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Quantitative developmental biology in vitro using micropatterning
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ABSTRACT
Micropatterning encompasses a set of methods aimed at precisely
controlling the spatial distribution of molecules onto the surface of
materials. Biologists have borrowed the idea and adapted these
methods, originally developed for electronics, to impose physical
constraints on biological systems with the aim of addressing
fundamental questions across biological scales from molecules
to multicellular systems. Here, I approach this topic from a
developmental biologist’s perspective focusing specifically on how
and why micropatterning has gained in popularity within the
developmental biology community in recent years. Overall, this
Primer provides a concise overview of how micropatterns are used to
study developmental processes and emphasises how micropatterns
are a useful addition to the developmental biologist’s toolbox.

KEY WORDS: Microfabrication, Patterning, Self-organisation,
Stem cells

Introduction
Technology development is motivated by the need to overcome
specific problems. In vivo, the native environment of the cells is
complex. Observing cells in vitro can be a powerful approach to
infer how they might behave in vivo. Even so, when grown in a dish,
the cells adopt a multitude of shapes; they build colonies of variable
forms and densities, and they migrate and often escape the field
of observation of the microscope. All this variability can impair
quantitative analyses and hide key biological phenomena. More
than 50 years ago, S.B. Carter came up with an interesting solution
(Carter, 1967); using techniques borrowed from electronics,
Carter was able to confine single cells on small adhesive islands
(150 µm×100 µm) separated from one another by non-adhesive
material. Carter’s motivation was quite clear: by controlling cell
adhesion, he could achieve a standardised culture and therefore a
more manageable complexity that would facilitate the quantification
and interpretation of the behaviour of the cells.
The same methodological benefits that Carter introduced with his

technique form some of the reasons motivating modern experiments
with micropatterns (Box 1; Fig. 1). As fabrication methods have
evolved, micropatterns have also emerged in the cell biology
literature as a precise tool to both mimic and decouple specific
properties of the complex and dynamic cellular microenvironment
(Box 2) (Laurent et al., 2017; Ruprecht et al., 2017; Théry, 2010).

In this Primer, I focus on how micropatterns are used to model
early mammalian embryogenesis, not as a replacement for in vivo
analysis but as a complementary approach that can help to reveal
how physicochemical context regulates developmental processes
across multiple levels of biological organisation. First, I briefly
explain how micropatterns are produced to provide the reader with
background for navigating the methods sections of the literature,
and then I discuss micropattern models of early embryogenesis and
what we have learnt from them so far.

Fabrication methods
Photolithography and soft lithography
Most micropatterning methods use procedures derived from a
technique termed ‘photolithography’. This technique was initially
developed to create photographic printing plates as early as 1825,
soon becoming popular in the arts. The method was streamlined
in the 1950s, when it emerged as a standard method for the
microfabrication of various components for the microelectronics
industry (Folch, 2012). It is helpful to explain here the principles of
photolithography because many micropatterning methods require
photolithography as an initial step to build stencils, optical masks
and moulds used in the fabrication of micropatterns (Fig. 2).

Photolithography consists of the selective illumination of a thin
layer of a photosensitive polymer called a photoresist. Interaction
with light chemically modifies the photoresist solubility to a solvent
(the developer) enabling the selective dissolution of the illuminated
regions (Fig. 2A). This procedure results in a solid microstructure
that replicates the light pattern, which can be used for a variety
of downstream applications; for example, making photomasks or
electronic components. Alternatively, the microstructured photoresist
can directly serve as a master mould for casting a curable
elastomeric material, such as polydimethylsiloxane (PDMS), to
create all sorts of microstructured cell environments or soft devices.
Polymer moulding is termed ‘soft lithography’ and forms the initial
step of several additive micropatterning methods pioneered by
GeorgesWhiteside and his group in the 1990s (Singhvi et al., 1994).
Popular soft lithography techniques include microcontact printing,
microfluidic micropatterning or stencilling, which are all aimed at
controlling the spatial deposition of cells or biomolecules onto
surfaces (Fig. 2B). Soft lithography is a precise, versatile and robust
technique that is widely used today, but requires a good amount of
expertise and access to a clean room (Folch, 2012).

Direct photopatterning
More recently, direct photopatterning strategies have been
established to make the technique more accessible to non-
specialist biology labs. Some techniques use light to control the
adsorption of engineered photoreactive proteins (Carrico et al.,
2007; Toh et al., 2009). However, due to the protein engineering
step, the need for a dedicated photochemistry and also perhaps a
lack of awareness in the biology community, these strategies have
yet to be widely adopted. Subtractive photopatterning methods,
on the other hand, are more commonly found in the biology
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literature. These techniques consist of first generating a passivated
surface, generally via physisorbtion of a polyethylene glycol (PEG)-
based polymer, and then using selective illumination to locally
degrade the cell-repellent molecules. Extracellular matrix (ECM)
molecules can then only adsorb on the irradiated regions of the
surface in a subsequent coating step (Fig. 2C-F). For example,
contact photopatterning uses deep UV light (<280 nm) through a
photomask (Azioune et al., 2010). One advantage of the method is
that it can be scaled up to rapidly generate robust micropatterns in
parallel in a multi-well plate format for high throughput applications
(Tewary et al., 2019). Although custom photomasks can be ordered
from several companies, masks are quite expensive to produce and
cumbersome to handle.
A powerful alternative is to use an image filter or a digital

micromirror device (DMD) docked to a widefield microscope to

project a high resolution image (Bélisle et al., 2009; Strale et al.,
2016; Waldbaur et al., 2012). This technique, termed ‘light-induced
molecular adsorption patterning’ (LIMAP), is made possible thanks
to water-soluble and biocompatible photoinitiators that lower the
light intensity required to locally degrade the cell-repellent
molecules.

Building complex and dynamic environments
Most of the methods discussed above can be adapted to generate
multi-protein patterns (Folch, 2012; Strale et al., 2016; Théry,
2010), as well as ECM density gradients (Ricoult et al., 2015).
LIMAP is currently gaining popularity in biology labs because of its
simplicity and the fact that companies now sell equipment
implementing the technology. LIMAP also makes it possible to
generate new adhesive regions while live cells are already attached

Box 1. Multi parametric quantitative data analysis
Quantitative experimental design requires control of experimental variables as well as meaningful metrics to monitor the biological process of interest and
the effects of eventual perturbations. Here, three examples are provided: (A) front-rear polarity (Théry et al., 2006), (B) fate patterning in embryonic cells
(Ostblom et al., 2019; Wisniewski et al., 2019) and (C) collective migration (Jain et al., 2020). In these examples, geometric confinement provides relevant
cellular cues and facilitates quantification at the same time. Amicropattern chip contains hundreds of cells or colonies that are easy to image. As shapes and
sizes are standardised, it is possible to computationally superimpose multiple images together in order to build aggregated data representations showing
the average and/or the variation in the signal. This strategy can be repeated for as many stainings, conditions (represented by different colours) or time
points (C) as desired to offer a multi-dimensional representation of the biological process. Like all quantitative methods, the technique presents several
advantages: it ensures a higher chance of capturing a representative picture of the process (tens of events are aggregated into one representation);
quantification gives access to the level of variability in the system, which can provide meaningful information; and the technique may reveal sub-visual
information and subtle phenotypes. Geometrical constraints can also facilitate the quantification of phenomena that require near real-time observations,
such as the coordination of collective migration (C). Note how the design in this example has made it possible to identify a simple metric (i.e. angular
location) to report on a complex phenomenon.
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in culture (Strale et al., 2016). This opens up opportunities to
conduct studies on the dynamic response of the cells to a changing
environment. Other techniques exist for creating dynamic
micropatterns; in fact, the generation of ‘smart’ surfaces and
materials, the chemical and mechanical properties of which can be
controlled with external stimuli, is an active field of research. For
example, biomaterials with a stiffness that is reversibly tunable with
light have recently been developed (Liu et al., 2018), as well as
many ‘switchable micropatterns’ that respond to light, pH,
temperature, electric stimuli or cell-secreted enzymes (reviewed
by Badeau and DeForest, 2019; Cimmino et al., 2018; Rapp and
DeForest, 2020).
Three-dimensional (3D) micropatterns are also increasingly

recognised as a useful tool to understand how dimensionality
influences cellular and tissue-scale processes (Fu et al., 2021).
Although soft lithography often remains the method of choice for

the fabrication of microstructured substrates, direct photo-
polymerisation (Yin et al., 2018) and photodegradation (Tsang
et al., 2015) of synthetic hydrogels is possible. Recent work has also
shown that it is possible to directly ‘carve’ through the polymers and
hydrogels commonly used as cell substrates (e.g. agarose, PDMS,
Matrigel) using a DMDand awidefield microscopewithout the need
for a dedicated photochemistry (Pasturel et al., 2020). Furthermore,
3D microenvironments can be decorated with biomolecules using
biocompatible photolinkers to control substrate topography and
surface chemistry independently (Batalov et al., 2021; Pasturel et al.,
2020).

In conclusion, making micropatterns still requires some specialist
equipment, but the fabrication of micropatterns is slowly becoming
democratised thanks to the interdisciplinary efforts of academic labs
and their commercial partners who are continuously streamlining
the process. Given the variety of micropatterning technologies
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Fig. 1. Micropatterning strengths. (A) Experiments in embryos can be limited by a number of factors including ethical considerations, low material
accessibility and difficulty in disentangling biological variables. (B) Reconstituting developmental processes in vitro is an attractive and complementary
approach. However, a rationalised control of the in vitro microenvironment is required to avoid variable cell behaviours, which confound analysis and may
hide important biological processes. (C) Micropatterns offer opportunities to control and uncouple several aspects of the environment including substrate
composition, mechanics, geometry and topography. Certain micropatterning techniques can also modulate these variables dynamically. These attributes
offer key advantages. For example, careful experimental design with micropatterns enable the precise spatio-temporal perturbation of individual variables,
while standardisation facilitates quantitative approaches. Furthermore, as micropatterned cultures are scalable and easy to image, they are compatible with
high-throughput applications. Micropatterns range from the nanometre (nm) to the millimetre (mm) scale and thus afford a certain agility to interrogate
processes across multiple biological scales. Overall micropatterns can be used to bring biological processes to a manageable yet meaningful level of
complexity, offering opportunities to test biological paradigms quantitatively and inform targeted experiments in embryos for validation. ECM, extracellular
matrix; FOV, field of view.
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available, it can be admittedly difficult to identify the best method
for a given application. The following reviews include comparative
tables that may be helpful to the interested reader: D’Arcangelo and
McGuigan (2015), Manzoor et al. (2021), Ruprecht et al. (2017) and
Vignaud et al. (2014). Finally, if a high resolution is needed
(<100 nm), nanopatterning techniques exist, such as electron beam
nanolithography (Changede et al., 2019), as well as nanosphere
lithography (Shiu et al., 2018).

Pluripotent stem cells as a tool to model early mammalian
embryogenesis
Pluripotent stem cells (PSCs) are self-renewing cell lines that can
differentiate into all somatic lineages in vitro. PSCs can be derived
from early mammalian embryos (Nichols and Smith, 2011) or from

the reprogramming of somatic cells (Takahashi and Yamanaka,
2006). In the past 15 years, PSCs have gained recognition as a
powerful experimental system to study complex developmental
processes including patterning and morphogenesis. The repertoire
of in vitro models mimicking aspects of early mammalian
embryogenesis is rapidly expanding. Examples include embryo-
like stem cell assemblies (Harrison et al., 2017; Rivron et al., 2018;
Sozen et al., 2018), neural cysts (Meinhardt et al., 2014; Zheng
et al., 2019b), 3D models of gastrulation and axial elongation
(Beccari et al., 2018; Brink et al., 2014; Moris et al., 2020;
Simunovic et al., 2019; Turner et al., 2017), as well as models of
early human embryo implantation (Zheng et al., 2019a). These
models offer new, exciting ways to study development through
‘bottom-up’ approaches and are the only experimental systems we

Box 2. Controlling and uncoupling biological variables with micropatterns
(A) Micropatterning shines as a tool to dissect the influence of individual extracellular matrix (ECM) properties on cellular processes. For example, various
line arrangements can be printed to understand how ECM discontinuities modulate cell shapes and migratory behaviours (Wang et al., 2018).
(B) Alternatively, clever single cell patterning designs can be used to dissociate cell shape, adhesion site density and matrix geometry to understand how
these variables influence cell fate (Watt et al., 1988), growth (Chen et al., 1997), divisions (Théry et al., 2005) or the intracellular organisation of the cell
(Kassianidou et al., 2017; Nardone et al., 2017). (C) As micropatterns can be built on soft substrates, it is possible to decouple matrix chemistry and
geometry frommatrix stiffness and tomeasure cell-generated forces using elastic micropost arrays (Lohner et al., 2019). (D) Micropatterns can alsomimic in
vivo spatial constraints. For example, collective migration is influenced by confinement on stripes of various width (Szabó et al., 2016). (E) Micropatterned
two-cell systems are useful to decipher morphogenetic processes such as lumen formation (Rodríguez-Fraticelli et al., 2012) and epithelial-to-
mesenchymal transition (EMT) (Burute et al., 2017) or to study how the size of cell-cell contacts influence juxtacrine signalling (Shaya et al., 2017).
(F) Finally, the geometry and relative spatial distribution of large colonies can be controlled with micropatterns to understand how tissue tension regulates
patterns of fate (Ruiz and Chen, 2008) and growth (Nelson et al., 2005), or how autocrine signalling guides branching morphogenesis (Nelson et al., 2006).
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can use to study human embryogenesis beyond two weeks of
development for ethical reasons (Hyun et al., 2021). Many excellent
reviews have recently been published on this topic (Fu et al., 2021;

McCauley and Wells, 2017; Shahbazi and Zernicka-Goetz, 2018;
Veenvliet and Herrmann, 2020). In the following sections, I discuss
those experimental systems that leverage micropatterning and
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Fig. 2. Micropattern production methods. (A-F) There exists a broad range of strategies for making micropatterns. Most require a combination of generic
procedures indicated in the following panels. The start and end point of different workflows is shown in green and red, respectively. In photolithography
(A) the coating of the photoresist is generally performed via spin-coating. Selective illumination can be achieved using a photomask, lasers or a digital
micromirror device (DMD). The microstructured photoresist can then be used as a mould for soft lithography (B). PDMS is often used in soft lithography as
this polymer self-seals reversibly when placed in contact with another smooth substrate, permitting watertight stencilling and channels to direct the spatial
deposition of extracellular matrix (ECM) molecules or cells. If ECM molecules are deposited, surface passivation is needed before cell seeding and can be
done using poloxamers (a polymer that adsorbs preferentially on hydrophobic surfaces to form a monolayer of cell repellent molecules) (C, right). Another
popular passivation method includes plasma treatment (to activate the surface by ripping-off electrons from the material) followed by adsorption of PLL-PEG
(C, left). Selective degradation is then performed with either deep UV through a photomask (D) or using light-induced molecular adsorption patterning
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photoscission can be performed to create 3D microstructured hydrogels (F). Microstructuration and patterning can be combined to create complex cell
environments or microdevices to probe cellular properties (Box 2).
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review their advantages and limitations, as well as what we have
learned from them so far.

Micropatterns and the ‘in vitro niche’ concept
Using PSCs to study developmental patterning and morphogenesis
is a relatively new idea (‘developmental patterning’ refers to the
process whereby cells differentiate to form spatially organised
domains of cell fates, distinct from the term ‘micropatterning’).
Earlier systems for differentiating PSCs, such as embryoid bodies
(EBs) or directed differentiation in 2D petri dishes, indicated that
PSCs have a propensity for erratic and disorganised differentiation
outside the confines of the embryo, even when the cells are
provided with a seemingly homogenous and chemically-defined
environment. However, in the mid-2000s, a few groups pointed out
that the 2D-culture dish is in fact far from being a homogenous
environment, because the cells do not spread uniformly in the dish.
Evidence from the Zandstra lab showed that variations in local cell
densities dictate local concentrations of secreted signals which in
turn define the differentiation rate of the cells (Davey and Zandstra,
2006). Thus, micropatterning has been used to calibrate the spatial
distribution of the cells in culture. This work has led to the notion
that PSCs possess the ability to organise their local environment
in vitro and that they can respond in a position-dependent manner to
their own signals. The term ‘in vitro niche’ is sometimes used to
describe this self-organised environment in cultures. (Bendall et al.,
2007; Lee et al., 2009; Peerani et al., 2007; Peerani et al., 2009).
This reference to the in vivo ‘stem cell niche’ (haematopoietic niche,
for example) illustrates the idea that, within PSC propagation
cultures, multiple cell states coexist in a dynamic equilibrium and
modulate one another’s state and function. Importantly, the in vitro
niche is defined by a profile of secreted molecules that varies
quantitatively between culture conditions (Bauwens et al., 2008;
Blin et al., 2018; Kempf et al., 2016) and cell lines (Dziedzicka
et al., 2021; Nazareth et al., 2013; Tewary et al., 2019). This has
implications for tissue engineering because it provides a causal
explanation for interexperimental and interline variability, and also
underlines the need for a rational control of initial conditions when
aiming to achieve reproducible differentiation outcomes.
A developmental biologist might ask whether the in vitro

niche corresponds to anything developmentally meaningful.
Coincidently, the concept of the in vitro niche has emerged

concomitantly with the identification of the signalling molecules
that drive axis specification in the mammalian embryo (Arnold and
Robertson, 2009; Tam and Loebel, 2007). Although it is unclear
whether the niche established by PSCs in propagation conditions
reflect any developmental process, detailed examination when
the cells are cultured in differentiation-permissive conditions in
EBs (ten Berge et al., 2008), patterned 2D cultures (Etoc et al., 2016;
Morgani et al., 2018; Nazareth et al., 2013; Tewary et al., 2019;
Warmflash et al., 2014) unpatterned 2D cultures (Kempf et al., 2016)
and 3D gastrulation models (Beccari et al., 2018; Brink et al., 2014;
Simunovic et al., 2019; Turner et al., 2017) all indicate that the
signalling regulatory networks identified in vivo are also functional
in equivalent in vitro processes. Overall, the ideas discussed above,
as well as pioneering 3D organoid work (Eiraku et al., 2011; Sato
et al., 2011), have set the stage for the micropatterned-based PSC
models of development described below.

Micropattern models of early mammalian embryogenesis
As PSCs generate their own spatial cues in vitro, what might explain
the lack of visually apparent spatial patterns in conventional 2D
dishes? Possible reasons include the lack of geometrical constraints
(we can assume that embryo geometry shapes the distribution of
positional signals) and an inadequate chemical environment that
may interfere with endogenous self-organisation.

Gastrulation
In their seminal article, Warmflash and colleagues remedied both of
these issues (Warmflash et al., 2014). They cultured human
embryonic stem cells on 1 mm disc micropatterns to provide the
cells with geometrical constraints, and used bone morphogenetic
protein 4 (BMP4) in conditioned media to act as a differentiation
trigger. Within 48 h, BMP4 induced the formation of concentric
rings of cell fates with ectoderm in the centre, trophectoderm/
amnion-like cells at the periphery (Minn et al., 2020) and
mesendodermal fates in between. This system has been referred as
a ‘2D gastruloid’ because it recapitulates aspects of gastrulation
including signs of primitive streak (PS)-like behaviours within the
mesendodermal domain (Fig. 3A). 2D gastruloids have now been
reproduced by several other groups (Manfrin et al., 2019; Minn
et al., 2020; Tewary et al., 2017) using several different human PSC
lines (Tewary et al., 2019) illustrating the robustness of the method.
Micropatterned colonies lend themselves well to single cell
(sc)RNA-seq studies. Comparison with published datasets from
mouse post-implantation embryos and in vitro cultured cynomolgus
monkey embryos has shown that cell identities in 2D gastruloids
reflect early- to mid-gastrula-stage embryos (Minn et al., 2020).
Although human 2D gastruloids lack axial mesoderm and extra-
embryonic mesoderm, they comprise all the other cell types
expected at this developmental stage (Minn et al., 2020).

Several variations of 2D gastruloids have been described that
exploit the ability to easily control the chemical environment in vitro.
For example, a chemically defined medium containing FGF and
TGFβ signalling molecules was introduced in Deglincerti et al.
(2016), with the resulting difference from the initial protocol that
centre cells remain epiblastic instead of becoming ectodermal
(Chhabra et al., 2019) (Fig. 3A). Tewary and colleagues have also
usedN2B27 (another definedmedium) andwere able to reproduce the
patterning observed in the original protocol including the formation of
ectoderm at the colony centre (Tewary et al., 2017). Further, a
different arrangement of cell fates can be established by directly
activating WNT rather than BMP signalling (Martyn et al., 2018,
2019b). This results in the absence of trophectoderm/amnion-like

Fig. 3. In vitro models of mammalian post-implantation development.
(A-C) This figure includes diagrams showing the spatial arrangement of cell
fates emerging in micropattern-based models of gastrulation (A), neurulation
(B) and organogenesis (C). The location of the corresponding fates in
embryos is shown for both gastrulation and neurulation stages. Embryonic
day after fertilisation (E) is indicated next to each embryo drawing. (A) An
illustration of the signalling network known to regulate patterning during
gastrulation in vivo and which functions in in vitro cultures. In the transverse
section of the primitive streak (PS), notice the epithelial-to-mesenchymal
transition (EMT) process that accompanies the ingression of the cells in the
PS. These characteristics are also found in the PS-like domain of 2D
gastruloids. (B) During neurulation, a complex interplay between BMP, WNT
and tissue tension is understood to drive the patterning of the ectoderm.
These notions have been tested in several models of neurulation. (C) An
illustration of the early migratory behaviour (arrows) of cardiac mesoderm
before formation of a beating cardiac chamber in a micropattern model of
early cardiogenesis. APS, anterior primitive streak; DE, definitive endoderm;
Epi., epiblast; ExE, extra-embryonic ectoderm; ExM, extra-embryonic
mesoderm; MEF-CM, media conditioned with mouse embryonic fibroblasts;
mTeSR, chemically defined medium that includes molecules that activate
the NODAL and FGF pathways; N2B27, chemically defined medium; NC:
neural crest; NE, neurectoderm; NPB, neural plate border; Org., organiser;
PPS, posterior primitive streak; SE, surface ectoderm.
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cells and the formation of a PS-like structure directly at the edge of
the colony while the centre remains undifferentiated (Fig. 3A). As
discussed further below, these platforms have become paradigm
experimental systems for investigating the mechanisms underlying
germ layer formation in a human context. It should be noted
however that 2D gastruloids remain limited in their ability to mimic
the complex morphogenetic events that take place in vivo. For
example, 2D gastruloids do not form the typical tri-laminar structure
that gastrulation generates in vivo and it will be interesting in future
work to investigate what is missing in 2D gastruloids to elicit the
collective cell behaviours responsible for morphogenesis.
2D gastruloids have also been adapted to mouse cells in order to

enable the direct comparison with mouse embryos (Morgani et al.,
2018). It has emerged that mouse cells can be more complex towork
with because of the necessity to first direct the cells towards an
epiblast-like stage before micropatterning and differentiation.
Indeed, mouse cells are thought to be representative of the
pluripotent cells of the pre-implantation embryo, whereas human
cells are thought to capture a more advanced post-implantation
epiblast-like state (Smith, 2017). Therefore, differences in the

resulting pattern of cell fates between mouse and human 2D
gastruloids may reflect either differences in the initial state of
the cells or potential inter-species differences. Interestingly, mouse
cells do not generate trophectoderm/amnion cells, whereas human
cells do. Nevertheless, mouse 2D gastruloids form spatially-
organised domains that include either anterior or posterior PS cell
identities depending on whether BMP is included in the cocktail of
exogenous signalling molecules. As BMP mutant embryos die at
early gastrulation (Mishina et al., 1995; Winnier et al., 1995), it had
not been possible to establish the exact contribution of BMP in the
PS. These findings thus illustrate how in vitro systems can help us
circumvent some of the limitations of in vivo work and pinpoint
potential evolutionary differences.

Neurulation
Micropattern strategies have also been employed to direct the
organisation of anterior tissues (Fig. 3B). Mimicking the anterior
epiblast environment via dual inhibition of BMP and NODAL
signalling is known to promote PSC differentiation towards anterior
ectodermal derivatives (Chambers et al., 2009). On micropatterns,
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Nodal inhibition and partial BMP inhibition lead to radial patterns
of neurectoderm and neural crest tissues (Xue et al., 2018). As BMP
is important for patterning ectodermal tissues once the cells are
committed to that lineage, the method has been further refined to
better simulate these aspects of the in vivo environment. SMAD
signalling inhibition followed by BMP stimulation sequentially
leads to the spatially ordered formation of all major anterior
ectodermal tissues including neural ectoderm, neural crest and
surface ectoderm, as well as sensory placodes up to a stage
equivalent to day 25 of embryonic development (Britton et al.,
2019; Haremaki et al., 2019). These systems have been referred as
‘neuruloids’ because they recapitulate the same orderly sequence of
events as neurulation in vivo. Neuruloids also mimic morphogenetic
aspects of neurulation, such as a neural tube-like structure enclosed
within a basement membrane that separates it from the migrating
neural crest (Haremaki et al., 2019).
The development of neuruloids suggest that early ectodermal

morphogenesis is an autonomous process, as non-ectodermal
lineages are absent in this system. This contrasts with recent work
suggesting that endoderm-derived TGFβ signalling supports the
folding of the neural tube in a micropattern model comprising both
mesendodermal and neurectodermal tissues (Sahni et al., 2021).
I should note that these two observations are not incompatible.
In fact, they add to the line of evidence in favour of the notion
that development proceeds through the coordination of semi-
autonomous developmental units; see Martinez Arias and Lutolf
(2018) for a discussion on this topic.

Organogenesis
Development is associated with rapid 3D growth. As micropatterns
impose rigid fixed-sized 2D constraints, there is an a priori limit to
the growth and therefore developmental stage that can be reached
when starting from PSCs. One way to circumvent the problem is to
target the differentiation of the cells towards an organ-specific
lineage. For example, PSC-derived cardiac mesoderm has been
shown to self-organise into beating 3D cardiac chambers on
micropatterns (Fig. 3C) (Ma et al., 2015). Other examples include
the mechanical patterning of liver (Kaylan et al., 2018) and
pancreatic progenitors (Tran et al., 2020), indicating that studying
organogenesis on 2D micropatterns is a viable option, as long as a
relevant starting population can be identified.
Overall, 2D micropattern models present a range of experimental

systems that are complementary to 3D embryoid models. 3D culture
does not restrict growth in any of the three spatial dimensions, and is
perhaps better suited for modelling multi-tissue organogenesis,
whereas 2D micropatterns can be useful to focus on specific sub-
processes. One current drawback of 3D models is that very few
develop according to a predefined 3D coordinate system; individual
cell aggregates often look different from one another and their 3D
orientation is neither fixed nor predictable from the start (although
tissue engineering techniques might soon alleviate these limitations
(Fu et al., 2021; Laurent et al., 2017). On the other hand,
micropatterned colonies are standardised, synchronised and easy
to image, making them perfectly suited for understanding the
mechanisms underlying early patterning events, as I discuss further
below. Micropatterned colonies also offer robust assays for
development of regenerative therapies, for example to identify the
cell lines that are best suited to generate specific clinically-relevant
cell types (Nazareth et al., 2013; Tewary et al., 2019). The strengths
of micropattern systems also make them excellent platforms for
investigating the early developmental origins of certain
degenerative diseases (Galgoczi et al., 2021 preprint; Haremaki

et al., 2019; Krieger et al., 2019) or to understand chromosomal
instability and mosaicism during early development (Yang et al.,
2021).

Mechanisms of pattern formation: diffusible signals
The remarkable robustness of the micropattern systems described
above provide opportunities for testing mainstream mechanistic
models of developmental patterning in a quantitative manner.
Recent studies have notably focussed on how the cells generate
spatially organised secreted signals and how these signals in turn
regulate fate patterning:

Self-organised signalling
In all the examples cited above, exogenous signals are added
uniformly into the medium, yet the cells respond differentially in a
coordinated manner. How does a non-localised signal lead to
patterning?

One explanation comes from feedbacks in signalling pathways.
To illustrate this point, I mainly focus on 2D gastruloids because
these have been the most extensively studied so far. Upon induction,
BMP4 stimulates the expression of its own inhibitors Chordin and
Noggin (Etoc et al., 2016; Tewary et al., 2017; Warmflash et al.,
2014). These secreted inhibitors can diffuse beyond the open
borders of the colony while concentration remains high in the
colony centre, leading to the formation of a gradient of signalling
activity. Culturing the cells in microwells to block the diffusion of
inhibitors abolishes patterning (Warmflash et al., 2014). Differential
cell responsiveness to BMP4 also contributes in patterning
signalling activity. Cells at the periphery are highly responsive to
BMP4 as they fail to establish apico-basal polarity and in turn
expose BMP receptors towards the medium-facing side of the cell
where BMP molecules are free to diffuse (Etoc et al., 2016). Thus,
in this system, the geometry of the group coupled with a chemical
negative feedback is sufficient to break the initial homogeneity of
the system.

One interesting question to ask is whether such a system can scale
with different colony sizes. Decreasing colony diameter while
maintaining BMP concentration constant leads to the loss of the
central domain (Etoc et al., 2016;Warmflash et al., 2014). However,
as the system relies on a network composed of an activator and a
diffusing inhibitor, one possibility is that the system follows a
Turing system model (Turing, 1952) (Fig. 4A). As Turing systems
are known to only occur within a precise domain of the parameter
space (Maini Philip et al., 2012), Tewary and colleagues have
exploited micropatterns to systematically vary signal concentration,
differentiation time and colony sizes (Tewary et al., 2017) to explore
the hypothesis that BMP and Noggin form a Turing system.
Interestingly, interspersed clusters of BMP-responsive cells become
apparent in large 3 mm diameter colonies and resemble periodic
patterns predicted by Turing equations (Fig. 4A). Furthermore,
lowering BMP concentration with colony diameter allows patterning
to scale with colony size (Fig. 4B). These results position the Turing
model as a plausible mechanism for fate patterning in this system.

Morphogens revisited
Chemical feedback loops explain how a radial gradient of signalling
activity establishes itself despite a uniform signal. However, it does
not explain how multiple cell fates result from this gradient. This
question brings to mind the French flag problem formulated by
L. Wolpert (Sharpe, 2019; Wolpert, 1969). One of Wolpert’s
solutions to the problem is known as the positional information (PI)
model, which posits that the cells can ‘read’ their position within
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the gradient by adopting distinct cell fates according to discrete
signalling intensity thresholds. This model, together with
supporting experiments in frogs (Green et al., 1992; Wilson et al.,
1997) and fish (Chen and Schier, 2001), has led to the definition of a
morphogen as a diffusible molecule that induces multiple cell fates
directly without intervention of secondary relay signals.
Micropatterning provides an opportunity to test whether a

particular signal meets this definition of a morphogen. Indeed,
PSCs can be cultured as individual microcolonies (one to eight
cells) in order to limit the accumulation of any potential cell-
produced secondary signals (Fig. 4C). Varying the concentration of
BMP4 is unable to induce more than one cell fate (trophectoderm/
amnion-like) on microcolonies, suggesting that BMP4 does not
fulfil the morphogen criteria in this context (Nemashkalo et al.,
2017). Rather, the emergence of the mesendodermal lineages in
larger colonies requires the combined action of secondaryWNT and
NODAL signalling (Chhabra et al., 2019; Heemskerk et al., 2019;
Nemashkalo et al., 2017; Yoney et al., 2018). Of note, the
quantification of intra- and intermicrocolony variation also revealed
a community effect (local interactions that sustain BMP signalling)
that enforces the commonality of cell fates within individual
colonies. This is reminiscent of the Nodal-dependent community
effect that coordinates cell ingression in the PS of chick embryos
(Voiculescu et al., 2014). It will be interesting, in future work, to
examine whether BMP-driven community effects also coordinate

differentiation responses in the embryo. This example highlights the
power of micropatterns to identify novel mechanisms that are not
readily apparent from in vivo analysis.

Signalling dynamics
If patterning is not the result of a classic positional information
mechanism, then how do distinct pathways work in concert to
orchestrate cell fate decisions in a spatially ordered manner?

Insights into this question have been obtained by taking
advantage of the standardisation and synchronicity of patterning
in 2D gastruloids. Systematically monitoring the levels of each
pathway over time with or without chemical perturbations have
shown that signalling is dynamic and follows a precise sequence of
events (Chhabra et al., 2019; Heemskerk et al., 2019; Yoney et al.,
2018). High BMP4 activity at the periphery induces an endogenous
slow inward-propagating wave of WNT signalling (Chhabra et al.,
2019; Martyn et al., 2019a), which in turn activates another faster
moving wave of NODAL (Heemskerk et al., 2019), propagation of
which is moderated by a local feedback loop involving the NODAL
inhibitor LEFTY (Liu et al., 2021 preprint) (Fig. 4D). The
superimposition of these waves onto fate markers have failed to
reveal a direct correspondence between levels of signalling and cell
fate (Chhabra et al., 2019). Instead cells may respond to the
temporal variations in signal activity, as suggested by several in vivo
studies revisiting how major signalling molecules transmit robust
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spatio-temporal information during development (Balaskas et al.,
2012; Sako et al., 2016; van Boxtel et al., 2015, 2018). Interestingly,
several NODAL response genes are sensitive to the rate of change in
concentration of NODAL, whereas others are more sensitive to
signal duration (Heemskerk et al., 2019). NODAL response is also
dependent on concurrent (Massey et al., 2019) and past WNT
activity (Yoney et al., 2018). These findings highlight the necessity
to integrate temporal and context dependence of signalling in our
understanding of development (Li and Elowitz, 2019), and show
that micropatterned colonies are useful to explore the dynamic
properties of patterning.
Given the complexity of patterning mechanisms, multi-scale

mathematical modelling approaches are particularly useful to
determine whether mechanistic models are plausible. Quantitative
and multi-parametric data obtained from micropattern experiments
have been used to both inform and validate computational
simulations. These strategies are already proving fruitful to gain
systems understanding of pattern formation (Camacho-Aguilar and
Warmflash, 2020; Chhabra et al., 2019; Tewary et al., 2017).

Geometry- and mechanics-guided patterning
Biochemical cues are not the only extrinsic factors impacting cell
fate. Tissue geometry and mechanics play both instructive and
permissive roles on patterning. One emerging notion is that the
physical state of the cells not only influences the shaping of tissues
but also contextualises cell response to biochemical signals to
ensure the coordination of morphogenesis with cell fate decisions
(Chan et al., 2017).
On micropatterns, cell density, geometry and colony edges impose

a pre-pattern in cell polarity and cell tension. This anisotropy
contributes to patterning initiation in all in vitro models described so
far. For example, cell polarity dictates the subcellular localisation of
BMP receptors and in turn the competence of the cell to respond to
BMP4 (Etoc et al., 2016) (Fig. 4D). Importantly, this mechanism has
been shown to operate in the epiblast of mouse embryos as well
(Zhang et al., 2019) illustrating how micropattern models can
generate hypotheses that can then be tested in vivo. BMP pathway
activation has also been shown to be conditional on cell tension
during ectodermal differentiation, consistent with the idea that tissue
folding may regulate BMP responsiveness during neural tube closure
(Xue et al., 2018) (Fig. 4E).
The way physical cues modulate WNT signalling has also been

studied in micropatterned colonies (Martyn et al., 2019a; Muncie
et al., 2020). Both epithelial integrity andWNT signalling converge
onto the regulation of intracellular levels of β-catenin and
mesodermal genes activation (Fig. 5A). As WNT promotes its
own expression as well as epithelial-to-mesenchymal transition
(EMT), the convergence of WNT and forces on β-catenin can lead
to fate propagation from cell to cell as revealed by the study of
WNT-treated gastruloids (Martyn et al., 2019a) (Fig. 5B). This
phenomenon may explain at least partially how the PS maintains
itself once initiated. Of note, β-catenin mechanotransduction has
been shown in insects (Farge, 2003; Röper et al., 2018), fish (Brunet
et al., 2013), cnideria (Pukhlyakova et al., 2018) and human
embryonic stem cells (Martyn et al., 2019a; Muncie et al., 2020;
Przybyla et al., 2016), suggesting that this pathway is an ancient
regulatory mechanism that is evolutionary conserved (Brunet et al.,
2013; Pukhlyakova et al., 2018).
In contrast to the embryo, 2D gastruloids remain radially

symmetric instead of forming a polarised axis (Fig. 5C). To better
understand this phenomenon and gain insights into how forces may
regulate PS initiation, Muncie and colleagues have grown

micropatterned colonies on compliant hydrogels that mimic the
stiffness of the epiblast of avian embryos (Muncie et al., 2020).
Interestingly, PS-like domains emerge as discrete ‘nodes’ on
micropatterned hydrogels. The location of these nodes correlate
with regions of high traction force activity. Consistently, mesoderm
differentiation is induced in regions of high tension when the cells
are grown on micropatterns of varying geometries (Muncie et al.,
2020; Smith et al., 2018). These observations are also in line with
microwell experiments showing that contact point with the
microwell wall dictates the location of mesoderm induction in
EBs (Sagy et al., 2019). It should be noted that varying colony
geometry or bringing a group of cells in close proximity with a
surface can modulate both the mechanical and the chemical context
of the cells. It will be interesting, in future work, to investigate how
mechanical cues and secreted gradients are integrated to define
patterning in these contexts.

Collectively, these studies suggest that mechanics and geometry
may contribute in ensuring the robust location of PS initiation. By
dictating epithelial integrity and tissue tension, compliant ECMmay
prevent spurious initiation, whereas stiff or degraded regions may
potentiate PS-promoting signalling activity. This idea is further
supported by recent evidence showing that the basement membrane
in mouse peri-implantation embryos is remodelled asymmetrically
along the anterior-posterior axis (Kyprianou et al., 2020). In
addition, experiments with small-scale micropatterns of variable
geometries indicate that the local geometry of the PS may fine tune
neighbour exchanges at the streak to define which cells eventually
ingress (Blin et al., 2018; Burute et al., 2017).

Micropatterns have also proven useful in interrogating the role of
scale and geometry during formation of the nervous system. In the
embryo, the newly formed neurectoderm folds into a tube (Fig. 4B).
When cultured in vitro, maturing neural cells form rosettes
structures spontaneously both in 2D cultures and in 3D organoids.
In vivo, there is only one neural tube whereas in vitro, the number of
rosettes is unconstrained. Micropatterns have been used to identify
the optimal geometry and tissue scale that accommodates the
emergence of one rosette instead of many (Knight et al., 2018).
An interesting observation is that the micropattern diameter at
which a single rosette emerges reproducibly differs when PSC are
directed towards anterior neurectoderm compared with when they
are differentiated towards the posterior neural tube. Although rosette
formation is an intrinsic ability of neural tissues, these findings
show that tissue-specific geometrical context is needed for
development to proceed correctly.

Overall, these studies illustrate how micropatterned models can
help us disentangle the respective influence of mechanics, geometry
and signalling during complex developmental processes.

Concluding remarks
These are exciting times to be a developmental biologist. In this
Primer, I have illustrated how micropattern systems are enriching an
ever-increasing range of in vitro models allowing us to revisit
fundamental developmental biology questions. Although it is clear
that micropattern systems do not fully recapitulate the complexity of
embryos, the possibility to ‘isolate’ developmental sub-processes in
vitro over a range of scales and complexities offers new opportunities
to study development in a quantitativemanner. Far from reductionists’
ideas, in vitro studies remain complementary to in vivo analyses and
encourage focus on the dynamic nature of biological processes, on the
role of the environment in contextualising cell behaviours and on the
need for a systems understanding of the relations that explain
emergent properties of patterning and morphogenesis.
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Future work will likely focus on combining micropattern systems
with optogenetics (Krueger et al., 2019), quantitative imaging and
synthetic biology (Davies, 2017) to further explore questions
surrounding the mechanisms, robustness and plasticity of patterning
and morphogenetic processes, perhaps with an evo-devo perspective.
As standardisation and automated imaging methods offer the
opportunity to acquire rich multi-parametric datasets from
micropattern systems, leveraging artificial intelligence may help us
infer the rules of development. Furthermore, as continuous efforts are
being produced to develop smart and dynamic microenvironments
which can evolve in response to cell behaviours (Badeau and
DeForest, 2019; Rapp and DeForest, 2020; Uto et al., 2020), we
can anticipate that new avenues will emerge to better mimic
organogenesis and later development in a standardised manner.
Finally, highly standardised in vitro models will continue to help
us reveal unnoticed, yet important, developmental phenotypes
(Galgoczi et al., 2021 preprint; Haremaki et al., 2019; Krieger et al.,
2019; Yang et al., 2021) to better understand diseases with a
developmental origin, as well as gene-environment interactions
during development.
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Henry, L., Serman, F., Béalle, G., Ménager, C. et al. (2013). Evolutionary
conservation of early mesoderm specification by mechanotransduction in
Bilateria. Nat. Commun. 4, 2821. doi:10.1038/ncomms3821

Burute, M., Prioux, M., Blin, G., Truchet, S., Letort, G., Tseng, Q., Bessy, T.,
Lowell, S., Young, J., Filhol, O. et al. (2017). Polarity reversal by centrosome
repositioning primes cell scattering during epithelial-to-mesenchymal transition.
Dev. Cell 40, 168-184. doi:10.1016/j.devcel.2016.12.004

Camacho-Aguilar, E. and Warmflash, A. (2020). Insights into mammalian
morphogen dynamics from embryonic stem cell systems. Curr. Top. Dev. Biol.
137, 279-305.

Carrico, I. S., Maskarinec, S. A., Heilshorn, S. C., Mock, M. L., Liu, J. C.,
Nowatzki, P. J., Franck, C., Ravichandran, G. and Tirrell, D. A. (2007).
Lithographic patterning of photoreactive cell-adhesive proteins. J. Am. Chem.
Soc. 129, 4874-4875. doi:10.1021/ja070200b

Carter, S. B. (1967). Haptotactic islands: a method of confining single cells to study
individual cell reactions and clone formation. Exp. Cell Res. 48, 189-193. doi:10.
1016/0014-4827(67)90298-4

Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M.
and Studer, L. (2009). Highly efficient neural conversion of human ES and iPS
cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275-280. doi:10.
1038/nbt.1529

Chan, C. J., Heisenberg, C.-P. and Hiiragi, T. (2017). Coordination of
morphogenesis and cell-fate specification in development. Curr. Biol. 27,
R1024-R1035. doi:10.1016/j.cub.2017.07.010

Changede, R., Cai, H., Wind, S. J. and Sheetz, M. P. (2019). Integrin nanoclusters
can bridge thin matrix fibres to form cell–matrix adhesions. Nat. Mater. 18,
1366-1375. doi:10.1038/s41563-019-0460-y

Chen, Y. and Schier, A. F. (2001). The zebrafish Nodal signal Squint functions as a
morphogen. Nature 411, 607-610. doi:10.1038/35079121

Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. and Ingber, D. E. (1997).
Geometric control of cell life and death. Science 276, 1425-1428. doi:10.1126/
science.276.5317.1425

Chhabra, S., Liu, L., Goh, R., Kong, X. and Warmflash, A. (2019). Dissecting the
dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-
organized fate patterning in human gastruloids. PLoS Biol. 17, e3000498. doi:10.
1371/journal.pbio.3000498

Cimmino, C., Rossano, L., Netti, P. A. and Ventre, M. (2018). Spatio-temporal
control of cell adhesion: toward programmable platforms to manipulate cell
functions and fate. Front. Bioeng. Biotechnol. 6, 190. doi:10.3389/fbioe.2018.
00190

D’Arcangelo, E. and McGuigan, A. P. (2015). Micropatterning strategies to
engineer controlled cell and tissue architecture in vitro. BioTechniques 58, 13-23.
doi:10.2144/000114245

Davey, R. E. and Zandstra, P. W. (2006). Spatial organization of embryonic stem
cell responsiveness to autocrine gp130 ligands reveals an autoregulatory stem
cell niche. Stem Cells 24, 2538-2548. doi:10.1634/stemcells.2006-0216

Davies, J. (2017). Using synthetic biology to explore principles of development.
Development 144, 1146-1158. doi:10.1242/dev.144196

Deglincerti, A., Etoc, F., Guerra, M. C., Martyn, I., Metzger, J., Ruzo, A.,
Simunovic, M., Yoney, A., Brivanlou, A. H., Siggia, E. et al. (2016). Self-
organization of human embryonic stem cells on micropatterns. Nature Protocols
11, 2223-2232. doi:10.1038/nprot.2016.131

Dziedzicka, D., Tewary, M., Keller, A., Tilleman, L., Prochazka, L., Östblom, J.,
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Balayo, T., van Oudenaarden, A. and Martinez Arias, A. (2020). An in vitro
model of early anteroposterior organization during human development. Nature
582, 410-415. doi:10.1038/s41586-020-2383-9

Muncie, J. M., Ayad, N. M. E., Lakins, J. N., Xue, X., Fu, J. and Weaver, V. M.
(2020). Mechanical tension promotes formation of gastrulation-like nodes and
patterns mesoderm specification in human embryonic stem cells. Dev. Cell 55,
679-694.e11. doi:10.1016/j.devcel.2020.10.015

Nardone, G., Oliver-De La Cruz, J., Vrbsky, J., Martini, C., Pribyl, J., Skládal, P.,
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