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Polyploid cardiomyocytes: implications for heart regeneration
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ABSTRACT

Terminally differentiated cells are generally thought to have arrived at
their final form and function. Many terminally differentiated cell types
are polyploid, i.e. they have multiple copies of the normally diploid
genome. Mammalian heart muscle cells, termed cardiomyocytes, are
one such example of polyploid cells. Terminally differentiated
cardiomyocytes are bi- or multi-nucleated, or have polyploid nuclei.
Recent mechanistic studies of polyploid cardiomyocytes indicate that
they can limit cellular proliferation and, hence, heart regeneration. In
this short Spotlight, we present the mechanisms generating bi- and
multi-nucleated cardiomyocytes, and the mechanisms generating
polyploid nuclei. Our aim is to develop hypotheses about how these
mechanisms might relate to cardiomyocyte proliferation and cardiac
regeneration. We also discuss how these new findings could be
applied to advance cardiac regeneration research, and how they
relate to studies of other polyploid cells, such as cancer cells.

KEY WORDS: Cardiomyocytes, Cytokinesis, Differentiation,
Karyokinesis, Ploidy, Regeneration

Introduction

The term ‘terminal differentiation’ has traditionally been used to
describe cells that have permanently exited the cell cycle, lost
proliferative potential and, consequently, cannot contribute to tissue
regeneration after injury. Many terminally differentiated cell types
are polyploid (@vrebe and Edgar, 2018), i.e. they contain multiple
copies of the typically diploid genome. In principle, such polyploid
cells can contain two or more nuclei, or a nucleus with a higher than
normal DNA content. As such, a bi-nucleated cell with two diploid
(2N) nuclei is considered to be polyploid, as is a mono-nucleated
cell with a tetraploid nucleus.

The heart muscle comprises specialized cells, called
cardiomyocytes, that proliferate during development. Most
cardiomyocytes in adult mammals are thought to have lost the
ability to proliferate (Soonpaa and Field, 1997; Pasumarthi and
Field, 2002) and are thus regarded as terminally differentiated. For
example, only low levels of cardiomyocytes expressing indicators
of cell cycle activity have been reported in adult mice (Walsh et al.,
2010; Ali et al., 2014) and in adult humans (Bergmann et al., 2009;
Mollova et al., 2013). In addition, although cardiomyocyte DNA
synthesis increases in the border zone of a myocardial infarction,
adult mammalian hearts do not appear to have sufficient numbers of
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proliferative cardiomyocytes to allow them to regenerate after injury
(Senyo et al., 2013). Thus, although cardiac regeneration research
has focused on stimulating cell cycle activity to achieve
cardiomyocyte proliferation, a fundamental understanding of
terminal differentiation is lacking and has only recently been
examined as an approach to understanding the mechanisms that
block adult cardiomyocyte proliferation (Tzahor and Poss, 2017;
Sadek and Olson, 2020).

Although the presence of multiple and polyploid nuclei in
cardiomyocytes has long been known, and is used to identify
terminally differentiated cardiomyocytes, the significance of ploidy
for proliferation, heart regeneration and heart failure development
has only recently begun to be explored. Indeed, recent studies have
demonstrated a connection between cardiomyocyte polyploidy
and regenerative capacity in vertebrate hearts, suggesting that
polyploidy can act as a barrier to regeneration (Patterson et al., 2017;
Gonzalez-Rosa et al., 2018). These reports have underscored
the importance of understanding cardiomyocyte terminal
differentiation and polyploidy, and have provided new directions
for cardiac regeneration research. Moreover, they have highlighted
that, although the mechanisms regulating the formation of polyploid
cells in other tissues, including trophoblast giant cells in the placenta
(Weier et al., 2005; Zybina and Zybina, 2005), hepatocytes of the
liver (Duncan et al.,, 2010; Pandit et al., 2013; Gentric and
Desdouets, 2014; Hsu et al., 2016) and platelet-producing
megakaryocytes (Corash et al., 1989; Battinelli et al., 2007; Gao
et al., 2012), have been characterized, the regulatory mechanisms
governing polyploidy in cardiomyocytes are only now beginning to
be unraveled.

Here, we review these recent discoveries to develop an integrated
view of the mechanisms that direct the formation of polyploid
cardiomyocytes. We use the term ‘polyploid’ to refer both to bi- and
multi-nucleated cardiomyocytes with 2N DNA content in each
nucleus, and to cardiomyocytes with one nucleus of >2N DNA.
However, we distinguish the processes forming multi-nucleated
cardiomyocytes from those forming polyploid nuclei because they
are governed by different mechanisms. Using this approach, we
develop a unifying map of cardiomyocyte terminal differentiation,
highlighting similarities and differences with other cell types.
We hope this map could serve as a framework for future heart
regeneration research.

The prevalence of polyploid cardiomyocytes differs between
species and changes during development

Studies in zebrafish, mice and humans have shown that
cardiomyocyte proliferation during development generally involves
mono-nucleated cardiomyocytes with diploid nuclei (Wills et al.,
2008; Mollova et al., 2013; Patterson et al., 2017; Gonzalez-Rosa
et al., 2018). However, as mammalian cardiomyocytes differentiate,
many become bi- and multi-nucleated, and form polyploid nuclei
during pre- and postnatal development (Soonpaa and Field, 1997;
Mollovaetal.,2013; Alkass etal., 2015; Van De Peeretal., 2017; Liu
etal.,2019; Han et al., 2020). The prevalence of cardiomyocytes with
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these different forms of ploidy differs between species and within
species between different stages of development (Fig. 1), and could
therefore contribute to the differences in regenerative capacity
observed between species.

Cold-blooded organisms, such as zebrafish and newts, are
capable of heart regeneration (Poss et al., 2002; Bettencourt-Dias
et al, 2003). Zebrafish regenerate their heart muscle via
cardiomyocyte proliferation (Poss et al., 2002), raising the
following questions: what mechanisms give cold-blooded animals
the evolutionary advantage of heart regeneration and how can we
leverage this understanding to aid human regenerative medicine?
Some research has suggested that low blood pressure in zebrafish
and other cold-blooded animals may be responsible for their
increased regenerative capacity (Hu et al., 2001). Interestingly,
giraffes exhibit one of the highest blood pressures seen in mammals
and 88% of their cardiomyocytes have four or more nuclei
(Dstergaard et al., 2013), whereas all pig cardiomyocytes have 2
or more nuclei (Velayutham et al., 2020). These are the highest
known degrees and percentages of bi- and multi-nucleated
cardiomyocytes in mammals, although how this relates to
regenerative capacity remains unclear. A correlation between
metabolic rate, body temperature, serum thyroid hormone levels,
percentage of diploid cardiomyocytes and regenerative capability
has also been noted among different species, from non-mammals to
mammals, including humans (Hirose et al., 2019). However, the
trend does not apply to all amphibian species, as medaka (Oryzias
latipes), a cold-blooded fish, similar to zebrafish, exhibits almost no
cardiomyocyte regeneration following ventricular resection (Ito
et al., 2014). Moreover, a comparison between zebrafish and
medaka showed that reduced immune responses may prevent
regeneration (Lai et al., 2017), which suggests being cold blooded
may not be sufficient for heart repair.

Increased diploid mono-nucleated cardiomyocyte content has
also been positively correlated with regenerative capacity (Matrone
et al., 2017; Gonzalez-Rosa et al., 2018). Mono-nucleated diploid
cardiomyocytes are present in all vertebrate species studied.
However, their prevalence varies widely: although almost all

zebrafish cardiomyocytes have one diploid nucleus (Wills et al.,
2008; Gonzalez-Rosa et al.,, 2018), 35% of adult human
cardiomyocytes (Mollova et al., 2013; Bergmann et al., 2015) and
only 5-10% of adult mice cardiomyocytes (Alkass et al., 2015) have
one diploid nucleus. By contrast, pigs develop a high percentage of
cardiomyocytes with multiple nuclei within the first 2 months
postnatally (Grébner and Pfitzer, 1974; Adler et al., 1996;
Velayutham et al., 2020). Interestingly, the overexpression of
microRNA-199a in adult pigs promotes regeneration of the heart
following cardiac infarction, indicating that multi-nucleated
cardiomyocytes may possess the ability to re-enter the cell cycle
and divide (Gabisonia et al., 2019). However, this intervention
results in uncontrolled proliferation of poorly differentiated
cardiomyocytes and subsequent fatal arrhythmias in pigs,
highlighting that the mechanisms of proliferation need to be better
understood before any clinical translation studies are pursued. Mice
develop mostly bi-nucleated and multi-nucleated cardiomyocytes
within 10 days of birth (Soonpaa et al., 1996). However, in mice, the
polyploidization of cardiomyocyte nuclei occurs later and does not
reach the same proportion as multi-nucleation (Walsh et al., 2010;
Alkass et al., 2015) (Fig. 1). Humans also show formation of
cardiomyocytes with two diploid nuclei and of cardiomyocytes with
one polyploid nucleus at different ages (Brodsky et al., 1994;
Mollova et al., 2013; Bergmann et al., 2015), suggesting that the
processes that generate these different ploidy types are distinct and
may not depend on one another. In the following sections, we
review recent reports identifying these distinct processes (Table 1).

Cytokinesis failure generates bi- and multi-nucleated
cardiomyocytes

Bi-nucleated cardiomyocytes have two separated nuclei, which
means that their mother cardiomyocytes successfully completed
nuclear division (karyokinesis) but failed cell body division
(cytokinesis). Cytokinesis is the final step in mitosis in which
separation of the two daughter cells is mediated by discrete
steps (Eggert et al., 2006). The general mechanisms underlying
cytokinesis, specifically cleavage furrow constriction and abscission,

Phenotypes Proliferative Human Pig Mouse Zebrafish
tential
potentia Infant  Adult Young Adult Pup  Adult Adult
(<1 year) (>20years) (<5 months) (>6 months) (P7) (>P19)

Mono-nucleated @ Capable of 60% 30% 10-90% <<1% 45%  <10% 99%
diploid nucleus cell division
Mono-nucleated @ 10% 40% <10% 10% 0.25%
polyploid nucleus
Blz-nu.cleated. @ @ Not capable 30% 30% 0-60% 10% 50%  85% 0%
diploid nuclei of division
. terminally
Bi-nucleated ( - .
polyploid nuclei @ @ differentiated)
Multi-nucleated <1% 0-60% 90% <1% | <5% 0%

DOOD

diploid nuclei

Fig. 1. Phenotypes of working cardiomyocytes, their proliferative potential and their changing prevalence in common model organisms.
Percentages were obtained from studies that used microscopy methods for quantifying cardiomyocyte phenotypes. The prevalence of the different
cardiomyocyte phenotypes in humans was taken from Mollova et al. (2013) and Bergmann et al. (2015). In humans with tetralogy of Fallot, a type of
congenital heart disease, multi-nucleated cardiomyocytes (>2 nuclei) appear after the first month of life and persist into adulthood (Liu et al., 2019). Although
the work of Adler et al. (1996) has served as an important reference for pig data, the results were obtained using an indirect approach. Consequently, recent
results from isolated pig cardiomyocytes (Velayutham et al., 2020), using single-cell microscopy, are shown. The values for mouse were taken from Alkass
et al. (2015), although nuclear ploidy in mono- and bi-nucleated cardiomyocytes was not clearly distinguished, and from Han et al. (2020). Values for

zebrafish were taken from Wills et al. (2008) and Gonzalez-Rosa et al. (2018).
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Table 1. Similarities and differences between bi- or multi-nucleated cardiomyocytes and cardiomyocytes with polyploid nuclei

Bi- or multi-nucleated cardiomyocytes

Cardiomyocytes with polyploid nuclei

Cellular mechanisms
of formation

Molecular
mechanisms of
formation

Effects on cell cycle
potential

Effects on
myocardial
regeneration

Relationship to
human disease

Malposition of cleavage furrow (Engel et al., 2006; Hesse et al.,
2018); cytokinesis failure due to insufficient RhoA activation by
Ect2, which weakens the force of cleavage furrow constriction
(Fededa and Gerlich, 2012; Liu et al., 2019)

B-Adrenergic receptor signaling, via the Hippo pathway (Yu et al.,
2012) represses Ect2 expression (Liu et al., 2019); Tnni3 kinase
(Patterson et al., 2017), thyroid hormone (Hirose et al., 2019)
and extracellular matrix molecules (Wu et al., 2020)

Bi-nucleated cardiomyocytes have cell cycle re-entry potential
(Liu et al., 2019)

Effect of increasing bi-nucleated cardiomyocytes on heart
regeneration independently of altered percentage of polyploid
nuclei was not formally tested

Increased percentage of bi-nucleated cardiomyocytes in tetralogy
of Fallot, a common type of congenital heart disease (Liu et al.,

Karyokinesis failure by prometaphase-to-metaphase block due to
insufficient NEB, which prohibits spindle microtubule
attachment to centromeres (Han et al., 2020)

Oncostatin M via the SMAD pathway (Junk et al., 2017);
decreased expression of lamin B2 (Han et al., 2020)

Cardiomyocytes with polyploid nuclei have reduced cell cycle
entry potential (Han et al., 2020)

Increased percentage of cardiomyocytes with polyploid nuclei
decreases neuregulin-stimulated neonatal mouse heart
regeneration (Han et al., 2020)

Increased percentage of polyploid cardiomyocyte nuclei after
myocardial infarction (Meckert et al., 2005) and hypertrophy

2019)

(Brodsky et al., 1994; Vliegen et al., 1995)

have been well studied. In short, the GTPase RhoA, guided by the
RhoA guanine-nucleotide exchange factor Ect2 (Yiice et al., 2005),
recruits anillin (Frenette et al., 2012), a scaffold protein that interacts
with non-muscle myosin II (Straight et al., 2005) and F-actin
(Oegema et al., 2000) to induce cleavage furrow ingression.

Asymmetric cleavage furrow constriction and close proximity
of daughter nuclei during division has been shown during
cardiomyocyte cytokinesis failure (Hesse et al., 2018). Cytokinesis
failure in cardiomyocytes can be caused by low expression levels
of the cytokinesis gene Ect2 (Liu et al., 2019). Ect2 expression
is induced in the cell cycle (Liu et al., 2019) and is required
for cleavage furrow constriction (Tatsumoto et al., 1999). In
cardiomyocytes, Ect2 gene expression is repressed by B-adrenergic
receptor (B-AR) signaling via the Hippo tumor suppressor pathway
(Liu et al., 2019). The Hippo pathway has been shown to be
activated by (B-AR) signaling in the heart (Yu et al., 2012) and is
implicated in cardiomyocyte proliferation (Heallen et al., 2011,
Von Gise et al., 2012). Ect2 gene repression leads to abscission
failure very late in cytokinesis: cardiomyocytes assemble a
contractile ring in preparation for abscission but fail to constrict
the cleavage furrow sufficiently for abscission (Fig. 2A). Blocking
B-AR with propranolol increases Ect2 gene expression, which
promotes the division of mitotic cardiomyocytes and increases their
total number in mouse hearts (Liu et al., 2019). It has also been
shown that cultured cardiomyocytes undergo serum-induced
cytokinesis failure, characterized by altered anillin localization
and altered cleavage furrow constriction (Engel et al., 2006); while
this involves increased p38 mitogen-activated kinase signaling, the
responsible serum components are unknown.

Cytokinesis requires the orchestrated action of multiple proteins
(Piekny et al., 2005; D’Avino, 2009; von Dassow, 2009), and the
malfunction of any of these could cause cytokinesis failure. Several
cytokinesis proteins have been identified to play a role in the formation
of bi-nucleated cardiomyocytes. The GTPase activating factor
IQGAP3 contributes to the process of actin-myosin ring localization.
Its mis-localization results in failure of cleavage furrow formation and
mitotic microtubule distribution, thus causing bi-nucleation (Leone
et al., 2018). Additional regulators of cardiomyocyte bi-nucleation are
troponin i3 kinase (Patterson et al., 2017), thyroid hormone signaling
(Hirose et al., 2019), and the extracellular matrix molecules
nephronectin and slit homolog 2 protein (Wu et al., 2020), although
the cellular mechanisms by which these factors cause cytokinesis

failure remain to be investigated. Various interventions that have been
reported to stimulate cardiomyocyte proliferation also induce smaller
changes in the percentage of bi-nucleated cardiomyocytes, e.g., Meisl
gene inactivation (Mahmoud et al., 2013), telomeric erosion (Aix et al.,
2016) and hypoxia (Kimura et al., 2015; Nakada et al., 2017), although
their mechanistic connections to cytokinesis failure are unknown.

Cardiomyocyte fusion has also been proposed as a mechanism
forming bi- and multi-nucleated cells. However, in zebrafish,
cardiomyocyte fusion does not lead to bi-nucleation or polyploidy,
but is associated with cell cycle entry, suggesting that fusion
could be a trigger for cardiomyocyte re-entry into the cell cycle
(Sawamiphak et al., 2017). A paradigm of transient cardiomyocyte
fusion has also been suggested in mammals. For example, rat
cardiomyocytes fuse with non-cardiomyocyte cell types and re-enter
the G2-M phase of the cell cycle; however, these results are limited to
cell culture and to neonatal rat cardiomyocytes (Matsuura et al.,
2004). Fusion between cardiomyocytes and skeletal muscle cells has
also been shown to result in multi-nucleated cells in mice (Reinecke
etal., 2004). In addition, a recent report used a confetti Cre-lox system
in mice to show putative cardiomyocyte fusion resulting in
bi-nucleated cells (Ali et al., 2020). Although, in principle, fusion
provides an additional path to generating bi- and multi-nucleated
cardiomyocytes, this may not be a dominant mechanism because all
of these reports agree that fusion events are rather rare.

Karyokinesis failure generates polyploid cardiomyocyte
nuclei

Karyokinesis involves a series of steps that lead to the division of the
nucleus of the cell, resulting in two daughter nuclei (Fig. 2B).
Specifically, the process begins with nuclear envelope breakdown
(NEB), followed by the alignment and segregation of the chromosomes.
Karyokinesis concludes with nuclear envelope reassembly around the
two sets of daughter chromosomes. Karyokinesis failure involves the
uncoupling of DNA replication from the completion of nuclear division
(Edgar et al., 2014). Several studies of cardiomyocytes have shown that
the mechanisms generating polyploid nuclei are distinct from the
aforementioned cytokinesis failure mechanisms that form bi- and multi-
nucleated cardiomyocytes (Table 1).

Depletion of survivin, an inhibitor of apoptosis protein,
significantly increases DNA content in cardiomyocyte nuclei
without cell division (Levkau et al., 2008). Deletion of glycogen
synthase kinase (GSK)-3o00 also promotes polyploidization,
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Fig. 2. Cytokinesis and karyokinesis failure mechanisms in cardiomyocytes. (A) Ect2 has a function in mediating cleavage furrow ingression and
abscission during cytokinesis. Normal expression of Ect2 during development thus allows for cytokinesis to occur (top). However, a reduction in Ect2
expression (bottom) causes cytokinesis failure, leading to the formation of bi-nucleated (or multi-nucleated) cardiomyocytes. (B) Lamin B2 has a function in
karyokinesis, controlling nuclear envelope breakdown (NEB) during prometaphase. If lamin B2 levels are normal, karyokinesis can take place (top). However,

O 7y

Plasma membrane Microtubule

insufficient lamin B2 levels (bottom) lead to incomplete NEB. This prevents complete spindle microtubule attachment to centromeres, resulting in

prometaphase arrest and formation of polyploid daughter nuclei.

specifically an increase in 4N nuclei, owing to incomplete
karyokinesis (Zhou et al., 2016). In addition, inducible transgenic
expression of the transcription factor Myc increases the number
of polyploid cardiomyocyte nuclei in adult mice (Xiao et al.,
2001). However, more recent results suggest that increasing the
expression of Myc together with that of the positive transcription
elongation factor (P-TEFD) increases cardiomyocyte proliferation
without changing the percentages of bi- and multi-nucleated
cardiomyocytes (Bywater et al., 2020). Decreased expression of
Lamin B2, an intermediate filament of the nuclear lamina, is also
responsible for karyokinesis failure in cardiomyocytes. Lamin B2
gene inactivation in mice inhibits progression of prometaphase to
metaphase, due to failure of proper NEB. Incomplete NEB prevents
effective attachment of mitotic spindle microtubules to centromeres
in prometaphase (Fig. 2B), creating a prometaphase to metaphase
block and resulting in the formation of polyploid nuclei (Han
et al., 2020). Overall, these findings indicate that the mechanisms
forming polyploid nuclei are different from those forming bi- and
multi-nucleated cardiomyocytes. This is also in agreement with
the observation that bi-nucleated cardiomyocytes and polyploid
cardiomyocyte nuclei are formed over different timescales
(discussed below) in both mice and humans (Soonpaa et al.,
1996; Mollova et al., 2013; Bergmann et al., 2015).

The relationship between karyokinesis failure and
cytokinesis failure in cardiomyocytes

In mice, 80-95% of cardiomyocytes become bi-nucleated within
7-10 days of birth (Soonpaa et al., 1996). The formation of polyploid
nuclei occurs around 3 weeks after birth, i.e. after the surge of
bi-nucleation (Walsh et al., 2010; Alkass et al., 2015). In humans, a

surge of polyploidization occurs in cardiomyocytes at around
10 years after birth to establish a level of 35% mono-nucleated
cardiomyocytes with polyploid nuclei. The percentage of
cardiomyocytes with polyploid nuclei then steadily increases until
20 years (Herget et al., 1997; Mollova et al., 2013; Bergmann et al.,
2015). A further small increase in the percentage of cardiomyocytes
with polyploid nuclei has been reported in humans over the age of
20 years (Mollova et al., 2013), which is consistent with the
observation that some cardiomyocytes are seen to exist in S phase
and M phase at this age (Bergmann et al., 2009; Mollova et al., 2013).
Thus, although in mice the formation of bi- and multi-nucleated
cardiomyocytes with polyploid nuclei occurs within 3 weeks of birth,
this process takes more than a decade in humans. This suggests that
karyokinesis failure likely occurs after cytokinesis failure, implying
that cardiomyocytes with polyploid nuclei could represent a more
advanced stage of differentiation. However, cytokinesis failure may
not be required for karyokinesis failure to occur.

Repression of the cytokinesis gene Ect2 is linked to the formation
of bi-nucleated cardiomyocytes in mice and in human infants with
congenital heart disease (Liu et al., 2019). However, it is important
to emphasize that Ect2 gene inactivation does not alter S-phase or
M-phase entry in cardiomyocytes (Liu et al., 2019). As such,
successive cytokinesis failure could generate multi-nucleated
cardiomyocytes, which are prevalent in pigs (Adler et al., 1996;
Velayutham et al., 2020) and found at raised levels in human infants
with tetralogy of Fallot (Liu et al., 2019) (Fig. 3). The cell cycle
potential of bi-nucleated cardiomyocytes also allows subsequent
cell cycle entry, thus providing a mechanism for the generation of
polyploid nuclei in bi-nucleated cardiomyocytes (Fig. 3). Although
it has been suggested that bi-nucleated cardiomyocytes can divide in
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Fig. 3. The generation of terminally differentiated cardiomyocytes involves hierarchical karyokinesis and cytokinesis failure. The dashed vertical
arrow indicates the multiple maturation steps leading from cardiac progenitor cells to cardiomyocytes. Cell cycle phases are indicated on the left. (A) In a
normal cell division cycle, cardiomyocytes express the complete set of cell cycle genes required for transition of the complete cell cycle. (B) Insufficient levels
of the cytokinesis gene Ect2 cause cytokinesis failure, leading to the formation of bi-nucleated cardiomyocytes. These cells can re-enter the cell cycle and
progress to cytokinesis such that consecutive cytokinesis failure generates multi-nucleated (>4 nuclei) cardiomyocytes. (C) Insufficient levels of lamin B2 can
cause karyokinesis failure, resulting in the formation of cardiomyocytes with polyploid nuclei. These cells have a very low potential to re-enter the cell cycle.

mice (Naqvi et al., 2014), live cell imaging of cardiomyocytes in
culture shows that the division of bi-nucleated cardiomyocytes is
rare (Bersell et al., 2009; Leone and Engel, 2019).

Cardiomyocytes with polyploid nuclei have a lower cell cycle
activity than those with diploid nuclei (Han et al., 2020), suggesting
that karyokinesis failure could be the final process in the formation of
terminally differentiated cardiomyocytes. It is known that Lamin B2
protein levels in mice decrease after birth, thereby reducing NEB and
preventing spindle microtubule attachment to centromeres, which
prevents karyokinesis and, consequently, cytokinesis. Accordingly,
experimental gene inactivation of Lamin B2 increases the percentage
of cardiomyocytes with polyploid nuclei. As these cells have
decreased cell cycle potential, there are fewer cell cycle re-entries
that end with cytokinesis failure, resulting in a lower percentage of bi-
nucleated cardiomyocytes, which further supports the notion that
karyokinesis failure could be the final process in the formation of
terminally differentiated cardiomyocytes.

Some inbred mouse strains have different proportions of mono-
versus bi-nucleated diploid cardiomyocytes, suggesting a genetic
influence (Patterson et al., 2017). This has been linked to
polymorphisms in the gene encoding the cardiomyocyte-specific
kinase Tnni3k. 7nni3k gene inactivation increases the percentage of
diploid mono-nucleated cardiomyocytes (Patterson et al., 2017).
However, the function of Tnni3k in cytokinesis and karyokinesis is
unclear, and it is possible that Tnni3k participates in the formation
of both bi-nucleated cardiomyocytes and polyploid nuclei via
unknown mechanisms.

The significance of cardiomyocyte polyploidy for heart
regeneration

Although it has been commonly thought that hearts with a high
percentage of mono-nucleated diploid (2N) cardiomyocytes can
regenerate, functional support for this notion was lacking until
recently. Studies in zebrafish have shown that overexpression of a C-
terminally truncated mouse Ect2, which lacks the guanine-
nucleotide exchange factor (GEF) domain but retains RhoA-GDP-
binding activity, thus exhibiting dominant-negative function by
interfering with the activation of RhoA by wild-type Ect2, increases
not only the percentage of bi-nucleated cardiomyocytes but also,
surprisingly, the percentage of cardiomyocytes with polyploid
nuclei (Gonzalez-Rosa et al., 2018). This mutant was used to show
that zebrafish hearts, in which the combined percentages of bi-
nucleated cardiomyocytes and cardiomyocytes with polyploid
nuclei was greater than 45%, exhibit decreased cardiomyocyte
proliferation and heart regeneration. This study established a
functional connection between a lower percentage of mono-
nucleated diploid cardiomyocytes and a decrease in heart
regeneration. However, it remained unclear whether polyploid
nuclei, bi-nucleated cardiomyocytes, or a combination of both
establish a barrier to cell cycle entry and division.

A positive correlation between a higher diploid mono-nuclear
cardiomyocyte content and proliferation capacity after injury has also
been observed in adult mice (Patterson et al., 2017). In this case,
genetic differences between inbred mouse strains influenced the
diploid mono-nuclear cardiomyocyte content (Gan et al., 2020). A
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Table 2. Comparison of the formation of multi-nucleated cells and polyploid nuclei in different mammalian organs

Multi-nucleated cells

Polyploid nuclei

Heart muscle cells

repression of Ect2 gene expression (Liu et al., 2019)

Liver cells

Cytokinesis failure: stimulation of B-adrenergic receptors leads, via
the Hippo tumor suppressor pathway (Yu et al., 2012), to

Insulin regulates the PI3K-Akt pathway that controls actin
cytoskeleton organization and Rho-A GTPase recruitment
required for cytokinesis (Gentric et al., 2012; Donne et al., 2020).
E2F transcription factor family members coordinate nucleation

Karyokinesis failure: decreased expression of lamin B2 leads to
incomplete nuclear envelope breakdown, which inhibits
prometaphase-metaphase progression (Han et al., 2020)

Bi-nucleated diploid hepatocytes generate two mono-nucleated
tetraploid progeny (Guidotti et al., 2003; Wang et al., 2017).
Oxidative damage and DNA damage are associated with
increase of polyploid hepatocytes (Gentric et al., 2015).

and ploidy, and regulate cytokinesis target genes such as Ect2,
Mkip1 (Kif23) and Racgap1 (Pandit et al., 2012). MicroRNA-122
is a regulator of hepatocyte bi-nucleation and targets cytokinesis

genes (Hsu et al., 2016).

Platelet generation

Placenta Receptor-dependent fusion of trophoblasts is mediated by human
trophoblast giant endogenous retroviral (HERV) envelope proteins syncytin 1 and
cells syncytin 2 (Soygur and Sati, 2016)

Cytokinesis failure: GEF-H1 and ECT2 are downregulated and fail
to activate Rho-A for cleavage furrow abscission (Gao et al.,
2012). Additionally, silencing of MYH10 prevents expression of
myosin Il (Machlus and ltaliano, 2013; Mazzi et al., 2018).

Karyokinesis defect: largely unknown; however, Fanconi anemia
group A protein (Fanca) knockout induces nucleoplasmic bridges
(Gao et al., 2012; Lordier et al., 2012; Pawlikowska et al., 2014;
Mazzi et al., 2018)

Mediated by endocycling via the regulation of cyclin-dependent
kinases (Cdks) and the anaphase-promoting complex/
cyclosome (APC/C) (Machida and Dutta, 2007; Zybina and
Zybina, 2020)

molecular connection between decreased thyroid hormone receptor
signaling and a lower percentage of polyploid cardiomyocytes has
also been demonstrated pharmacologically and genetically in mice,
and has been linked to improved heart regeneration (Hirose et al.,
2019). These results are surprising as thyroid hormone is beneficial
for tissue repair in numerous organs (Mourouzis et al., 2013), and as
thyroid hormone improves both cardiac contractility and
cardiovascular function after injury (Chowdhury et al., 2001,
Pingitore et al., 2019; von Hafe et al., 2019).

Relatively small increases in the percentage of mono-nucleated
diploid cardiomyocytes in mice (Patterson et al., 2017; Gonzalez-
Rosaetal.,2018; Han et al., 2020) appear to have positive effects on
myocardial regeneration. This could be explained by the existence
of privileged subpopulations of cardiomyocytes that are more
capable of proliferation. Molecular interventions that alter the size
of this subpopulation could thus cause a disproportionate
improvement of heart regeneration. However, human infants,
despite 70% of their cardiomyocytes being mono-nucleated
diploid (2N), develop scars after myocardial infarction and
permanent myocardial dysfunction after accidental coronary artery
obstruction during neonatal congenital heart disease surgery
(Franciosi and Blanc, 1968; Kirklin et al., 1992). This suggests
that the presence of a large percentage of mono-nucleated diploid
cardiomyocytes alone may not be sufficient for heart regeneration.

Cytokinesis failure and karyokinesis failure in cancer cells
and other cell types

Cytokinesis failure is one of the possible intermediate steps in the
formation of tetraploid or octaploid cancer cells, which can become
senescent or undergo further aberrant divisions that may result in
chromosomal instability and subsequent aneuploidy (Ganem et al.,
2007; Vitale et al., 2011). Cancer cells can also form micronuclei
from lagging chromosomes during aberrant mitosis (Crasta et al.,
2012). These micronuclei have abnormal composition of nuclear
lamins (Vitale et al., 2011), and it has been shown that B-type
lamins are involved in micronuclei stability in cancer cells (Hatch
et al.,, 2013). However, micronuclei have not been reported in
cardiomyocytes, likely due to the rare occurrence of mitotic events.
Moreover, although depletion of Lamin B2 reduces NEB in
cardiomyocytes and acts as a roadblock for karyokinesis and

cardiomyocyte proliferation, decreased expression of Lamin B2
in human cancer cells can result in chromosome instability and
mitotic spindle misalignment (Kuga et al., 2014). Although
cardiomyocytes do not undergo uncontrolled proliferation, loss of
glycogen synthase kinase (GSK) 3 isoforms has been shown to
induce cardiomyocyte mitotic catastrophe (Zhou et al., 2016).
Interestingly, cardiomyocytes become polyploid before undergoing
mitotic catastrophe (Zhou et al., 2016), although the details of this
process are unknown.

Cytokinesis failure also contributes to the formation of diverse
polyploid cell types in animals (Van De Peer et al., 2017; Fox et al.,
2020). For example, cytokinesis is the primary mechanism involved
in the formation of polyploid megakaryocytes that are responsible
for platelet production (Gao et al., 2012; Machlus and Italiano,
2013; Mazzi et al., 2018). Interestingly, downregulation of Ect2
expression is essential for polyploidization in megakaryocytes (Gao
et al.,, 2012). Bi-nucleated hepatocytes are also generated by
cytokinesis failure, which is also mediated by decreased Ect2
expression (Pandit et al., 2012; Hsu et al., 2016). Thus, decreased
Ect2 expression may be a general mechanism of programmed
cytokinesis failure in animal cells. In contrast, cancer cell
proliferation is associated with overexpression of Ect2 and
constitutively active Ect? mutants (Salhia et al., 2008; Hirata
et al., 2009; Justilien and Fields, 2009; Fields and Justilien, 2010)
(Table 2). In summary, cytokinesis and karyokinesis failure are
programmed in different cell types as part of development and
differentiation.

Although polyploid cells are found in diverse organs and tissues,
they may have distinct functions. As highlighted above, polyploid
cells in the adult heart appear to act as a barrier to regeneration.
However, epicardial cells, which make up the outer layer of the heart
and support cardiomyocyte proliferation (Cao and Poss, 2018),
become polyploid during regeneration. Specifically, in zebrafish,
epicardial cells at the injury border become polyploid and undergo
hypertrophy in the process of regeneration (Cao et al., 2017). In
mammals, polyploid hepatocytes contribute to liver regeneration
(Pandit et al., 2012; Matsumoto et al., 2020). The cell cycle
transcription factors E2F7 and E2F8 regulate hepatocyte
polyploidization (Pandit et al., 2012), although whether they have
a similar function in cardiomyocytes is unclear. The formation of
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polyploid cells is also a mechanism of tissue regeneration in
Drosophila (Losick et al., 2013, 2016; Xiang et al., 2017; Cohen
et al., 2018; Grendler et al., 2019), indicating that polyploid cells
and their formation can also be part of regeneration.

Conclusions and perspectives

Failures in karyokinesis and cytokinesis appear to be regulated
processes that can generate polyploid nuclei and multi-nucleated
cardiomyocytes, respectively, via distinct molecular mechanisms.
There are distinguishing features between karyokinesis and
cytokinesis failure in cardiomyocytes vis-a-vis abnormal mitoses
in cancer: the programmed nature, as opposed to dysregulated
cancer cell mitosis; and the resulting decrease of the proliferative
potential of the polyploid daughter cardiomyocytes, as opposed to
the increased malignant potential in aneuploid cancer cells.

Differences in nucleation and ploidy raise questions about the
molecular differences between diploid and polyploid cardiomyocytes
at the transcriptional level. Although one report showed that all adult
mouse cardiomyocytes have a largely uniform transcriptional profile
(Yekelchyk et al., 2019), another group reported differences as a
result of Ect2 gene inactivation-induced cytokinesis failure
(Windmueller et al., 2020). A recently published study identified
that the transcriptional profile of cardiomyocytes is independent of
ploidy or nucleation but only differs in response to injury (Hesse
et al., 2021). It is possible that many currently used techniques for
single-cell transcriptional profiling do not capture the genome-wide
transcriptome of single cells and thus do not have the sufficient depth
to reveal all differences at the single cell level, highlighting that
further studies are needed. Likewise, the functional differences
between diploid and polyploid cardiomyocytes deserves future
examination.

Knowledge of the mechanisms generating bi-nucleated
cardiomyocytes and cardiomyocytes with polyploid nuclei could
help to advance our understanding of ploidy changes in heart
development and regeneration. Importantly, several issues relating
to reported molecular interventions for stimulating cardiomyocyte
regeneration in adult mice could be examined. For example,
although it has been shown that neuregulin induces cardiomyocyte
cell cycle entry, which promotes heart repair, this was associated
with a 50% division and a 50% cytokinesis failure in adult mice
(Bersell et al., 2009; Polizzotti et al., 2015); it would therefore be of
interest to study how other interventions affect karyokinesis failure
and cytokinesis failure. These include manipulation of Fstll (Wei
et al., 2015), Meisl (Mahmoud et al., 2013), the Hippo pathway
(Heallen et al., 2011; Von Gise et al., 2012), agrin (Bassat et al.,
2017), cyclin A2 (Shapiro et al., 2014), a combination of four
transcription factors (Mohamed et al., 2018) and hypoxia (Kimura
et al., 2015; Nakada et al., 2017). This new knowledge could also
help advance the differentiation of embryonic stem cells and
induced pluripotent stem cells (iPSCs) into terminally differentiated
cardiomyocytes, e.g. by pushing them towards polyploidy. In this
regard, a polyploidy-induced proliferative block in iPSC-derived
cardiomyocytes could be a safety feature for transplantation, where
unwanted proliferation of the transplanted cells needs to be avoided.
Finally, a tantalizing opportunity for applying this new fundamental
knowledge to improve human health exists in individuals with
tetralogy of Fallot, the most common form of cyanotic congenital
heart disease, in which the myocardial wall of the right ventricle is
exposed to increased mechanical strain due to right ventricular
hypertension (van der Ven et al., 2019). This increases B-AR
signaling, which drives cytokinesis failure via of Ect2 gene
repression, resulting in a predicted 30% reduction in the number

of cardiomyocytes in the right ventricle. However, this could be
prevented with B-blocker administration (Liu et al., 2019),
highlighting the fundamental importance of understanding the
basic mechanisms of cardiomyocyte terminal differentiation and
how they relate to human health and disease.
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