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image data
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ABSTRACT
Visualizing, tracking and reconstructing cell lineages in developing
embryos has been an ongoing effort for well over a century. Recent
advances in light microscopy, labelling strategies and computational
methods to analyse complex image datasets have enabled detailed
investigations into the fates of cells. Combined with powerful new
advances in genomics and single-cell transcriptomics, the field of
developmental biology is able to describe the formation of the embryo
like never before. In this Review, we discuss some of the different
strategies and applications to lineage tracing in live-imaging data and
outline software methodologies that can be applied to various cell-
tracking challenges.
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Introduction
Developmental biology, at its core, is concerned with one,
fundamental question: how does a single cell give rise to the
many different cell types, tissues and organs that comprise an adult
organism? Although the simplest way to resolve this question would
be to just follow that one cell along its journey to becoming an
organism, this is quickly complicated by a host of technical issues
that have stymied developmental biologists to this day. Direct
observation of the embryo requires it to be at least somewhat
transparent, able to survive artificial culture conditions and able
to tolerate exposure to light. Methods such as interspecies
transplantation, dye labelling (see Glossary, Box 1), electroporation
(to introduce either dyes or genetic labels) or mosaic genetic
labelling (see Glossary, Box 1) allow one to label a single cell or a
small population of cells and visualize their location as the embryo
develops (Vogt, 1929; Keller, 1976; Tam and Behringer, 1997;
Lawson and Pedersen, 2007). However, these techniques are
difficult to do on a large scale and generally only label small regions
or populations of interest. More recent methods, such as DNA
barcoding (see Glossary, Box 1), which labels cells with genetic
tracers but can be technically challenging to obtain accurate cell
lineages from (Kebschull and Zador, 2018; Masuyama et al., 2019;
Salvador-Martínez et al., 2019), and single-cell RNA sequencing
(see Glossary, Box 1) (Wagner et al., 2018; Farrell et al., 2018; Cao
et al., 2019; Pijuan-Sala et al., 2019), from which lineage
trajectories (see Glossary, Box 1) can be inferred with varying

degrees of accuracy (Kester and van Oudenaarden, 2018; Baron and
van Oudenaarden, 2019), provide information on large numbers
of cells and their purported progeny. Lost with these methods,
however, are the dynamics of cellular behaviour – how cells
migrate, where and when they divide, how they interact with their
neighbours, and largely everything in between the time when
they were born to their final fate. To observe this, there is no
substitute to being able to directly visualize and follow cells live
in a developing embryo. Biologists have been attempting to do just
this in one form or another for well over a century, yet it has only
been in the last few years, with the advance of new light-microscopy
methods, that we have been able to delve deeper and for longer
periods of time into the developing embryo than ever before.

Beyond the introduction and advancement of new microscopes
capable of imaging large and sensitive specimens (of which there
has been an explosion in recent years; Lemon and McDole, 2020),
biologists now have a wealth of new reporters, labels, sensors
and probes with which to observe cells during development.
Fluorophores now run the gamut of the visual spectrum, from the
classical GFP to near-infrared proteins that excite in regions
previously reserved for two-photon microscopy (Filonov et al.,
2011; Shcherbakova et al., 2016; Matlashov et al., 2020).
Optogenetics (see Glossary, Box 1) and photo-convertible
proteins (see Glossary, Box 1) allow one to manipulate a system
with light alone (Nowotschin and Hadjantonakis, 2009; Krueger
et al., 2019), and live-cell sensors can report on everything from
the dynamics of signalling pathways to rapid changes in voltage
or calcium levels. ‘Visualizing development live’ is no longer
restricted to merely watching blobs of nuclei as they wander about
the embryo; we now have the ability to assess the complex
behaviours of large numbers of cells all at once. We can visualize
the temporal and spatial expression of genes, the complex behaviour
of cells and tissues as they migrate, shape and fold. We can see cells
as they transition from a naive, pluripotent state to a defined,
functional cell, such as a twitching cardiomyocyte or an excitatory
neuron. However, with this ability to visualize the dynamics of
every cell in the embryo comes the even larger challenge of
quantifying the dynamics of every cell in the embryo. With so much
information now available from even a single time-lapse dataset,
the human annotator cannot possibly cope alone. Fortunately, the
generation of computational tools and methods needed to handle
the deluge of ‘big data’ in imaging has advanced as rapidly and
dizzyingly as the light microscopes that supply them.

The word ‘revolution’ is often thrown about when it comes to
new techniques and advances in technology, but for the field of
developmental biology these advances truly represent the start of a
new renaissance era; we now have the ability towitness and examine
embryonic development like never before. Combined with recent
advances in genomics, such as single-cell RNA sequencing, the
ability to couple the high spatial and temporal resolution of live
imaging to precise and comprehensive information about a cell’s
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transcriptional fate will enable researchers to examine in exquisite
detail how a single cell becomes an embryo.

Imaging methods for lineage tracing
Some of the very first attempts to track cells in an embryo were
carried out through observation with a simple compound
microscope (Conklin, 1905) (Fig. 1). For simpler and very
transparent organisms, such as Caenorhabditis elegans, this
proved quite effective, if laborious (Sulston et al., 1983). With the
explosion in new light microscopy methods such as light-sheet
imaging (see Glossary, Box 1) (Huisken, 2004; Keller and Stelzer,
2008), not only have more traditional model organisms, such as
Drosophila, mouse and zebrafish, been re-examined, but so too have
more ‘exotic’ specimens, such as ascidians, Parahyle and pygmy
squids (Wolff et al., 2017 preprint; Burnett et al., 2018; Guignard
et al., 2020). For many applications, however, the use of these more
‘advanced’ and often experimental instruments is not required.More
traditional methods such as point scanning (see Glossary, Box 1) or
spinning disc confocal microscopy enable the tracking of 2D
systems or ‘simpler’ 3D models, such as small organoids, thin
tissues, cell monolayers or stem-cell clusters. These imaging
methods are, however, unsuited to samples that are very large,
very sensitive to light or, more commonly, a combination of both. In
addition, imaging big samples or whole embryos requires a large
field-of-view, as well as the ability to maintain the resolution needed
to visualize single-cell behaviours, and do so rapidly and gently. It is

for these reasons that the development of light-sheet microscopy has
been such a boon to the field of developmental biology. Most
embryos, whether they grow outside of the maternal environment or
within, are extremely photosensitive and do not appreciate the
extraneous illumination generated by confocal or wide-field
microscopes (Icha et al., 2017). In confocal microscopy, although
fluorescence emission is collected from the plane of focus, large
parts of the specimen above and below are exposed to excitation
light as it is swept across the specimen, irradiating regions that
provide no useful information in return and leading to the
accumulation of cellular damage in response to the absorption of
additional photons. With light-sheet microscopy, optical sectioning
is provided inherently by a very thin sheet of light, which provides
high spatial resolution and only excites regions of the embryo that lie
within the plane of focus. As such, no light is ‘wasted’ on regions
where fluorescence emission is not actively being acquired, and the
embryo is spared unnecessary exposure, reducing phototoxicity.
Additionally, this thin sheet of light can be scanned very rapidly, and
when combined with an opposing light sheet can cover even very
large samples gently and with enough temporal resolution to follow
rapid cellular behaviours. Many reviews have been written on the
benefits and applications of light-sheet microscopy, which we will
not go into detail for the purposes of this Review, but refer to the
following for further reading (for example, see Weber and Huisken,
2011; Lim et al., 2014; Manderfield et al., 2015; Reynaud et al.,
2015; Girkin and Carvalho, 2018; Wan et al., 2019a).

Box 1. Glossary
Camera lucida.Used in microscopy to reflect light from the sample through
a mirror onto a nearby sheet of paper, to aid drawing of a sample viewed
through a microscope. The user sees both the sample and the paper super-
imposed through the eyepiece, and using a pencil can draw or trace the
sample directly while looking through the microscope.
Deep learning. A subfield of machine learning based on artificial neural
networks (ANNs). The ‘deep’ in deep learning refers to the use of large
ANNs where neurons are stacked into many layers. These large networks
are capable of learning complex correlations and have proven successful
across many application domains. Their success relies on the availability of
large amounts of training data.
DNA barcoding. A lineage-tracing system that labels single cells in a
unique and heritable manner using DNA barcodes. Barcodes are usually
introduced by viral transduction or genome editing, persist or accumulate
changes over time, and can be read out by single-cell sequencing. The
lineage relationship of the sequenced cells can then be reconstructed
based on the barcode similarity.
Dye labelling. Labelling of a single cell or group of cells, region of tissue, or
whole tissue by direct injection of a dye into a cell or tissue, or through
electroporation or incubation. Dyes can be generic labels, such as
Rhodamine B, or specific to cellular components, such as DNA or plasma
membranes. Varying wildly in their longevity, photobleaching tolerance and
toxicity, some dyes may persist and be visualized for days, whereas others
last for only minutes.
Graphical user interface (GUI). A user interface in which the software is
accessed through graphical icons (e.g. windows, menus, buttons).
Light-sheet microscopy. A method of imaging that uses a thin sheet of
light to illuminate a sample. Variousmicroscope configurations are available
from multi-objective, inverted, upright, tilted or single-objective versions.
Also known as single-plane illumination microscopy (SPIM).
Lineage trajectories. Trajectories connecting the cell states inferred from
scRNA-seq data. It is thought to reflect the pattern of a dynamic change
experienced by cells during lineage progression but does not necessarily
reflect lineages between mother and daughter cells.
Machine learning. A field of computer science which studies algorithms
that improve though the use of data. Machine-learning models are trained

based on examples, also known as ‘training data’, to make predictions
without being explicitly programmed.
Mosaic genetic labelling. Permanent and heritable labels (usually
different fluorescent proteins) introduced to a developing system by
inducible gene recombination. Mosaic labelling provides better contrast of
cells compared with dense labelling, as neighbouring cells are labelled in
different colours.
Neural network. Machine learning models that are loosely based on the
neurons in a biological brain; also known as artificial neural networks
(ANNs). They learn from examples to perform various tasks without the
need for task-specific rules.
Optogenetics. The use of light to control proteins that have been
genetically modified to respond to specific wavelengths of light in order to
produce a desired biological response, such as modifying the influx of
calcium (channelrhodopsins), reporting on the level of calcium in a cell
(GCaMPS) or modulating CRISPR-based genome editing (Bubeck et al.,
2018).
Photo-convertible proteins. Fluorescent proteins that change their
emission spectra when exposed to a specific wavelength of light. Kikume
Green-Red (KikGR; Tsutsui et al., 2005), for example, emits green
fluorescence until exposed to 405 nm light, whereupon it undergoes a
conformational change and emits red light.
Point scanning microscopy. A method commonly used in confocal
microscopy, whereby a wide-field microscope scans laser light across the
sample over multiple focal planes and out-of-focus light is rejected by the
use of a pinhole at the image plane. The resulting in-focus ‘point’ is then
scanned across the entire specimen.
Single-cell RNA sequencing (scRNA-seq). A genomic approach for the
detection and quantitative analysis of messenger RNA molecules in
isolated cells from a biological sample. It provides the expression profiles
of individual cells and is considered the gold standard for defining cell
transcriptional states.
Spatial transcriptomics. Methods for measuring the transcriptional profile
of cells in their native location. Depending on the spatial resolution and
the number of genes to assess, measurement can be based on in situ
sequencing, or in situ hybridization techniques.
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With the ability to image larger and larger samples for longer
periods of time come significant computational and data challenges.
Cinematic movies of embryonic development are always
captivating, but unfortunately not particularly quantitative. To
comprehensively track cells across embryo development, a number
of strategies can be used, from clever fluorescent labelling to brute-
force manual annotation to new and emerging machine-learning
methods that strive to automatically segment and follow cells,
reporting on their behaviours, shape changes and lineages with little
human intervention.

Labelling strategies
Over the past 30 years, labelling strategies for lineage tracing have
evolved together with imaging technologies in order to follow cells
more comprehensively and to mark tissues with more flexibility.
Fluorescent dyes and proteins have been engineered to be brighter,
more photostable and enable deeper penetration into thick tissues (for
comprehensive reviews and practical guides, see Yan and Bruchez,
2015; Cranfill et al., 2016; Jonkman et al., 2020). Recent advances in
genomics, genome editing and optical techniques have made it even
easier to tag cells in non-model organisms (Huang et al., 2016;
Pomerantz et al., 2021). However, lineages can only be faithfully
reconstructed from ubiquitously labelled samples if (1) cells can be
unambiguously distinguished from their labelled neighbours; and (2)
imaging is fast enough that the spatial context of a cell’s surroundings
is not dramatically different between time points (Meijering et al.,

2009). These criteria can be challenging to guarantee in deep/light-
scattering tissues where cells are densely packed or in systems
sensitive to imaging with short time intervals. Mosaic genetic
labelling (e.g. Brainbow;Weissman and Pan, 2015) can alleviate this
problem by inducing random recombination of a multi-colour
expression cassette, so that cells from different clonal progenies are
permanently labelled with different colours. Lineage relationships
can thus be recorded or inferred from the sparser labelling with less
frequent imaging. Alternatively, cells or tissues at the intended
location and stage can be selectively labelled using photo-activable
(pa-) or photo-convertible fluorescent proteins (pcFPs) to visualise
the targeted cell’s progeny transiently before the induced FPs are
diluted out during subsequent cell divisions. This strategy can also be
coupled with targeted optogenetic manipulation to study mutant cells
(He et al., 2020). Notably, it was recently demonstrated that many
pcFPs can be engineered to be ‘primed-convertible’, i.e. converted
under dual illumination of blue and red to near infrared (NIR) lasers,
which allows for the confined targeting of small volumes by beam
intersection (Dempsey et al., 2015; Klementieva et al., 2016; Mohr
et al., 2017; 2016; Turkowyd et al., 2017; Welling et al., 2019). For a
comprehensive review on the merits, limitations and scope of
application of each cell labelling technique for cell tracking, we refer
the reader to Buckingham and Meilhac (2011).

The capability to monitor and manipulate molecular processes
during live imaging is a powerful tool to dissect the molecular and
cellular mechanisms of development. In recent years, fluorescent
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Fig. 1. Lineage tracing through the ages. (A,B) Conklin and colleagues first mapped out the development of ascidian embryos by hand-drawing different
stages of their development with the aid of a microscope and camera lucida (see Glossary, Box 1) in 1905 (adapted from Conklin, 1905) (A), whereas the
first, complete lineage map of C. elegans was completed using a compound photomicroscope equipped with Nomarksi/differential interference contrast in
1983 (adapted from Sulston et al., 1983) (B). (C) Post-implantation mouse embryonic fate maps were generated through years of observation, dye-labelling,
grafting and electroporation experiments (adapted from Tam and Behringer, 1997). ExE, extra-embryonic. (D) Brainbow allows the clonal mapping of the
zebrafish retina (adapted from Pan et al., 2013), where each individual colour and patch represents a different clonal lineage. (E-G) Recent advances in light-
sheet microscopy enabled lineage-tracing in whole embryos from ascidians (E; from MorphoNet ascidian database, www.morphonet.org/TO1r1t8T; colours
are randomly assigned to separate cell types) to neuroblast lineages in Drosophila (F; adapted from Amat, 2014; each coloured track represents the
complete spatial trajectory and lineage history of a single neuroblast, colour-coded for increasing time) to post-implantation mouse embryos [G; adapted from
McDole et al., 2018; colour-coded tracks follow single cells across the entire embryo, representing the velocity of each track that that point in space and time
from blue (slow) to red (fast)].
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labelling of DNA and RNA molecules in live cells has been
deployed to study chromatin organization or transcriptional kinetics
in multi-cellular developing systems (Berrocal et al., 2020; Bothma
et al., 2014; Garcia et al., 2013; Liu et al., 2014). These methods
often require subcellular or single-molecule resolution, which
greatly benefit from the development of super-resolution imaging
techniques (Chen et al., 2014; Li et al., 2015). Moreover, new
biosensors are being actively developed to measure cell cycle
(Zerjatke et al., 2017), apoptosis (Schott et al., 2017) or gene
dynamics in general (Newman et al., 2011; Okumoto et al., 2012).
Optogenetic tools of photo-sensitizer (e.g. KillerRed or SuperNova;
Bulina et al., 2006; Takemoto et al., 2013) or photo-cleavable
proteins (e.g. PhoCl; Zhang et al., 2017) can be used to precisely
target cells for ablation or protein (in)activation, which offers deeper
insight into the mechanisms of development.
Recent advances in high-throughput single-cell sequencing

technologies have enabled the construction of lineage relationship
and transcriptional trajectories of developing embryos from
measurements of millions of individual cells with lineage
barcodes (Wagner and Klein, 2020). However, because of the
dramatic difference in the experimental modalities, lineages
reconstructed by live imaging and by single-cell omics methods
are usually placed on opposing sides in the minds of biologists.
Contrary to popular belief, the two methods are actually highly
complementary and can potentially form a powerful synergy to
advance developmental systems biology (Liu and Keller, 2016).
Spatial transcriptomics (see Glossary, Box 1) methods, e.g.
sequential fluorescence in situ hybridsation (seqFISH) (Lubeck
et al., 2014; Shah et al., 2016; Eng et al., 2019) and multiplexed
error-robust FISH (MERFISH) (Chen et al., 2015; Moffitt et al.,
2016; Xia et al., 2019), are especially attractive as they can achieve
cellular-level gene profiling while preserving the spatial context of
tissues. Conversely, a synthetic barcode recording system that
denotes the lineage history of cells can also be read out in situ
using MEMOIR (memory by engineered mutagenesis with optical
in situ readout) (Frieda et al., 2017; Chow et al., 2021)
or Zombie (Zombie is Optical Measurement of Barcodes by In
situ Expression) (Askary et al., 2020). Although such methods go
beyond the realm of live imaging, many existing microscopy
and computational tools can be applied to analyse such data and
to cross-validate lineage patterns and the underlying genetic
and cellular mechanisms. The molecular trajectories predicted by
in situ genomics and the cellular dynamics recorded by live imaging
will greatly facilitate each other to discover new biology in the
future.

Applications
Cellular dynamics and morphogenesis
Live imaging enables us to visualize dynamic developmental
processes that could previously only be inferred from static
snapshots. This provides a faithful record of highly dynamic cell
behaviours, and being able to monitor a large number of cells
simultaneously makes it possible to extract information that is both
biologically and statistically meaningful. How do embryonic cells
give rise to an animal with the correct shape and composition?
Where do different tissues come from and how do they end up at
the right location? ‘Seeing is believing’: visualizing developmental
processes lays the foundation for formulating and testing
hypotheses about morphogenesis and cellular dynamics.
The past decade has witnessed an explosion in not only the

number of model systems that can be imaged live using fluorescence
microscopy, but also the spatiotemporal resolution and the duration

that development can be visualized with. The fast and gentle
imaging capacity of light-sheet microscopy has enabled in toto
reconstruction of embryogenesis at the single-cell level in many
organisms, including C. elegans, Drosophila, zebrafish and
mouse (Wu et al., 2013; Udan et al., 2014; Amat, 2014; Strnad
et al., 2016; McDole et al., 2018; Shah et al., 2019; Welling et al.,
2019). With the development of genomic and genetic techniques,
fluorescent labelling of cell nuclei can now be achieved in embryos
that were genetically less amenable in the past, and with great
surgical precision (Huss et al., 2015; Benazeraf et al., 2017). This
revives the classic work of embryologists and enables large
populations of cells to be tracked simultaneously during
prolonged embryonic development (Fig. 2). In vivo time-lapse
imaging accompanied by cell tracking has provided a first glance of
the overall cellular dynamics during the formation of many tissues,
including the blood vessel (Arima et al., 2011), the zebrafish
eye (Gordon et al., 2018; Azizi et al., 2020), the arthropod limb
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Fig. 2. Example applications of live imaging in fate mapping and
lineage tracing. (A) Cellular behaviours: analysis of cell movement during
zebrafish retinogenesis suggests that crowding from cell division at the
apical surface drives basalward motion of cells as in a diffusion process
(adapted from Azizi et al., 2020; individual colours represent individual cell
tracks). (B) Tissue morphogenesis: accurate cell tracking and lineage
reconstruction reveal limb primordium development in Parhyale (adapted
from Wolff et al., 2018), whereby each cell that makes up an individual limb
(coloured separately) can be tracked from the very earliest stages of embryo
development. (C) Fate specification: lineage tracing of zebrafish gastrulation
reveals a common neuromesodermal lineage across the anterior-posterior
body axis (adapted from Attardi et al., 2018). (D) Combining lineage and
cellular dynamics from multiple embryos, a developmental atlas can be
reconstructed to capture a ‘consensus’ of development, or an average
embryo. In this instance, each coloured spot represents the probability that a
cell in that location has a specific fate (i.e. purple for cardiac fate, green for
neural tube, orange and cyan for right and left lateral plate mesoderm, yellow
and pink for right and left somatic mesoderm, and red for notochord). As the
saturation level of the colour increases from grey so does the probability that
a cell in that location in the embryo will assume the fate that colour
represents (adapted from McDole et al., 2018).
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(Wolff et al., 2017 preprint), the heart (Ivanovitch et al., 2017; Yue
et al., 2020) and many more. Live imaging of organoids (Held et al.,
2018; Martyn et al., 2019; Benito-Kwiecinski et al., 2021) can
provide unprecedented details of human cell behaviours that could
be of clinical relevance.
Cell behaviours, such as proliferation, migration and shape

change can be quantified from live-imaging data. At the single-cell
level, this reveals crucial molecular and genetic mechanisms
underlying the proliferation potential, motility and polarity of
cells. Take live imaging of cancer cell progression as an example:
computational tools (Kwak et al., 2010; Tsygankov et al., 2014;
Barry et al., 2015; Tian et al., 2020) have been developed to track
cells in a highly controllable 2D or 3D cultured environment to
quantify their proliferation, morphology and migration dynamics.
Clonal tracking in an induced breast tumour from epithelial acini
revealed that tumours originated from clusters of cells, rather than
isolated transformed cells (Alladin et al., 2020). Chemical or genetic
manipulation of intercellular signalling and cell adhesion pathways
have revealed molecular mechanisms underlying cancer cell
migration (Biselli et al., 2017; Stallaert et al., 2018; Ilina et al.,
2020), which are essential for understanding and controlling tumour
metastasis. With the development of super-resolution and single-
molecule imaging technologies, combining molecular dynamics
and cell behaviours will provide deeper insight into the physiology
of cancer cells in space and time.
At the tissue level, cell division, migration, rearrangement and

shape change reflect how a developing system acquires its physical
shape and form. Epithelial development is one of the best-studied
examples of tissue morphogenesis, as many tissues originate from a
2D primordium. The flat sheet of progenitor cells is usually
accessible to imaging, and its morphogenic features can be
measured and modelled computationally (Khan et al., 2014;
Reuille et al., 2015; Heller et al., 2016; Stegmaier et al., 2016;
Etournay et al., 2016). By analysing orientated cell divisions,
collective cell migration and cell shape change in the multicellular
environment, biophysical models can be established to simulate
epithelial spreading (Campinho et al., 2013; Lang et al., 2018),
growth control (Puliafito et al., 2012), axis elongation (Wang et al.,
2017) and folding (He et al., 2014; Monier et al., 2015). Notably,
such models are often supported by measurement of the tissue’s
physical properties, such as stiffness and adhesion, as well as
perturbation by genetic manipulation and/or laser ablation during
development. The capacity for measuring and applying forces
during live imaging is a powerful tool and a promising future
direction for the study of tissue morphogenesis.
One important unsolved question in developmental biology is the

reproducibility and variability of embryonic development. Do cells
play dice? How different is embryogenesis from one individual to
another? What constrains development so that individual animals
are built with similar scale, shape and components? Key factors
involved in governing this developmental robustness include
intracellular gene regulatory networks and intercellular signalling
(Naoki et al., 2019; Rohde et al., 2021 preprint). However, solving
this problem relies crucially on our ability to image and analyse
developing systems at the cellular level with high accuracy and in
toto coverage, so that statistics from many individual embryos can
be compared and assessed (Keller, 2013; Amat, 2014; Faure et al.,
2016; Wan et al., 2019b; Hailstone et al., 2020). For instance,
McDole et al. developed a multi-embryo registration framework
termed TARDIS (time and relative dimension in space), whereby
cell behaviours in space and time can be ‘averaged’ across different
embryos to build a statistical fate map of post-implantation mouse

development (McDole et al., 2018). Guignard et al. quantitatively
measured cell lineage, cell geometry and cell fate of the highly
invariant ascidian embryogenesis and found geometric control of
cell-cell contacts to be the key factor ensuring reproducible fate
specification (Guignard et al., 2020).

Cell lineage and cell differentiation
Live imaging is more than tracking cell movement. Cell lineages
reconstructed from live imaging denote the complete developmental
history from a progenitor cell, through rounds of division, relocation
and differentiation, to specialized cell types that make up different
tissues and organs. Hundreds of thousands of cells’ lineages can be
densely reconstructed from a single imaging session, which has
significantly boosted the throughput and compensated for the
spatial information missing from traditional clonal tracing methods.
Empowered by live imaging, cell lineage reconstruction can now
answer not only ‘which becomes what’, but also ‘what happens
when, where and how’.

When are lineage identities specified, and how do they segregate
spatially to different tissues during embryonic development?
Whole-embryo imaging combined with cell fate identification
offer tremendous information in global processes such as germ layer
segregation and organogenesis (McDole et al., 2018; Shah et al.,
2019). The reconstructed lineages, when carefully curated to
guarantee accuracy, can be further utilized to answer questions at
the single-cell level, for example, the (non-)existence of
neuromesodermal progenitor cells in the zebrafish tailbud (Attardi
et al., 2018) and the functional relationship between sibling cells in
zebrafish spinal neurons (Wan et al., 2019b). From the observed
lineage segregation events, we can infer the underlying molecular
mechanisms that operate with the corresponding spatiotemporal
patterns. Thus, it is essential to monitor or manipulate gene
expression as we trace lineages. Delaune et al. found that mitotic
events tend to happen at a certain phase of segmental clock gene
oscillation (Delaune et al., 2012). Goolam et al. identified
transcription factors that regulate differential fate bias in 4-cell
mouse embryos and confirmed their roles through in vivo lineage
tracing (Goolam et al., 2016). Live imaging can capture the
instantaneous dynamics of gene expression and opens up
unprecedented opportunities to uncover novel molecular and
cellular mechanisms in cell cycle and cell fate determination
(Plachta et al., 2011; White et al., 2016).

Cell lineages are of particular interest when it comes to tissue
homeostasis and regeneration. Live imaging can reveal the location
of the stem cells and characterize their behaviours in regenerating
tissues. For example, in Parhyale limb regeneration, no specific
stem cell population has been identified; instead, most epidermal
cells are proliferative (Alwes et al., 2016). Live imaging of the
regeneration of the Drosophila midgut (Martin et al., 2018) and
axolotl spinal cord (Rost et al., 2016) revealed division orientation
and division rate as essential factors in stem cell behaviour.
Meanwhile, in self-renewing tissues, stem cell proliferation and
differentiation need to be delicately balanced to maintain tissue
homeostasis or continuous growth. When cultured ex vivo, neural
stem cells follow a stereotypic lineage progression pattern from
asymmetric to proliferative to terminal divisions, a programme that
is largely cell-intrinsic (Costa et al., 2011). Conversely, nephron
progenitor commitment was found to be a process mainly
influenced by stochastic cell migration to different environments
(Lawlor et al., 2019).Work by Rompolas et al. beautifully illustrated
this balance by imaging epidermal tissue renewal in live mice,
where they showed that stem cell commitment is delicately
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coordinated both temporally and spatially to achieve tissue
homeostasis (Rompolas et al., 2016). Live imaging of stem cells
can be used to reconstruct a large number of lineages, allowing
niches to be identified and compared with each other, which would
enable lineage patterns to be identified and the underlying
mechanisms to be discovered.

Current day challenges to analysing image datasets
These new advances in light microscopy that enable us to track cells
and lineages as never before come, however, with their own new set
of challenges. Not the least of which is the massive amount of data
that is generated from acquiring time-lapse movies of embryonic
development over long periods of time. Beyond the requirement of
specialized tools merely to be able to visualize the data, producing
quantitative results from these large and complex datasets is a
challenge many biology labs struggle to overcome. Tracking cells in
even a small mammalian embryo can produce millions of data
points and require terabytes of storage and high-powered
workstations or clusters to process. Custom software and
algorithms laboriously generated for one model organism may not
be applicable to another; cell size and shapes may be very different
and time intervals and reporters vary, making the creation of one
unified method extremely challenging. As a result, problems tend to
be solved on an ‘as-needed’ basis, resulting in a patch-work of
algorithms and methods that may work very well for the intended
experiment, but are not broadly applicable. In addition to the
computational expertise required to create these methods, there
often needs be a certain degree of proficiency or familiarity to even
use the method, provided it can be accessed and has been
maintained to be compatible with current software environments,
prohibiting its wide dissemination and use. This is not necessarily
the fault of the creator, as making a method easy to use and pre-
packaged or assembled in a friendly graphical user interface
(GUI; see Glossary, Box 1) can often be as time consuming and
require as much skill as developing the method itself. There is no
guarantee that even when presented with big friendly buttons that
the average user would find it compatible with or flexible to their
needs.
In addition to needing the correct computational tools to analyse

large datasets, those without access to these new, advanced light
microscopes need access to the data itself. The hosting and
dissemination of such large datasets remains a challenge, however.
Even with the availability of cloud storage solutions, simply
providing access to raw data requires continuous expense and
expertise to set up and maintain. The menagerie of light
microscopes available generate a wide variety of file-formats,
metadata and annotations that can be difficult for the average user to
parse, and ever-evolving software environments can lead to
compatibility issues. Individual labs often do not have the
resources to provide continuous access to their data, or the
requisite software support. Community-wide initiatives have
tackled such challenges in the past with databases and consortia
for everything from genomes (NCBI Assembly, GenBank) to
crystallography [Protein Data Bank (PDB)] to whole organisms
[FlyBase, Zebrafish Information Network (ZFIN) and Mouse
Genome Informatics (MGI)]. To ensure open access and the
reproducibility of methods, similar initiatives are needed for the
light microscopy field and the ever-increasing amount of imaging
data. Fortunately, there are several attempts to do just this, such as
the Image Data Resource (IDR; https://idr.openmicroscopy.org/) or
the Euro Bioimaging consortium (https://www.eurobioimaging.eu/).
There is also a large community-oriented effort to develop user-

friendly tools to handle this new and burgeoning problem of big
data, and with any luck new advances in machine learning
(see Glossary, Box 1) will help these methods become more
broadly applicable to everything from C. elegans to ascidians,
Drosophila and mouse. We will discuss some of the various
methods, applications and tools available to biologists to tackle their
own tracking and lineage-tracing problems, however they get
their data.

Software tools for lineage tracing
As we have discussed above, there is no one-size-fits-all cell
analysis software solution available and choosing the right
combination of software packages is an important step to analyse
data efficiently. In Table 1, we provide an overview of some
available cell-tracking packages that can be used for fate mapping
and lineage tracing. Here, we show only software packages that
model cell divisions and reconstruct a full cell-lineage tree. A
complementary tracking software overview including non-dividing
cell tracking and particle tracking can be found in a recent
publication by Emami et al. (2020).

A key factor to consider when choosing a tracking software is the
amount of data that needs to be analysed and the number of tracks
necessary for the analysis. When the dataset or number of tracks is
small (e.g. few/short movies with tens of cells), reconstructing the
cell lineages manually is the most efficient and accurate analysis
strategy. Manual labelling software is simple and quick to set up, as
it only requires an image viewer and an annotation tool (e.g. the Fiji
plugin MaMuT or TrackMate or CeLaVi) (Schindelin et al., 2012;
Tinevez, 2017; Salvador-Martínez et al., 2021) and immediately
yields highly accurate tracking results. MaMuT is especially
designed for large 3D movies and can even accelerate the
annotation by semi-automatically extending tracks (linking bright
cells with similar radii) (Wolff et al., 2017 preprint). However,
manual tracking is too time consuming to scale to datasets with
hundreds or thousands of cells. In this case, automatic tracking
software can be used to speed up the analysis. Every automatic
tracking software has an internal model for lineage reconstruction
that is used to detect and track cells. These models make implicit
assumptions about the expected cell shapes and movement
patterns. The key to selecting an appropriate software tool is to
find the model for which assumptions best match the data at hand. In
our overview, we highlight the three most important model aspects
for lineage tracing: (1) cell detection in every video frame; (2)
linking the detections between frames; and (3) detecting cell
divisions.

Cell detection models
The cell detection models of the discussed software packages can be
broadly divided into point-detection and segmentation-based
models. Point-detection models identify each cell by their centre
and do not explicitly compute the cell outline or segmentation, e.g.
MaMuT or its successor, Mastodon. Elephant and TGMM (Amat,
2014) additionally model cells as ellipsoids, but are still considered
point-detection models. Alternatively, cells can be identified by
segmentation, whereby the image is partitioned into multiple
segments each containing one cell. The segmentation can be used to
inform tracking and for downstream analyses that involve the whole
cell area. Most recently, machine-learning algorithms are the state of
the art in segmentation and ‘performed best in most segmentation
scenarios’ and ‘exceptionally well’ on contrast enhancement
microscopy images (Ulman, 2017). This shows the versatility of
machine-learning approaches. Whereas rule-based (non-machine
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learning) algorithms are aimed at a particular image modality (e.g.
fluorescence microscopy), machine-learning models learn from the
data and thus the same model can be adjusted (trained) to fit
different imaging conditions. However, this versatility comes at a
cost and many challenges have to be overcome during the training
process to obtain highly accurate models. Models, especially those
with a large number of parameters, such as deep neuronal networks,
require a large amount of training data (images paired with human
annotations). Neural networks (see Glossary, Box 1) may start with
random model parameters and are iteratively trained with examples
from the training set. In each iteration, the prediction error of the
model is calculated and the model parameters are adjusted to move
the network output closer to the human annotation. In order to train
neural networks that have many millions of parameters, large
annotated training datasets are required. Once a training set is
obtained, the training procedure itself needs to be carefully tuned
(e.g. adjusting the learning rate) to obtain models that generalize
well to new images. These non-trivial procedures make training
neural networks in particular challenging for non-experts. For some
types of data, training can be skipped, such as when pretrained
models are available, eliminating the need to generate training data
[e.g. btrack (https://bioimage.io); Ulicna et al. (2020 preprint) or for
convex cells, see Schmidt et al. (2018 preprint)]. Even if one’s data
is not an exact match to a pretrained model, using one as a starting
point for training can reduce the amount of one’s own data required
to get good performance. To make use of the growing number of
available segmentation methods, ilastik (Berg et al., 2019),
MorphoGraphX (Reuille et al., 2015), btrack (Ulicna et al., 2020
preprint) and Lineage Mapper (https://pages.nist.gov/Lineage-
Mapper/) can ingest segmentations that were precomputed from
these external models for lineage tracing.

Automatic trackers
The automatic trackers discussed here mostly fall under the category
of tracking-by-assignment, whereby tracking is performed by
linking detections between frames. For most ‘real world’
applications, considering all combinatorically possible links
between detections is computationally infeasible. Trackers reduce
the number of available links to a local neighbourhood and associate
a ‘score/likelihood’ with each possible link, then select the links
(and sometimes divisions) based on score. All trackers in Table 1
incorporate the spatial distance of the detections into the score. For
videos with significant movement, Elephant incorporates deep
learning (see Glossary, Box 1) of an optical flow to also contribute
to the score. At high frame rates or for slow-moving cells, it can be
beneficial to base the linking decision on the overlap of the
segmentation (Lineage Tracker; Downey et al., 2011). For both slow
and fast objects, cell features such as mean intensity, size or shape
statistics are highly correlated between frames (Downey et al.,
2011). This correlation informs the score function of Lineage
Tracker and Lineage Mapper. Once each possible link has been
scored, the tracking solution can be found as a set of high scoring
links. Most of the trackers discussed here find the tracking solution
sequentially, processing one frame at a time (e.g. by framewise
Hungarian matching). Sequential trackers (Lineage Mapper,
TGMM, MorphoGraphX, Lineage Tracker) often scale well to
long videos as the computational costs increase linearly.
Alternatively, global optimization that takes the full video into
account can help to infer the cell positions from context even when
single frames are uninformative. Such a global optimal linking
model can be found in ilastik (Schiegg, 2013) and btrack (Ulicna
et al., 2020 preprint).

Detection of cell division events
Detecting cell division events is another crucial model aspect. In
many cases, divisions can be identified with the help of the shape
and position of the detected cells. Lineage Mapper, for example,
uses a fixed formula based on roundness, cell size and daughter cell
size to determine whether a division event has occurred. Beyond the
correlation of cell shape and size (Downey et al., 2011), machine
learning-based classifiers can be trained to identify dividing cells.
TGMM uses a VGG classifier that is pretrained on cells in which a
characteristic metaphase plate is visible during division (Amat,
2014). If the cell division characteristic does not match the training
data, machine-learning models offer the ability to be retrained. Here,
ilastik offers an interactive training interface to train a division
classifier on object features (e.g. cell convexity, eccentricity). If pre-
built classifiers or ‘off-the-shelf’ tools are insufficient for the type of
data that needs to be analysed (too large, too variable or too
complex), new models can be built and trained for specific
purposes, such as finding cell division events in large mouse
development time-lapses (McDole et al., 2018).

Adjusting lineage-tracing tools to individual needs
Obtaining a high-accuracy tracking result requires careful tuning
and proofreading. All discussed tracking packages allow the user to
adjust the behaviour of the internal detection/linking and division
models. Some parameters, such as intensity thresholds, can be
adjusted directly. However, finding the optimal values often
requires prior expertise or running the model multiple times. An
alternative is offered by the trackers with interactive learning models
(Lineage Mapper, Elephant, ilastik). These offer a feedback loop,
whereby the automated tracking solution can be corrected to update
the tracking model parameters. This gives a more intuitive interface
for adjusting the model parameters. However, even with interactive
model training, it is nearly impossible to get perfect results. To
achieve high tracking precision over long time spans, manual
proofreading of results is necessary. This proofreading is directly
supported by MorphographX and Elephant or by exporting the
tracks into a manual tracking software (TrackMate; Tinevez, 2017).
The lineage tree alone gives insight into a diverse set of collective
cell behaviours (e.g. orientated cell divisions, cell migration) and
can be analysed directly from the tracking solution. Other
applications, such as analysing cell shape change in the
multicellular environment, require additional cell characteristics to
be measured. Although tracking tools measure some cell properties
(e.g. shape, intensity distribution) automatically, measuring further
properties requires an added layer of software. CellProfiler
(Lamprecht et al., 2007) has a series of image-processing modules
for measuring features that are commonly of interest (e.g. ‘Speckle
Counting’ or colocalization). To measure more advanced (or less
common) properties, a custom image analysis pipeline needs to be
created. KNIME (Berthold, 2009) provides an easily accessible
visual programming interface, in which a tracking and analysis
pipeline can be constructed from preprogrammed building
blocks (also known as nodes). These nodes also include ilastik
and TrackMate, allowing functionality from those tools to be
incorporated into a more advanced analysis pipeline.

Software packages are either sold as commercial software or are
freely available as open-source software. Commercial solutions,
such as Imaris or arivis Vision4D, provide support and are built to
be easy to setup and easy to use. However, underlying tracking
algorithms are confidential and therefore often ‘unsuitable for
frontier research questions’ (Emami et al., 2020). Open-source
software is transparent and free, but requires some expertise to set up
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and often needs significant effort to maintain compatibility with
updates to the underlying framework. In Table 1, we present an
overview of available lineage-tracking software solutions, their
modelling choices, how they are distributed and for which platform
they are available.

Conclusions
Once the realm of the classical embryologist, lineage tracing in
modern developmental biology now requires the merger of
advanced imaging methods, cutting-edge computer science and
even the latest genomic technologies. With more data available than
ever before, the question of how to manage and extract useful
conclusions from the melee of results becomes even more
important. Although some of this burden can be alleviated by
carefully choosing labelling methods that can provide lineage
information without complex computational requirements, the
reality is that the vast majority of time-lapse image datasets over
even short periods of development will require some heavy
computational lifting, particularly if cellular behaviour is to be
combined with object tracking/lineage tracing. Fortunately, even as
light microscopes evolve to peer with even greater detail into the
development of organisms and the lives of cells, so too do the
computational tools needed to analyse them. Although
generalizability and ease of access are as much of a problem for
computational methods as they are for the microscopes and data
themselves, the rush of new machine-learning frameworks to
segment, track and quantify cell behaviours hopefully signal that the
wait will not be long.
Among these new machine-learning frameworks, the advent of

deep learning/neural networks has led to a revolutionary
performance increase in a wide range of fields. Convolutional
neural networks in particular yield exceptional (sometimes
superhuman) accuracies, e.g. image recognition (Ciresa̧n, 2011)
and neuron segmentation (Lee, 2017), and have become a staple for
object detection, segmentation and tracking. However, their
performance crucially relies on the available training data. For
supervised learning, these data need to be curated manually. For
lineage tracing, this often cannot be out-/crowdsourced as it requires
a high degree of familiarity with the data. Thus, human labour
becomes the bottleneck. This problem can be somewhat alleviated
by sharing training data and models (e.g. Model Zoo; https://
modelzoo.co/). However, to truly solve this problem, new learning
methods are needed that rely less on human annotations. Recent
unsupervised learning techniques have shown to be highly data-
efficient and even surpass fully supervised training in accuracy on
natural images (Henaff, 2020). Combining these unsupervised
learning techniques with tailor-made experiments could remove the
need for human supervision all together, and make these deep-
learning tools more easily accessible.
In this new era of developmental biology, data and results come

thick and fast, making this an exhilarating time for the field.
Visualizing, tracking and quantifying the movements and
behaviours of every cell and lineage in a developing embryo is a
key step towards the ultimate goal of understanding how an
organism forms. The ability to compare development on a
quantitative level, not only for a single animal but across multiple
organisms and even species, will allow an evolutionary inspection
into the myriad of ways nature derives complex form and function
from simple starting materials.
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