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Shedding light on developmental ERK signaling with genetically
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ABSTRACT
The extracellular signal-regulated kinase (ERK) pathway governs cell
proliferation, differentiation and migration, and therefore plays key
roles in various developmental and regenerative processes. Recent
advances in genetically encoded fluorescent biosensors have
unveiled hitherto unrecognized ERK activation dynamics in space
and time and their functional importance mainly in cultured cells.
However, ERK dynamics during embryonic development have still
only been visualized in limited numbers of model organisms, and
we are far from a sufficient understanding of the roles played by
developmental ERK dynamics. In this Review, we first provide an
overview of the biosensors used for visualization of ERK activity in live
cells. Second, we highlight the applications of the biosensors to
developmental studies of model organisms and discuss the current
understanding of how ERK dynamics are encoded and decoded for
cell fate decision-making.
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Introduction
Animal embryonic development is a complex process, in which
mitotic division, differentiation, and tissue remodeling take place
coordinately (Wolpert et al., 2015; Barresi and Gilbert, 2020). So
far, researchers have extensively studied the roles played by
intracellular signal transduction systems in embryonic development,
mainly using model organisms such as mammalian cultured cells,
Caenorhabditis elegans, Drosophila, zebrafish and mice. The cell
signaling machinery in embryonic development is known to be
repurposed in physiological and pathological processes including
wound healing, regeneration, cancer cell invasion and metastasis.
Interestingly, a small set of core cell signaling systems is used to
drive these processes in a time- and site-specific manner (Arias
et al., 2002).
The RAS-extracellular signal-regulated kinase (ERK) mitogen-

activated protein (MAP) kinase signaling pathway is an important
core signaling pathway (Nishida and Gotoh, 1993) (Fig. 1).
Activation of receptors such as receptor tyrosine kinases (RTKs)
triggers the initiation of the RAS-ERK signaling. Upon receptor
activation, cytoplasmic guanine exchange factors (GEFs) translocate

to the plasma membrane, and activate a low molecular weight
G protein, RAS. GTP-bound active RAS at the plasma membrane
recruits and activates RAF, a MAP kinase kinase kinase
(MAPKKK). The activated RAF then phosphorylates and
activates MEK, a MAP kinase kinase (MAPKK), leading to dual
phosphorylation in the activation loop of ERK. Consequently, ERK
enhances kinase activity and catalyzes the phosphorylation of
various substrates. Transcription factors phosphorylated by ERK
induce gene expression/repression, whereas other proteins such as
cytoskeletal regulators function directly upon phosphorylation,
causing a wide range of cellular phenotypic changes, such as
cell proliferation, differentiation, cell motility and tumorigenesis
(Lavoie et al., 2020). Furthermore, germline mutations in the RAS-
ERK signaling genes are associated with developmental disorders
in humans called RASopathies (Rauen, 2013).

RAS-ERK signaling has been extensively studied in diverse
research fields, including developmental biology (Patel and
Shvartsman, 2018). Many of the findings have been clarified
using immunostaining, inhibitors, and gain- and loss-of-function
experiments, representing the multifunctional aspect of ERK.
However, we still do not fully understand why and how RAS-
ERK signaling participates in such diverse functions during
development and regeneration processes. An emerging area of
research is spatial and temporal coding of the ERK activation
dynamics originally described in cultured cells; ERK activation
dynamics are associated with distinct cellular phenotypes
(Marshall, 1995) much like the cell signaling dynamics of p53,
NF-κB and Ca2+ (Purvis and Lahav, 2013). The recent advance
of genetically encoded fluorescent biosensors, which allow
visualization of signal transduction systems at the single-cell
level, has contributed to the verification of this concept. In this
Review, we first outline genetically encoded biosensors that
monitor ERK activity in living cells. Secondly, we discuss the
spatiotemporal ERK dynamics and their roles in developmental
contexts such as embryogenesis, regeneration, differentiation and
collective migration in model organisms.

Genetically encoded ERK biosensors
Fluorescent proteins and biosensors have enabled visualization of
various biological molecules (proteins, lipids, nucleotides, ions,
etc.), biochemical reactions (association, dissociation, enzymatic
reactions, etc.) and biophysical properties (diffusivity, temperature,
force, etc.) taking place within a cell with high temporal and spatial
resolutions (Zhang et al., 2002; Miyawaki, 2003). Here, we focus on
genetically encoded fluorescent biosensors for monitoring ERK
activation and their mode of action. The current biosensors for ERK
are mainly classified into two types: Förster (or fluorescence)
resonance energy transfer (FRET)-based biosensors and single
fluorophore-based biosensors. The former rely on the principle of
FRET to detect ERK activity, whereas the latter monitor ERK
activity as a change in fluorescence intensity. First, we discuss the
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basic principle of FRET and FRET-based biosensors for ERK.
Many excellent reviews have provided details on the aspects of
fluorescent proteins and genetically encoded biosensors, and we
encourage the reader to refer to them (Zhang et al., 2002; Miyawaki,
2003; Greenwald et al., 2018; Lambert, 2019).

FRET-based biosensors
FRET is a non-radiative energy transfer process, in which the
excitation energy of a donor fluorophore is transferred to an acceptor
fluorophore (Foster, 1948; Lakowicz, 1999). Although FRET
efficiency is affected by several factors, the relative distance and
angle between the donor and acceptor fluorophores make the main
contributions to most FRET biosensors. Taking advantage of these
properties, FRET-based ERK biosensors have been designed to
estimate ERK activity as a change in FRET signals. Several pairs of
fluorescent proteins suitable for FRET have been reported, with the
most widely used pair being a yellow fluorescent protein (YFP) as
acceptor and cyan fluorescent protein (CFP) as donor (Greenwald
et al., 2018). The wide use of this particular pair could be due to
the large overlap between the emission spectrum of CFP and the
absorption spectrum of YFP and the convenience of estimating the
FRET efficiency with acceptor photobleaching. In recent years,
pairs of longer-wavelength fluorescent proteins have also been

developed for FRET-based biosensors (Watabe et al., 2020; Mo
et al., 2020).

The first reported FRET biosensor for ERK was Miu2 (Fujioka
et al., 2006), which consists simply of ERK2 sandwiched between
YFP and CFP. The conformational change mediated by MEK
binding to ERK2 in Miu2 increases the FRET efficiency (Fig. 2A).
In the inactivated state, ERK is constitutively associated with MEK
and localized in the cytoplasm, but upon phosphorylation and
activation by MEK, ERK is dissociated fromMEK and translocated
into the nucleus (Adachi et al., 1999). Miu2 monitors both the
dissociation from MEK and nuclear translocation of ERK2 upon
epidermal growth factor (EGF) stimulation (Fujioka et al., 2006).
Almost all ERK FRET biosensors reported after Miu2 have been
of the substrate type. For example, the biosensor per se is
phosphorylated by the endogenous ERK and the change in
phosphorylation is detected by FRET.

The advent of the extracellular signal-regulated kinase activity
reporter (EKAR) has had a particularly major impact on the
subsequent ERK FRET biosensors (Harvey et al., 2008). EKAR is
composed of a YFP, WW domain, Gly linker, ERK phosphorylated
peptide containing ERK docking motif, and CFP, and exhibits an
increase in FRET by the phosphorylation (Fig. 2B). Following the
initial report of EKAR, several researchers have reported
improvements of this biosensor (Fig. 2C), either by using a long
flexible linker and dimerization-prone fluorescent protein pair
(EKAREV) (Komatsu et al., 2011), or optimization of fluorescent
proteins and the order of domains (EKAR2G, EKAR-TVV,
EKAR3, EKAR4) (Fritz et al., 2013; Vandame et al., 2014;
Sparta et al., 2015; Keyes et al., 2020). These improvements have
significantly enhanced the gain of the FRET signal, allowing more
researchers to easily employ the FRET biosensors. One drawback of
the EKAR-based FRET biosensor is that the phosphorylation
peptide originally derived from Cdc25 is non-specifically
phosphorylated by cyclin-dependent kinase 1 (CDK1), thereby
resulting in an artificial increase in the FRET signal immediately
before the onset of M-phase and a decrease in the FRET signal at the
end of M-phase even under an MEK-inhibition condition (Aoki
et al., 2013). Recently, however, two new ERK FRET biosensors,
EKAREN4 and EKAREN5 (Fig. 2C), have been reported that
resolve the undesired CDK1-sensitivity by introducing two amino
acid mutations in the phosphorylation peptide (Ponsioen et al.,
2021). These mutations almost completely suppress the steep
increase in the FRET level at the onset of the M-phase and the rising
slope during the G2 phase. Intriguingly, the linker length, which is
the difference between EKAREN4 and EKAREN5, fine-tunes the
sensitivity and dynamic range of each biosensor to ERK activity,
as previously suggested (Komatsu et al., 2011). In addition to
these single-chain FRET biosensors, ERK biosensors using an
intermolecular FRET have been reported (Depry et al., 2015), but
they are rarely used in the field of cell and developmental biology,
possibly due to the difficulty of optimizing the acceptor and donor
expression levels.

Single fluorophore-based biosensors
In contrast to FRET-based biosensors, single fluorophore-based
biosensors enable the measurement of ERK activity by changes
in the subcellular localization (relocation-type) or changes in
the brightness of fluorescent reporters. Nuclear accumulation of
fluorescent protein-fused ERK is the most classical way to monitor
the ERK activation in living cells (Fig. 2D) (Lenormand et al., 1993;
Adachi et al., 1999). This relocation-type ERK biosensor is still
widely used, but as the use of the wild-type ERK induces excessive
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Fig. 1. The RAS-ERK signaling pathway. The RAS-ERK mitogen-activated
protein (MAP) kinase pathway is known to be activated mainly through
receptor tyrosine kinase (RTK) activation. Upon growth factor stimulation,
RAS is activated, leading to the subsequent RAF and mitogen-activated
protein kinase kinase (MEK) activation. Eventually, MEK phosphorylates and
activates ERK, which phosphorylates cytoplasmic and nuclear substrates
including transcription factors. These phosphorylated substrates induce a
wide variety of cellular functions such as proliferation, differentiation, growth,
metabolism, survival and migration.
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negative feedback through gene expression, the use of kinase-dead
ERK as an ERK activity reporter is strongly recommended. A new
framework, called kinase translocation reporters (KTRs) system, is
composed of a kinase substrate fused to a bipartite nuclear
localization signal (bNLS), a nuclear export signal (NES) and a
fluorescent protein (Fig. 2E) (Regot et al., 2014; Kudo et al., 2017).
The introduction of the negative charge by phosphorylation of the
substrate modulates nucleocytoplasmic shuttling, thereby regulating
the subcellular distribution of the reporter as a proxy for the kinase
activity. Single fluorophore-based biosensors, such as KTRs,
enable multiplexed imaging of kinase activity at the single-cell
level (Regot et al., 2014; Maryu et al., 2016; Jacques et al., 2021)
and combination with optogenetics (Zhou et al., 2017; Goglia et al.,
2020; Gagliardi et al., 2021). The sensitivity of ERK-KTR is

comparable with that of FRET-based ERK biosensors (Sparta
et al., 2015; Yang et al., 2018). In addition, a liquid-liquid phase
separation-based ERK biosensor has been reported, called ERK-
SPARK (separation of phases-based activity reporter of kinase), in
which multivalent protein-protein interactions upon ERK activation
are induced to form fluorescent droplets (Zhang et al., 2018).

In addition to the aforementioned relocation-type biosensors,
there have been biosensors that monitor changes in fluorescence
intensity as an ERK activity. An ERK biosensor called FIRE (Fra-1-
based integrative reporter of ERK) is normally degraded, but when
phosphorylated by ERK it escapes degradation and stabilizes,
increasing its fluorescence intensity (Fig. 2F) (Albeck et al., 2013).
FIRE is incapable of measuring the fast dynamics often observed
in ERK (e.g. pulsatile dynamics), but would provide an index
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corresponding to the time-integrated ERK activity. A different type
of kinase biosensor has been demonstrated, in which the circularly
permuted green fluorescent protein (cpGFP) is employed to detect
kinase activity (Kawai et al., 2004; Mehta et al., 2018). In particular,
the ExRai (excitation ratiometric) biosensor shows a higher
dynamic range than that of the conventional FRET-based
biosensor (Fig. 2G) (Mehta et al., 2018; Zhang et al., 2021), but
no ExRai-ERK has yet been reported. Finally, a dimerization-
dependent fluorescent protein (ddFP)-based single fluorophore
ERK biosensor (RAB-EKARev) has been reported (Mehta et al.,
2018). RAB-EKARev contains a fluorogenic ddRFP-A and a non-
fluorescent ddRFP-B instead of YPet and ECFP in EKAREV, and
ERK-dependent dimerization results in an increase in ddRFP-A
fluorescence intensity.
The number of developmental biology studies using these

genetically encoded ERK biosensors is still limited. There are
several possible reasons: the development of the ERK biosensor is
relatively new, the development of in vivo imaging methods and the
image analysis are still challenging, and sensitive biosensors are
needed to visualize subtle changes in ERK activation in vivo. At
present, EKAREV and ERK-KTR have been almost exclusively
used in developmental biology research. The roles of ERK
dynamics in invertebrate and vertebrate development studies with
model organisms are introduced below.

Temporal dynamics of ERK activation within a cell: insights
from C. elegans development
We first introduce investigations of temporal dynamics of ERK
activation at the single-cell level. Seminal studies in PC12 cells have
shown that EGF-induced cell proliferation relies on a transient
ERK activation, whereas nerve growth factor (NGF)-induced cell
cycle arrest and neuronal differentiation require a sustained ERK
activation (Marshall, 1995). The question is how temporal dynamics

of ERK activation within one cell are impacted by changing the
nature of a stimulus in vivo. The invertebrate model organism,
C. elegans, has an advantage for addressing this question, because
of the invariant cell lineage, which allows examination of the same
cell in different individuals.

Cell fate patterning of vulval precursor cells (VPCs) inC. elegans
is the most prominent example relevant to RAS-ERK signaling.
Intensive studies of this system have revealed many fundamental
mechanisms underlying the regulation of VPC differentiation by
canonical EGF-EGFR-RAS-ERK signaling (Patel and Shvartsman,
2018). VPCs are made up of six epithelial cells in line, which are
named P3.p to P8.p. The VPCs are undifferentiated in the L2 stage
and potent to generate vulval cells. The anchor cell (AC) in the
gonad secretes EGF toward the neighboring VPCs, which evokes
RAS-ERK signaling activation in VPCs, finally resulting in
distance-dependent graded ERK activity and different cell fates of
VPCs at the L3 stage (Fig. 3A). ERK activity is highest in P6.p,
which is the center cell in VPCs and also the cell closest to the AC,
lower in neighboring P5.p and P7.p, and not detectable in peripheral
cells (Yoo et al., 2004; Burdine et al., 1998). In these earlier studies,
graded ERK activity has been visualized by the expression of the
egl-17 transcriptional reporter, although the time-lag from ERK
activation to transcriptional activation constituted a limitation in the
measurement of real-time ERK dynamics.

There exist only a few studies using genetically encoded
fluorescent biosensors to visualize ERK dynamics in living
worms. A substrate-type FRET-based biosensor, ERKy, is the
first biosensor showing ERK dynamics inC. elegans (Tomida et al.,
2012). The basic design of ERKy is similar to that of EKAR, but
modified with a dimerization-prone acceptor fluorophore (YPet), a
distinct substrate peptide and an optimized linker length. It has been
shown that the temporal pattern of stimulation with Ca2+ imaging
determines the intensity and duration of ERK activity in a sensory
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neuron, ASER (Fig. 3A,B). A second report of ERK dynamics in
C. elegans has employed a relocation-type single-fluorophore
biosensor, ERK-KTR (de la Cova et al., 2017). As most cells have
complex cytoplasmic shapes or form syncytia, even while the
nucleus remains discrete and stable (except during cell division), a
robust system known as ERK-nKTR (where ‘n’ is the nuclear ratio)
has been developed that allows estimation of ERK activity by only
nuclear fluorescence intensity of ERK-nKTR, instead of the
cytoplasm/nucleus ratio. To normalize the expression level, ERK-
nKTR-mClover and the nuclear marker mCherry-Histone H2B are
expressed from a 2A peptide-linked multicistronic vector, and the
ratio of ERK-nKTR-mClover to mCherry-Histone H2B at the
nucleus is used as a proxy for ERK activity. ERK-nKTR allows
in vivo visualization of ERK activity in various tissues and cell types
of C. elegans, including the sex myoblast, sensory neurons and
germline cells.
ERK dynamics have been examined with ERK-nKTR throughout

the differentiation process of VPCs from the L2 to L3 stage
(Fig. 3C) (de la Cova et al., 2017, 2020). ERK-nKTR detects spatial
gradients of ERK activity in VPCs from cells close to the AC,
suggesting the concentration gradient of EGF in vivo. Further, even
in the early L2 stage, in which the AC is not yet specified, EGF-
dependent ERK activation begins to be observable by ERK-nKTR
in the P6.p cell. Interestingly, ERK dynamics in the P6.p cell are
pulsatile rather than sustained throughout the L2 and L3 stages.
Consistent with the response in mammalian cells treated with
different concentrations of EGF (Albeck et al., 2013), pulsatile ERK
dynamics can also be seen in the nascent VPCs, especially in P7.p,
with less frequency but with comparable amplitude. It remains
unclear how the pulsatile dynamics of ERK activation contribute to
the cell fate determination of VPCs. The relationship between ERK
dynamics and cell fate determination is highly dependent on cell
type and context, and therefore it would be necessary to more

directly validate the causal relationship through an approach such as
optogenetics (Aoki et al., 2013; Toettcher et al., 2013; Johnson and
Toettcher, 2019).

Temporal and spatial dynamics of ERK activation within
a tissue
In addition to the ERK activation dynamics at the single-cell level, it
has been observed that the ERK activation dynamics are temporally
and spatially coordinated at the tissue level during the development
and regeneration processes. We next introduce what types of
ERK dynamics occur at the tissue level and how these ERK
dynamics generate multi-cellular responses in model organisms
from Drosophila, zebrafish and mouse.

ERK dynamics in Drosophila embryogenesis
In Drosophila embryogenesis, ERK is known to be activated
downstream of RTKs, playing important roles in dorso-ventral
(DV) and anterior-posterior (AP) axis patterning, cell differentiation
and morphogenesis (Gabay et al., 1997; Furriols and Casanova,
2003; Schweitzer et al., 1995; Johnson and Toettcher, 2019).
In general, RTKs activate the PLCγ and PI3K pathways in parallel
with the RAS-ERK pathway. Interestingly, however, the RTKs
in Drosophila embryogenesis give rise to their phenotypes largely
via the ERK pathway, based on the phenotypes observed in a
series of genetic experiments (Shilo, 2014). In many cases, the
RTKs are ubiquitously expressed during embryogenesis, whereas
the ligands are processed and activated in a spatially and
temporally restricted manner, resulting in the specific ERK
activation dynamic.

Here, we outline three events related to ERK activation across the
developmental stage of Drosophila embryogenesis. First, in stage 4
early syncytial embryos (nuclear cycle 10, 80-130 min after
fertilization), the RTK Torso is activated by its ligand Trunk in
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both the anterior and the posterior poles, subsequently delineating a
steep gradient of ERK activation from the poles (Fig. 4A). This
Trunk-mediated Torso and ERK activation lasts for 60-90 min and
specifies the DV axis. Second, between stages 5 and 6 (nuclear cycle
14, 130-180 min after fertilization), when cellularization and
gastrulation take place, an intracellular protease called Rhomboid is
expressed on the ventrolateral stripes along the AP axis, cleaving
and activating Spitz, a ligand for EGFR. The secretion of Spitz
accomplishes the ERK activation in that region and promotes
differentiation into neuroectoderm (Fig. 4A). Furthermore, from
stage 10 (260-320 min after fertilization), tracheal placodes
appear and begin to invaginate, followed by branching of the
ectodermal epithelium (Samakovlis et al., 1996) (Fig. 4A). During
the initial process of the trachea formation, Spitz-EGFR-ERK
signaling is activated within the tracheal placode, accounting for the
coordinated apical constriction and cell intercalation observed in
the trachea formation (Gabay et al., 1997). Later, Branchless
(FGFR ligand)-Breathless (FGFR)-ERK signaling regulates trachea
branching (Sato and Kornberg, 2002) (Fig. 4A).
A few examples of ERK dynamics visualized by ERK biosensors

and their roles have been demonstrated in the embryogenesis of
Drosophila. First, the ERK activity dynamics in the early phase of
trachea development have been visualized using an ERK FRET
biosensor, EKAREV, showing that ERK activation propagated
concentrically from the center of the placode (Fig. 4B) (Ogura et al.,
2018; Hayashi and Ogura, 2020). It has been shown that actomyosin
contractility is elevated in ERK wavefront cells and is required for
invagination. Interestingly, mathematical model analysis has shown
that the propagation of ERK activation requires a switch-like
response for sufficient induction of invagination. Control of tissue
morphogenesis by ERK waves has also been observed in collective
migration in cultured mammalian cells, which is consistent with the
use of a molecular mechanism by which actomyosin contractility is
increased through the ERK pathway (Aoki et al., 2017; Hino et al.,
2020). In the late phase of trachea development, ERK activity is
visualized during the formation of the air sac primordium (ASP)
(Zhang et al., 2018). By combining a phase separation-based ERK
sensor, SPARK, with various genetic mutants, ERK has been
shown to be activated by FGF signals in ASP (Zhang et al., 2018),
consistent with previous studies (Sato and Kornberg, 2002).
More recently, an ERK-KTR for Drosophila, miniCic, has been
developed, demonstrating the role of ERK in the cell extrusion and
cell death of epithelial cells of the pupal notum (Moreno et al.,
2019). It has been shown by live-cell imaging that the epithelial
cells of the pupal notum undergo inactivation of ERK activity by
compaction, which causes cell death and extrusion. Moreover, it
has been reported that when cell extrusion takes place, cells
surrounding the extruded cells extend the cell area and demonstrate
propagation of ERK activation, rendering the cells resistant to cell
death for a short period of time (Valon et al., 2021). The propagation
of ERK activation has been observed in cultured cells surrounding
oncogene-expressing cells or apoptotic cells (Aikin et al., 2020;
Gagliardi et al., 2021). These results indicate that mechano-
chemical feedback exists between cell morphology and ERK
activity in line with similar mechanisms proposed in cultured cells
(Hino et al., 2020). It is fascinating that the mechano-chemical
feedback between ERK and actin cytoskeleton is evolutionarily
conserved, although the molecular mechanisms underlying the
signal transduction pathways still remain unknown, particularly
with respect to how ERK regulates actin cytoskeleton and
actomyosin contractility, and which factors link cell morphology
to ERK activity.

ERK dynamics in the development and regeneration of zebrafish
Zebrafish has been widely used as a model organism for various
developmental processes, such as epiboly, bone generation and
pigment patterning – just to name a few (Bruce and Heisenberg,
2020; Lepage and Bruce, 2010; Marques et al., 2019; Patterson
and Parichy, 2019). In zebrafish development, ERK is also
activated downstream of RTKs, especially FGF receptors. Sixteen
FGF family genes are encoded in the zebrafish genome (Itoh,
2007). Owing to overlapping functions of FGF family genes,
phosphorylated ERK detected by whole-mount immunostaining
has been used as a readout for FGF signals (Shinya et al., 2001;
Akiyama et al., 2014). ERK activation is detected in the marginal
mesoderm at the 75% epiboly stage, and the forebrain, hindbrain,
somites, and tailbud at the six somite stage (Fig. 5A).

A FRET biosensor, EKAREV, was first introduced into zebrafish
for the visualization of ERK activity in a variety of embryonic
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Fig. 5. ERK dynamics in the development and regeneration of
zebrafish. (A) Schematic of ERK activation in zebrafish embryo at the six
somite stage. (B) Representative patterns of FGF8 expression (purple) and
ERK activity (red) during the three- to five-somite stages of zebrafish
development. (C) Osteoblast ERK activity waves during scale regeneration.
ERK activation propagates as excitable propagating waves that are able to
traverse the entire scale.
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processes (Sari et al., 2018; Ishimatsu et al., 2018; Wong et al.,
2018). The results obtained with EKAREV are in very good
agreement with those of immunostaining with phospho-ERK
antibodies. ERK activation dynamics have further been analyzed
in the somite segmentation, where the spatially regular pattern of
cell differentiation is thought to be controlled by combining
oscillatory gene expression of Hes family transcription factors, Her1
and Her7, with a spatial gradient of FGF/ERK activity from the end
of the posterior presomitic mesoderm (PSM). According to this
clock and wavefront model (Cooke and Zeeman, 1976), the
oscillation of Her1 and Her7 determines the regular size of
somites (Bessho and Kageyama, 2003), whereas an anterior limit
of ERK activation marks the earliest future somite boundary
(Akiyama et al., 2014). Time-lapse imaging of ERK activity by
EKAREV has revealed stepwise regression of ERK activity (Sari
et al., 2018) in spite of the gentle FGF8 gradient (Akiyama et al.,
2014), suggesting that positive feedback mechanisms underlie the
steep gradient and stepwise regression of ERK activity (Fig. 5B).
This observation, combined with mathematical modeling of the
signaling circuit, has resolved how mutants without the oscillatory
gene expression still produce irregularly-sized somites (Naoki et al.,
2019), which had puzzled researchers in the field.
A few studies with transgenic zebrafish expressing ERK-KTR

have been reported. They have revealed ERK dynamics during the
wound response of muscle cells (Mayr et al., 2018), angiogenesis
(Okuda et al., 2021) and scale regeneration (De Simone et al., 2021).
In particular, De Simone and colleagues have nicely demonstrated
periodic concentric propagating waves of ERK activation (Box 1)
among regenerating osteoblasts after a scale was plucked, and the
radial waves were shown to be necessary for proper tissue expansion
(Fig. 5C). The propagating waves of ERK activation were blocked
by the treatment with FGFR inhibitor, suggesting the involvement
of FGF in the propagating waves. Live imaging has revealed
dynamic properties; for example, how the wave propagation is
perturbed by laser ablation of the wavefront. The data support the
idea that the ERK propagation is a reaction-diffusion trigger wave,

in which the long-range ERK propagation is mediated by
excitability of the signaling circuit that includes positive and
negative feedback, as observed for action potentials in neurons
(Gelens et al., 2014). These results, when combined with previous
observations on cultured mammalian cells (Matsubayashi et al.,
2004; Aoki et al., 2017; Hino et al., 2020), indicate the surprisingly
persistent and broad importance of ERK waves in tissue
regeneration.

ERK dynamics in development and regeneration of mouse
ERK signaling is important in many aspects of mammalian
development (Lavoie et al., 2020). Many gain- and loss-of-
function studies have shown the involvement of RTK/ERK
signaling in various developmental processes, including
gastrulation, vasculogenesis, limb development, neural patterning
and placentation (Deng et al., 1994; Srinivasan et al., 2009; Min
et al., 1998; Hatano et al., 2003; Newbern et al., 2008). Spatial and
temporal patterns of ERK activation during mouse embryogenesis
have been examined with anti-phospho-ERK antibodies (Corson
et al., 2003). However, the live imaging of ERK activation
dynamics is still in the early stages of investigation.

The pioneering work for visualization of the ERK activity in mice
was the establishment of a transgenic mouse line, EISUKE, which
expresses EKAREV (Kamioka et al., 2012). EISUKE mice allow
the visualization of in vivo ERK dynamics in many developmental
and regeneration processes. For example, the epidermis
occasionally exhibits bursts and radial propagations of ERK
activation, designated as the spatial propagation of radial ERK
activity distribution (SPREAD), and the frequency of SPREAD
correlates with the rate of epidermal cell division (Fig. 6A)
(Hiratsuka et al., 2015). Meanwhile, in wounded skin, ERK
activation has been shown to proceed as a propagating wave in
parallel to the wound edge (Fig. 6A) (Hiratsuka et al., 2015). More
recently, ERK activation waves have been found to control
collective cell migration during the cochlear duct development of
mice (Ishii et al., 2021). As described above, intercellular
propagating waves of ERK activation are widely observed in
cultured cells, flies, zebrafish and mice, and may constitute an
evolutionarily conserved mechanism.

Here, we focus on cell-fate decisions during early mouse
development, which are exemplified by stem cell self-renewal.
The mouse blastocyst is an excellent model to understand ERK
signaling and cell-fate determination (Simon et al., 2018). The
preimplantation mouse blastocyst undergoes two consecutive
differentiation events and produces three types of cell lineage
(Fig. 6B). The first differentiation event is governed by polarity-
mediated Hippo signaling (Nishioka et al., 2009; Hirate et al., 2013;
Wicklow et al., 2014; Frum et al., 2018), which segregates the
trophectoderm (TE) and inner cell mass (ICM). Next, the epiblast
(Epi) and primitive endoderm (PrE) cells appear within an ICM
marked by the mutually exclusive expression patterns of NANOG
and GATA6, respectively (Guo et al., 2010; Plusa et al., 2008).
FGFR/ERK signaling plays the pivotal roles in the differentiation of
Epi and PrE cells; inhibition of FGFR/ERK signaling either by
chemical inhibitors or genetic ablations prevents all ICM cells from
selecting PrE, resulting in the Epi cell lineage of all ICM cells,
whereas treatment with the high dose of FGF causes all ICM cells to
select PrE (Yamanaka et al., 2010; Saiz et al., 2016; Kang et al.,
2017, 2013; Molotkov et al., 2017; Chazaud et al., 2006).

Although the importance of FGFR/ERK signaling for the
segregation of Epi and PrE has been proved by genetic and
pharmacological analyses over the past decade, ERK activity in the

Box 1. Mechanisms of ERK activation propagation in
different organisms
The propagation wave of ERK activation has been widely observed in
cultured cells, Drosophila, zebrafish and mouse. These studies have
revealed both common and unique features of the mechanisms
underlying propagating waves of ERK activation in different biological
systems. A common feature is that intercellular propagation of ERK
activation is achieved through the activation of ligands for the growth
factor receptor. In cultured cells, ERK activates ADAM17 (TACE), a
membrane-bound metalloprotease, leading to solubilization of pro-
EGFR ligands on the plasma membrane and activation of ERK in
adjacent cells (Aoki et al., 2013, 2017). A recent study has reported the
redundant roles of pro-EGFR ligands in the propagation of ERK
activation (Lin et al., 2021 preprint). There are some notable
differences of the propagating waves of ERK activation in different
biological contexts, including the traveling velocity [from 2-3 µm/min in
mammalian cells (Aoki et al., 2017) to 10 µm/hour in zebrafish scale
regeneration (De Simone et al., 2021)], traveling distance [from only one
cell inDrosophila epithelial cells of the pupal notum (Moreno et al., 2019),
to several cells in mammalian cells and mouse, to more than 10 cells in
zebrafish scale regeneration (De Simone et al., 2021)] and duration of
ERK activation [transient (Aoki et al., 2017; De Simone et al., 2021;
Valon et al., 2021) versus sustained (Ogura et al., 2018)]. In addition,
cell functions caused by ERK activity propagation range from
morphogenesis to cell proliferation to regeneration. Future studies are
needed to clarify how these phenotypic differences are generated.
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ICM has recently been described by the immunofluorescence of
phosphorylated active ERK (Azami et al., 2019). Two recent
cooperative works have established an ERK-KTR-expressing
mouse line and observed time-resolved ERK dynamics during
mouse blastocyst differentiation (Pokrass et al., 2020; Simon et al.,
2020). With respect to the ERK activity pattern in TE, the polar TE
juxtaposing the ICM retains high ERK activity induced by Epi-
produced FGF4 (Guo et al., 2010; Nowotschin et al., 2019),
whereas mural TE shows much lower ERK activity in a manner
dependent on the distance from the nearest ICM (Simon et al.,
2020). These distinct ERK signaling profiles between polar and

mural TE emerge at the early blastocyst (Fig. 6C), suggesting that
ERK-KTR is more sensitive than immunofluorescence with
phospho-ERK antibodies, which detects such differences at later
stages (Azami et al., 2019; Christodoulou et al., 2019). Time-lapse
imaging of ERK-KTR followed by immunostaining for cell fate
markers, such as NANOG and GATA6, has enabled investigators to
connect temporal ERK activity patterns to the terminal cell fates.
ICM blastomeres are initially both NANOG- and GATA6-positive,
but the PrE begins to exhibit increased expression of GATA6,
whereas the Epi shows higher NANOG expression, in a mutually
exclusive manner (Guo et al., 2010; Plusa et al., 2008).
Interestingly, ERK activity in ICM blastomeres bifurcates at the
end of mitosis; some ICM cells undergo the transient ERK
inactivation after the cell division whereas others retain high ERK
activity (Pokrass et al., 2020). Moreover, this bifurcation of ERK
activity at mitotic exit governs the commitment of the specification
to Epi or PrE; NANOG and GATA6 expression observed by the
immunofluorescence after time-lapse imaging are negatively and
positively correlated with the ERK activity at the end of mitotic exit,
respectively (Fig. 6C). As ERK activity at the end of time-lapse
imaging shows no correlation with the expression level of cell fate
markers, the temporal pattern of ERK activity – but not the endpoint
activity – plays a pivotal role in the cell fate determination, which
highlights the importance of live-cell imaging using biosensors.

Conclusion
We have provided an overview of genetically encoded fluorescent
biosensors for monitoring ERK activity, and introduced how these
live-imaging technologies provided insights into spatial and
temporal ERK dynamics in developmental contexts. Here, we
briefly discuss a few research directions relevant to these issues.

With respect to the biosensors, further improvement in terms of
brightness, dynamic range and specificity will be reasonably
expected by using novel fluorescent proteins and the design of
biosensors. The typical time constant of ERK dynamics ranging
from several minutes to 20 min requires the acquisition of
fluorescence images with a higher sampling rate than half the
time constant of ERK dynamics (that is, the Nyquist frequency) to
sufficiently capture ERK dynamics. Taking fluorescence images of
long-term biological events such as embryogenesis with a high
sampling rate is quite challenging, even at present, because of the
phototoxicity. Tomitigate this problem, a hopeful research direction
is to design synthetic gene/protein circuits to detect specific
signaling dynamics (Lormeau et al., 2021; Ravindran et al., 2021
preprint). An example is READer (recorder of ERK activity
dynamics), which is composed of ERK-KTR and an incoherent
feedforward circuit so that pulsatile, but not sustained, ERK
activation can be recorded (Ravindran et al., 2021 preprint). The
output of the protein circuit is GFP expression, and thus observation
at a single time point allows estimation of ERK pulses. The design
principle of READer is generalizable to a variety of cell signals
other than ERK.

ERK activation dynamics in space and time accomplish the
induction of distinct cellular and tissue phenotypes. We still do not
fully understand what kind of input information ERK activation
dynamics encodes in vivo, or how ERK activation dynamics are
decoded to lead to different cellular behaviors. To address the first
issue, we need the spatial and temporal information of ligands such
as growth factors. Again, the development of genetically encoded
biosensors might open the door to visualizing ligands themselves,
such as G-protein coupled receptor (GPCR) ligands (Sun et al.,
2018; Patriarchi et al., 2018). Regarding the second issue, it is
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necessary not only to quantitatively understand the gene expression
patterns and function of downstream molecules of ERK, but also to
develop tools for controlling ERK activity in vivo to verify the
causality between ERK activation dynamics and cellular phenotype.
Although the current applications of genetically encoded ERK

biosensors have been limited to popular model systems, a growing
body of evidence implies that ERK plays key roles in a much wider
variety of developmental processes and organisms. For example,
previous studies on planarians indicated that opposing gradients of
ERK and β-catenin signals provide a positional cue throughout the
adult body, which enables the strong regeneration capability from
any part of the body (Gurley et al., 2008; Petersen and Reddien,
2008; Umesono et al., 2013). Moreover, it has been reported that
transient inhibition of ERK after amputation permanently blocks
regeneration, further supporting the importance of dynamics
(Owlarn et al., 2017). We are certain that the characterization of
dynamical aspects of ERK signaling in underrepresented systems
would not only demonstrate novel biological phenomena, but also
shed light on how developmental processes have evolved.
We believe that, although the previous applications of live-

imaging techniques have already been fruitful, they are only the tip
of the iceberg. In order to draw the entire picture of the RAS-ERK
pathway, we need to explore the full potential of the rapidly
evolving technologies and apply them to a wider variety of systems.
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