transcriptional signatures in vSMC-lineage cells in
healthy blood vessels, with implications for disease susceptibility,
diagnosis and prevention (Dobnikar et al., 2018).

In addition, aSMCs play an integral part in the pathogenesis of
chronic airway diseases, such as asthma, where they contribute to
airway remodeling and inflammation. Therefore, targeting the
signaling pathways that regulate airway SM responses might
provide new therapeutic approaches and treatments for chronic
pulmonary disease.

The cellular plasticity of iSMCs is not only important for the
normal differentiation and maturation of gastrointestinal SM, but also
appears to play a significant role in a variety of intestinal diseases.
Obstruction of the small intestine is a frequently encountered
complication of many congenital and acquired gastrointestinal
disorders (Gabella, 1990; Lin et al., 2012; MacDonald, 2008).
Hypertrophy of the circular iSMCs in the constricted part of the
intestine is the most common effect of the disease. Chronic partial
obstruction of the small intestine can dramatically alter peristaltic
contractile properties. We know relatively little about the molecular
mechanisms that contribute to the phenotypic remodeling of intestinal
SM in this obstructive disease (Chen et al., 2008; Shi, 2017).
Mechanical stretch has been shown to alter gene transcription in
iSMCs and this stretch-altered gene expression (e.g. mechano-
transcription) could play a crucial role in pathogenesis of motility
dysfunction and abdominal pain obstruction. It can be expected that
future studies may be applicable to our understanding of the
molecular events associated with motility dysfunction in chronic-
intestinal pseudo-obstructions.

The anatomical organization and function of SMCs clearly
demonstrates the complexity involved in understanding and
decoding normal SM development in different organs. In recent
years, important progress has been made in understanding the
biology of SMCs, but many questions still remain unresolved: are
there organ-specific and segment-specific patterns during smooth
muscle development? How is the SMC molecular differentiation
program integrated with the stemness program? Are there SMC
stem/progenitor cells that reside in different organs, and can they be
reactivated and eventually move through organs in embryos and
adult? Does the SM of different organs develop in a manner similar
to other SM tissues, i.e. vascular, respiratory and urogenital? How
do the various SM layers of the mature vascular and gastrointestinal
tract develop? Does organ metabolism influence their recruitment
and differentiation? Such challenges need to be faced in the near
future to support studies on SMC, as they represent a mysterious, but
exciting, tissue in vertebrate bodies with great therapeutic potential.
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