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ABSTRACT

Understanding the mechanisms of embryonic cell cycles is a central
goal of developmental biology, as the regulation of the cell cycle must
be closely coordinated with other events during early embryogenesis.
Quantitative imaging approaches have recently begun to reveal how
the cell cycle oscillator is controlled in space and time, and how it is
integrated with mechanical signals to drive morphogenesis. Here, we
discuss how the Drosophila embryo has served as an excellent model
for addressing the molecular and physical mechanisms of embryonic
cell cycles, with comparisons to other model systems to highlight
conserved and species-specific mechanisms. We describe how the
rapid cleavage divisions characteristic of most metazoan embryos
require chemical waves and cytoplasmic flows to coordinate
morphogenesis across the large expanse of the embryo. We also
outline how, in the late cleavage divisions, the cell cycle is inter-
regulated with the activation of gene expression to ensure a reliable
maternal-to-zygotic transition. Finally, we discuss how precise
transcriptional regulation of the timing of mitosis ensures that tissue
morphogenesis and cell proliferation are tightly controlled during
gastrulation.

KEY WORDS: Cell cycle, Cytoplasmic flows, Signaling waves,
Gastrulation, Maternal-to-zygotic transition

Introduction

In many species, early development initiates with rapid and almost
synchronous mitotic divisions that slow over time as the embryo
approaches the key developmental transition to gastrulation
(Foe et al., 1993; O’Farrell, 2015). These early divisions are
much faster than somatic divisions in adult tissues and do not
contain gap phases of the cell cycle (Farrell and O’Farrell, 2014);
the cell cycle simply oscillates between DNA synthesis and mitosis.
This happens because the supply of maternal mRNAs deposited in
the oocyte during gametogenesis allows the cell cycle oscillator
to run essentially as an unperturbed biochemical clock (Murray
and Kirschner, 1989). In Drosophila, these early pre-gastrulation
divisions are nuclear divisions that take place in a syncytium, i.e. a
large multinucleated cell, whereas in vertebrates these rapid
divisions include separation of the cytoplasm.

The large size of embryos and speed of divisions impose a need
for coordination across several hundred micrometers over
timescales of a few minutes or less. Thus, the regulation of these
early cleavage divisions requires specialized mechanisms. Long-
range coordination is achieved through gradients or traveling waves
of the cell cycle oscillator. Moreover, the cell cycle-dependent
regulation of cytoskeletal dynamics generates physical forces,
which further facilitate embryo-wide collective dynamics.

Department of Cell Biology, Duke University Medical Center, Durham, NC 27705,
USA.

*Author for correspondence (stefano.ditalia@duke.edu)

S.D., 0000-0001-9758-7925

In most metazoans, there is a transition prior to gastrulation from
synchronous and rapid cell divisions to patterned divisions, which
often corresponds with the establishment of cell fate specification
domains (Foe, 1989; Kane et al., 1992; Arora and Niisslein-
Volhard, 1992; Murakami et al., 2004). This transition and
remodeling of the cell cycle coincides with the activation of
zygotic transcription (Newport and Kirschner, 1982; Lasko, 2013;
Farrell and O’Farrell, 2014; Yartseva and Giraldez, 2015; Yuan
etal., 2016; Jukam et al., 2017). In many species, the timing of these
events is linked to the changing nuclear-to-cytoplasmic (N/C) ratio
that naturally occurs when cells divide without growth (Newport
and Kirschner, 1982; Edgar et al., 1986). Thus, both before and after
gastrulation, the dynamics of cell cycle regulation are key to early
transitions in embryonic development.

Here, we will review recent progress that dissects the spatial
regulation of the cell cycle oscillator and how biochemical and
mechanical signals are integrated to ensure proper coordination of
early development. We will also discuss recent progress on how
embryos control the number of cleavage divisions and how
transcription can ensure the precise timing of the cell cycle during
gastrulation. This Review will focus primarily on recent insights
from the Drosophila model system, where quantitative live-imaging
tools have enabled the measurement of cell cycle dynamics with
high spatiotemporal precision. However, we will also discuss how
mechanisms similar to those observed in the fly embryo have been
uncovered in other models, including frog, fish, worm, mouse and
starfish embryos.

Molecular mechanisms of cell cycle control in the pre-
gastrulation embryo
The cell cycle machinery is highly conserved and has been
extensively reviewed elsewhere (Heim et al., 2017; Morgan, 2006).
Here, we briefly introduce the key molecular mechanisms pertinent to
this Review. Cyclin-dependent kinases (Cdks) drive progression
through the mitotic cell cycle (Heim et al., 2017). Activation of Cdks
requires the binding of a cyclin, and different cyclins bind and activate
different Cdks at each cell cycle stage (Nigg, 1995; Jeffrey et al.,
1995). The oscillating concentration of cyclins throughout the cell
cycle is the initial driver of mitotic periodicity (Glotzer et al., 1991,
Morgan, 1997; Murray, 2004). A central control mechanism of the
oscillations is cyclin degradation at mitotic exit (Holloway et al.,
1993; Parry and O’Farrell, 2001). In the vast cytoplasm of developing
embryos, this degradation initiates near dividing spindles and
chromosomes, and can drive either local or global downregulation
of Cdkl activity (Evans et al., 1983; van der Velden and Lohka,
1994; Edgaretal., 1994a; Su et al., 1998; Huang and Raff, 1999; Ban
et al., 2007; Bischof et al., 2017). This dependence primarily on
autonomous, oscillatory Cdk1 activity for cell cycle progression is
unique to the simple cell cycles in the early embryo, which lack gap
phases, whereas in somatic cells the cell cycle can be paused at the
G1/S or G2/M transitions (Elledge, 1996; Morgan, 1997).

In addition to changes in Cdk1 activity driven by oscillations in
cyclin concentration, feedback mechanisms are also important for
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the regulation of Cdkl activity. At mitotic entry, two inhibitory
phosphorylation events, mediated by the kinases Weel and Mytl
(Campbell et al., 1995; Mueller et al., 1995a,b), shape Cdk1 activity
(Fig. 1Ai1). Weel tyrosine kinase phosphorylates Cdk1 at the Y15
residue (Parker and Piwnica-Worms, 1992), whereas Mytl can
phosphorylate both Y15 and T14 residues (Kornbluth et al., 1994;
Mueller et al., 1995a). Cdc25 phosphatases antagonize the action of
Weel and Mytl by removing Y15 and T14 inhibitory phosphate

[ Cycle 12 Cycle 13

= Cdk1/PP1
——— Chk1

Enzyme activity

Time

Fig. 1. Cdk1 activity oscillates in the cell cycle through a network of
positive- and negative-feedback loops. (A) Cdk1 activity is regulated by
negative phosphorylation, positive phosphorylation and feedback from APC/C
and phosphatases. Pink-labeled enzymes and phosphorylations indicate
negative feedback on Cdk1 activity; cyan-labeled enzymes and
phosphorylations indicate positive feedback on Cdk1 activity. (i) Inhibitory
phosphorylation of Cdk1 is regulated by the kinases Wee1 and Myt1, which
phosphorylate Cdk1 at T14 and Y15. The phosphatase Cdc25 counteracts the
T14/Y15 phosphorylation and is itself regulated by the kinase Chk1. (ii) Cyclin B
binding to Cdk1 results in an activating phosphorylation eventat T161. The APC/
C protein complex is activated by Cdk1 and provides negative feedback by
resetting cyclin B levels. (i) Phosphatases play an important role in
antagonizing Cdk1 activity directly and on Cdk1 substrates. Cdk1 activates the
phosphatase PP1, which then removes phosphorylation from other Cdk1
substrates. The phosphatase PP2A, when associated with the B55 regulatory
subunit, acts as a direct inhibitor of Cdk1 by removing the T161 activating
phosphorylation. Cdk1 promotes its own activity in a positive-feedback loop by
phosphorylating Gwl, which inhibits PP2A-B55 through activation of ENSA. (B)
Feedback loops lead to changes in the Cdk1 phosphorylation state and thus
oscillations of Cdk1 activity within the cell cycle. During the early divisions of the
embryo, the cell cycle oscillates between mitosis (M) and DNA synthesis (S),
without gap phases. The ratio of active Cdk1 to PP1 is high (cyan line) as nuclei
undergo mitosis, and drops as nuclei exit mitosis and enter S phase. The steep
slope of the switch from inactive to active Cdk1 is reflective of measures of Cdk1
and Chk1 activity from Deneke et al. (2016), and illustrates the bistability of Cdk1
activity in which Cdk1 quickly switches between two stable states.

groups from Cdkl (Kumagai and Dunphy, 1992; Morgan, 1997).
Cdk1 participates in a positive-feedback loop by inactivating Weel
and activating Cdc25 (Mueller et al., 1995b; Kumagai and Dunphy,
1992; Hoffmann et al.,, 1993). This positive-feedback loop is
important for the regulation of mitotic entry (Solomon et al., 1990;
Sha et al., 2003; Pomerening et al., 2003; Stumpff et al., 2004; Tsai
et al.,, 2014) and integrates inputs from an additional layer of
regulation — the DNA replication checkpoint — to ensure that nuclei
do not enter mitosis before completion of DNA replication. A major
effector of this checkpoint is the protein kinase Chkl, which
controls Cdkl activity by activating Weel and inhibiting Cdc25
(Fig. 1A-B) (Tang et al., 1993; Peng et al., 1997; Sanchez et al.,
1997; Lee et al., 2001; Shimuta et al., 2002; Uto et al., 2004).

Following mitosis, a negative-feedback mechanism resets Cdk1
activity through Cdkl-dependent activation of the anaphase-
promoting  complex/cyclosome (APC/C)  (Pines, 2011)
(Fig. 1Aii). The APC/C is a large complex of proteins that has
E3-ubiquitin ligase activity and thus promotes ubiquitylation and
degradation of cyclins, leading to reduced Cdk1 activity (King et al.,
1995; Irniger et al., 1995). Mitotic exit is also facilitated by
phosphatases that remove mitotic phosphorylation from Cdkl
targets (Fig. 1Aiii). Protein phosphatase 2A (PP2A) associates with
the regulatory subunit B55, forming a holoenzyme that is a major
Cdkl1 antagonist (Mochida et al., 2009). Protein phosphatase 1
(PP1) directly removes mitotic phosphorylation laid down by Cdk1
and it additionally facilitates the activation of PP2A (Wu et al.,
2009; Grallert et al., 2015; Heim et al., 2017). Both PP2A and PP1
undergo cell cycle-dependent oscillations in their activity towards
mitotic targets. Specifically, both phosphatases have low activity at
the onset of mitosis and their activity rapidly increases at mitotic exit
(Mochida et al., 2009; Wu et al., 2009) (Fig. 1B). Several feedback
mechanisms contribute to this. For PP1, direct phosphorylation by
Cdk1 and self-dephosphorylation, as well as regulation of co-factors
(inhibitor 1 and inhibitor 2), have been implicated (Wu et al., 2009).
PP2A activity is also regulated by feedback from Cdk1. The kinase
greatwall (Gwl) inhibits PP2A-BS55 by phosphorylating endosulfine
alpha (ENSA), which binds and inhibits PP2A (Mochida et al.,
2010). Gwl is in turn phosphorylated and activated by Cdk1, so that
phosphatase activity remains low while Cdkl activity is high
(Hégarat et al., 2014). Collectively, the positive- and negative-
feedback loops highlighted above provide avenues by which the cell
cycle oscillator can be programmed during embryogenesis.

Traveling waves coordinate the rapid cell cycle events

in developing embryos

Trigger waves: an early model for propagating mitotic waves in

the embryo

Coordinated mitotic events characterize the early stages of
embryogenesis of Drosophila, Xenopus and other systems. These
events are coordinated across the large distance of the embryo, a
phenomenon that cannot be achieved by simple diffusion (see
Box 1). The early divisions of the Drosophila embryo occur within
minutes across the 500 um syncytium (Foe and Alberts, 1983).
However, simple diffusion of active Cdkl would take hours to
traverse this distance (Box 1). To overcome this problem, it was
theorized that the combination of diffusion and bistability of the cell
cycle oscillator could generate trigger waves of Cdk1 activity that
would synchronize mitosis across the large embryo (Novak and
Tyson, 1993, Box 1). Trigger waves have several desirable features
for propagating a robust biological signal across the expanse of the
embryo. Specifically, they do not lose amplitude as they travel and
they can transfer signals much more rapidly than by simple diffusion
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Box 1. Bistability and diffusion

Bistability

Bistability describes the property of dynamic systems with two stable
(equilibrium) points, e.g. a low activity and high activity state. When the
activity of the system lies between the two stable states, the activity will
either increase or decrease to reach a stable equilibrium point. Whether
an activity value will evolve toward the low or high activity state depends
upon a threshold for the system. Values below the threshold will proceed
toward the low steady state, whereas values above the threshold will
proceed toward the high steady state. Thus, bistability is usually
characterized by rapid transitions between the two states. The cell
cycle oscillator is characterized by a series of bistable transitions, where
the low and high net activity of Cdk1 and opposing phosphatases
represent the two states (Morgan, 2006). In biological systems such as
the cell cycle control network, bistability usually arises from nonlinear
positive feedback (Ferrell and Ha, 2014).

Diffusion

All molecules inside a cell are subject to random thermal motion. Such
motion can be described by the diffusion equation, in which the molecule
of interest is characterized by a diffusion constant D. In first
approximation, this constant is dependent on properties of the medium
and the molecule. Typical values for the intracellular diffusion constant of
proteins are of the order D~1-10 um? s~"'. A major property of diffusion is
that the time (t) needed for molecules to spread across a given distance
(1) scales as the square of distance, t~I? D~'. Although diffusion can
easily spread signals in several seconds across distances on the order of
10 pm, the time needed to spread such signal across 100 pmis 100 times
as long. Thus, for rapid communication (within a few minutes) across a
large expanse such as the 500 um Drosophila embryo, simple diffusion is
insufficient. Alternative mechanisms, such as fluid flows, direct transport,
reaction-diffusion-generated gradients and waves must be adopted.
These strategies have the additional advantage that the transported
signal does not become dampened during spreading, as is typically
observed for signals spreading by simple diffusion.

(Gelens et al., 2014; Deneke and Di Talia, 2018). In Drosophila
embryos and Xenopus egg extracts, imaging studies of mitotic
waves and their regulation have uncovered how Cdk1 activity and
simple diffusion couple to move signals quickly across the embryo.
The trigger wave model proposes that mitotic signaling is
propagated as a bistable wave (Box 2). Observing nuclear
membrane breakdown in Xenopus egg extract loaded into long,
thin Teflon tubes, it was found that mitosis traveled down the tube at
a constant velocity, which is consistent with a wave (Chang and
Ferrell, 2013). Partitioning the tube caused nuclear breakdown to
decouple on the two sides, suggesting that coordination relies on
physical coupling. Inhibition of Weel activity changed the speed of
the mitotic wave front, supporting a role for Cdk1 in mitotic waves
(Chang and Ferrell, 2013). Thus, these experimental data are
consistent with mitotic waves being described as trigger waves.

Cdk1 activity spreads through Drosophila embryos via sweep waves

Although the above experiments and the bistable nature of mitosis
had argued that a bistable wave could explain the dynamics of
mitotic waves in early embryos, direct observation of Cdk1 activity
waves was crucial to elucidate their biological and physical
mechanism (Deneke et al, 2016; Vergassola et al., 2018).
Strikingly, observation of Cdkl activity in vivo demonstrated a
novel mechanism of wave-like propagation, a sweep wave (Deneke
et al.,, 2016; Vergassola et al., 2018), that can travel across the
embryo even more quickly than a trigger wave (Box 2). This
observation was achieved in the Drosophila embryo using a
fluorescence resonance energy transfer (FRET) sensor that reports
on the phosphorylation state of a Cdkl target (Gavet and Pines,

Box 2. Reaction-diffusion systems

Long-range order and rapid signal communication can be established in
reaction-diffusion systems. Often in cellular systems, the reaction terms
assume the form of protein synthesis and degradation, and non-linear
feedback (positive and negative). In this Review, we discuss two
mechanisms by which reaction-diffusion systems can generate wave-like
spreading of biochemical activity: trigger waves and sweep waves.
Trigger waves

Trigger waves arise from the coupling of diffusion and bistability. As
nucleiin the embryo approach mitosis, high Cdk1 activity (mitotic state) in
a region causes some of the active Cdk1 molecules to diffuse to
neighboring regions, which are in the low state (interphase). In this
region, positive feedback can cause Cdk1 to further increase and nuclei
to enter the mitotic state. This process will continue until the entire
embryo enters the mitotic state. In the Drosophila embryo, experimental
and modeling arguments suggest that the speed of a Cdk1 trigger wave
would be about 0.4 um s~", which implies that it would take about 10 min
for awave to travel across the entire embryo. Yet all nuclei divide within 1-
2 min, arguing that a more rapid mechanism is at play. This mechanism
was shown to be sweep waves.

Sweep waves

Sweep waves arise when bistability is transient and the transition from a
bistable system to a system with only one stable state (e.g. high Cdk1
activity) happens on a much faster timescale than that needed for a wave
to propagate. In this case, even if a bistable wave is initiated in a region of
the embryo, this wave would not be able to travel far before the activity in
the entire system switches towards the high state. To understand how
this switch to the high state gives rise to waves, one needs to understand
what happens when Cdk1 activity is low during interphase. Using both
theoretical and experimental analyses, we showed that the early
reaction-diffusion dynamic generates Cdk1 activity gradients that
extend for about 100-150 um. Late in interphase, when bistability is
lost, Cdk1 activity rises towards the high stable state at a uniform rate
across the entire embryo. The uniform rise of Cdk1 gradients causes
wave-like mitotic entry as different regions across the gradient enter
mitosis at slightly different times. Thus, the speed of the mitotic wave is
inversely proportional to the steepness of the gradient and directly
proportional to the rate at which the system moves away from bistability, a
theoretical prediction that we confirmed experimentally. Moreover, if the
Cdk1 gradients are not very steep and the drive is rapid, very fast mitotic
waves will be observed.

2010; Deneke et al., 2016, 2019). Analysis of the spatial profiles of
Cdkl1 activity demonstrated that they lack the crucial property
expected for bistable trigger waves, i.e. a wavefront, in which a high
state of Cdkl activity connects to regions of low Cdkl activity
(Murray, 1989; van Saarloos, 1998). Instead, at the onset of mitosis,
gradients of Cdk1 activity that rapidly rise uniformly are observed
(Vergassola et al., 2018) (Fig. 2A, Box 2). This phenomenon allows
the Drosophila embryonic divisions to progress across the embryo
even more rapidly than is theoretically possible by a trigger wave
under the same parameters. In fact, weakening the positive-feedback
loops that promote Cdkl1 activation transforms sweep waves into
trigger waves, which leads to slower mitotic waves (Vergassola
et al., 2018) (Fig. 2A).

The generation of sweep waves relies on the fact that early
reaction-diffusion Cdkl dynamics result in the establishment of
signaling gradients that can span regions of about 100-150 um
(Box 2). Late in interphase, the rapid accumulation of cyclins drives
loss of bistability — the only stable state becomes high Cdk1 activity
(mitosis) — and thus Cdk1 activity rises at a uniform rate across the
embryo. This causes a global uniform increase of the gradients of
Cdk1 activity and a wave-like pattern of mitotic entry (Vergassola
et al., 2018) (Fig. 2A). After mitotic entry, the other mitotic events
follow in a clock-like manner; thus, waves of mitotic exit are also
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Fig. 2. Time-dependent sweep waves of Cdk1 activity
grow synchronously across the Drosophila embryo to
drive faster entry into mitosis. (A) Theoretical Cdk1
activity curves in the Drosophila embryo illustrate the
differences between sweep waves and trigger waves.
Sweep waves preserve the spatial gradient of Cdk1 activity
across the embryo while increasing the overall level of
Cdk1 activity. The levels of Cdk1 activity at the left and right
ends of each curve sweep upward with time. Unlike sweep
waves, trigger waves arise from the invasion of a
metastable state by a stable state. The left and right ends of
the curves (the metastable and stable points of the bistable
system) are roughly unchanged with time. The embryos
pictured below right lack any feedback on Cdk1 activity due
to mutations in wee 7 and in the Drosophila cdc25 homolog,
cdc25™me leading to a slower sharp wave front that
propagates across the embryo. Images reproduced, with
permission, from Vergassola et al. (2018). (B) In
Drosophila embryos, the cell cycle propagates as a wave
(green) that relies on diffusion during S phase. A barrier
(black) placed during interphase blocks wave propagation.
After mitosis is initiated by high Cdk1 activity, the events of
mitosis proceed as a wave that is pre-patterned by the early
Cdk1 levels and thus propagates through the barrier.
Adapted, with permission, from Deneke et al. (2016).
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observed (Dencke et al., 2016; Vergassola et al., 2018).
Consistently, it was demonstrated that insertion of an
impenetrable barrier in early interphase in Drosophila embryos
causes mitosis to decouple in the two sides, but insertion in late
interphase or early mitosis does not (Deneke et al., 2016) (Fig. 2B).

A qualitative difference between sweep and trigger waves is in the
dependency of the wave speed on the rate of cyclin accumulation.
For trigger waves, one expects a very small dependency on that rate,
whereas the speed of sweep waves shows a strong dependency
(Vergassola et al., 2018) (Box 2). This is seen in Drosophila
embryos, where there is a decrease in the speed of Cdk1 waves when
cyclin A and cyclin B levels are reduced by heterozygous mutations
(Vergassola et al., 2018). Moreover, the wave speed is quantitatively
captured by the theory of sweep waves in both wild-type and mutant
embryos (Vergassola et al., 2018). Recent experimental results in
Xenopus extracts might be consistent with a transition from sweep to
trigger waves as the cell cycle slows down. Seeding a frog egg
extract with fewer nuclei resulted in initially fast cycles that
progressively slowed down (Chang and Ferrell, 2013). The speed of
the mitotic waves initially demonstrated a strong dependency on cell
cycle duration (Nolet et al., 2020), but eventually mitotic waves
slowed and achieved speeds independent of cell cycle duration
(Nolet et al., 2020; Afanzar et al., 2020). Collectively, these
observations suggest that there are two mechanisms for mitotic
waves and that the dominating one is determined by how rapidly the
system progresses through the cell cycle.

Waves in Xenopus embryos are controlled by cell-autonomous clocks

In Xenopus extracts and Drosophila embryos, simple diffusion can
propagate signals across the shared cytoplasm. However, in the intact
Xenopus embryo, cytokinesis physically separates the cytoplasm of
neighboring cells (Singal and Sanders, 1974; Keller, 1991), yet waves
of cell division across multiple cells are still observed (Anderson
etal.,2017). Using temperature gradients, it was investigated whether
the waves observed from the second cell cycle onwards required
diffusion or whether they were regulated by cell-autonomous clocks
ticking at different periods (Anderson et al., 2017). Remarkably,
these experiments showed that mitotic waves are due to autonomous
clocks ticking at different rates, such that cells on the ‘cold’ side of the
embryo and cells on the ‘warm’ side of the embryo never caught up
with one another through 10 rounds of cell division. Instead, the two
sides of the embryo maintained their own periodicity of mitosis
(Anderson et al.,, 2017). Understanding what determines the
periodicity of cell-autonomous cycling will reveal interesting
insights into the developmental mechanisms of cell cycle control.
Intriguingly, embryos that were forced to desynchronize with
temperature gradients were viable (Anderson et al., 2017). Such
remarkable robustness was previously observed in Drosophila
embryos, where temperature gradients can similarly desynchronize
the cell cycle, yet patterning seems robustly restored at gastrulation
(Lucchetta et al., 2005). How embryos can compensate for significant
delays in the timing of mitosis remains an unanswered question. It
would be intriguing to find out whether there are developmental
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checkpoints able to resynchronize developmental pathways or
whether the embryo is able to deal with the timing differences
gradually by compensatory mechanisms.

Contractility and cytoplasmic flow couple cell cycle
oscillations with mechanics in the embryo

In addition to chemical mechanisms that coordinate mitotic
divisions across space, the mechanical properties of the early
embryo must be tightly controlled to bring about proper
morphogenesis. This is achieved by inter-regulation of the cell
cycle oscillator and the cytoskeleton, and ensures the positioning of
organelles, e.g. nuclei in the Drosophila embryo, and the separation
of yolk from cytoplasm in zebrafish.

The cell cycle regulates cortical actomyosin to reposition

nuclei in Drosophila

In the early Drosophila embryo, the first six nuclear divisions occur
in the center of the embryo (Foe and Alberts, 1983). The first three
nuclear divisions are characterized by little nuclear movement.
From nuclear cycle 4 to 6, the nuclei gradually spread across the
anterior-posterior axis of the embryo. Following this phase, also
known as axial expansion, the nuclei progressively migrate to the
cortex from nuclear cycle 7 to the end of nuclear cycle 10 (Foe and
Alberts, 1983). Early time-lapse imaging studies suggested that
axial expansion is controlled by dissolution of an F actin network in
the bulk cytoplasm, which initiates cytoplasmic flows that push
nuclei along the anterior-posterior axis (von Dassow and Schubiger,
1994). However, it was later proposed that cycles of myosin II
activity at the cortex might produce cytoplasmic flows and drive
nuclear movements (Royou et al., 2002). Indeed, oscillations of
myosin II activity were observed at the cortex of early Drosophila
embryos starting at the 4th mitotic division, and these oscillations
were shown to depend on Cdkl activity (Royou et al., 2002).
However, as cyclin degradation is restricted to a very small region
near the nuclei (Edgar et al., 1994a; Su et al., 1998), this raised the
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question of how the cell cycle oscillator could control cortical
contractions many micrometers away. Such coordination would not
be required for the bulk actin model, which could be controlled by
cell cycle oscillations restricted around the chromosomes.
Distinguishing whether bulk or cortical actomyosin drives
nuclear spreading was made difficult by the fact that most genetic
and pharmacological perturbations would affect actomyosin
globally across the embryo. How the cell cycle and actomyosin
dynamics are integrated to drive nuclear spreading required novel
imaging approaches that were introduced by our group (Deneke
et al., 2019). Using a FRET biosensor, we measured the ratio of
Cdk1 and PP1 activity directly in vivo. Although cyclin degradation
is restricted to a region of a few micrometers around the
chromosomes, the oscillation of Cdk1/PP1 activity extends to a
region of about 50 um, which is sufficient to couple nuclear and
cortical dynamics. PP1 is a major player in the spreading of the
oscillation and in the recruitment of myosin II at the cortex (Deneke
et al., 2019). Using an optogenetic approach to alter actomyosin
contractility specifically at the cortex, we also demonstrated that
cortical contractions drive the flow of cytoplasm within the embryo
(cytoplasmic streaming), which in turn drives nuclear positioning.
More generally, the mechanism by which nuclear spreading
is accomplished in the Drosophila embryo is an excellent
example of a self-organized system. The cytoplasmic flows
responsible for nuclear spreading are driven by the presence of
myosin gradients. Myosin gradients are established by the localized
oscillations between Cdk1 and phosphatase activity, and are present
only when nuclei are unevenly distributed across the embryo
(Fig. 3). As soon as nuclei are uniformly positioned across the
embryo, myosin oscillations, although still present, are uniform and
unable to generate flow. Thus, the embryo generates only the
number of cortical contractions required for uniform positioning.
This mechanism likely allows the embryo to correct for variability in
initial nuclear positioning and to achieve a uniform nuclear
distribution across the embryo. This uniformity ensures that the

Axial expansion

SCW

Fig. 3. Summary of known activities of Cdk1, PP1 and RhoA in fly and starfish embryos. (A) In the fly embryo, a self-organized system positions nuclei
across the embryo syncytia. Cdk1 activity is low around nuclei following mitosis, which leads to local increases in PP1 phosphatase. PP1 can activate RhoA at the
cortex, thus coupling nuclear position with activity at the cortex. RhoA then promotes contraction at the cortex and mixing of the cytoplasm to spread nuclei along
the anterior-posterior (A-P) axis. (B) A similar self-organizing system might exist in starfish oocytes, which have a gradient of Cdk1 activity that negatively
correlates with RhoA activity. The role of PP1 in starfish embryos remains unknown. Cdk1 and RhoA gradients promote contraction at the surface and the
propagation of surface contraction waves (SCWs) from the vegetal (V) to animal pole (A).
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correct number of nuclear divisions precedes gastrulation. Further
study of the Drosophila embryo will shed light on the molecular
mechanisms that couple the cell cycle with actomyosin contractility,
as well as elucidate the physical mechanisms by which cortical
contractions generate cytoplasmic streaming. More importantly,
investigating whether similar mechanisms work in insect species
laying embryos of different sizes and shapes will provide interesting
evolutionary insights, alternative mechanisms (Donoughe et al.,
2021 preprint), and possibly a framework for how mechanical forces
and cytoplasmic flow can scale in embryogenesis.

Cdk1 generates surface contraction waves via RhoA in

starfish oocytes

Cell cycle-dependent regulation of cortical contractility has also
been studied in starfish oocytes, where it was shown that surface
contraction waves (SCWs) are linked to Cdkl activity (Bement
etal., 2015). It was subsequently proposed that SCWs are regulated
by a gradient of active Cdk1 that opposes RhoA activity (Fig. 3B)
(Bischof et al., 2017). In this model, the gradient of Cdk1 activity
results in RhoA activation at the vegetal pole. Feedback
mechanisms on RhoA activity then generate a traveling wave.
Inhibition of Cdk1 at a specific point in the embryo through local
drug application causes RhoA activity to accumulate at that point
and change the direction of the SCW. RhoA ultimately activates
myosin II, causing waves of cortical contraction (Bischof et al.,
2017). In these studies, the levels of cyclin B were taken as a proxy
of Cdk1 activity, and moving gradients, similar to those explained
by sweep waves (Vergassola et al., 2018), were proposed to position
RhoA waves (Bischof et al., 2017; Wigbers et al., 2021). However,
the bistable regulation of Cdkl argues for non-linearity in the
relationship between cyclin B and Cdk1 activity. Furthermore, the
activities of PP1 and PP2A might contribute to the spatial control of
the phosphorylation status of mitotic targets (Mochida et al., 2016;
Rata et al., 2018; Kamenz et al., 2020; Dencke et al., 2019).
Notably, SCWs have also been observed in Xenopus embryos,
originating at the animal pole and moving laterally down the embryo
(Rankin and Kirschner, 1997). Propagation of SCWs coincides with
mitosis (Rankin and Kirschner, 1997), and it was proposed that they
are directly driven by wave-like activation and inactivation of Cdk1,
at least during the first cell cycle (Chang and Ferrell, 2013). In the
future, the use of cell-cycle biosensors coupled with perturbations
of the cell cycle and cytoskeleton will be crucial to reveal how
SCWs are controlled by Cdk1 and mitotic phosphatase activities.

Ooplasmic reorganization in zebrafish occurs through cell
cycle-dependent regulation of bulk actin polymerization

Coordination between Cdk1 activity and actin polymerization in the
cytoplasm also plays important roles in early embryos. Xenopus egg
extracts under a coverslip undergo periodic contraction as actin
polymerizes and myosin promotes contraction of the filamentous
network. This process is mostly active in mitotic extracts,
supporting the idea that the cell cycle affects actin dynamics
(Field et al., 2011). Recently, this coordination has been shown to
play a central role in ooplasmic separation during the first division of
zebrafish embryos. Soon after fertilization, there is a directional
separation of yolk granules and ooplasm in the embryo, such that
yolk granules move ventrally (Beams et al., 1985; Leung et al.,
2000; Shamipour et al., 2019). Previous work in zebrafish and other
models suggested that ooplasm flow was likely driven by cortical
actomyosin contractions (Leung et al., 2000; Munro et al., 2004;
Prodon et al., 2008; Klughammer et al., 2018). Indeed, cortical
actomyosin disassembly has been observed in the animal pole of

zebrafish oocytes, where it was thought to allow streaming of
ooplasm into an expanded animal pole (Beams et al., 1985; Fuentes
et al., 2018). However, the actomyosin cortex is dispensable for
cytoplasmic flow in the fish oocyte (Shamipour et al., 2019). Rather,
cell cycle-mediated bursts of bulk actin polymerization drive
ooplasm reorganization. Strikingly, actin polymerization proceeds
in a wave throughout the time of the first cell division of the zygote.
The periodicity of these waves is dependent on Cdk1 activity, with
Weel inhibition giving rise to faster waves of actin polymerization
and Chk1 inhibition slowing the wave. Thus, these experiments led
to a model in which bulk actomyosin dynamics controlled by the
Cdk1 wave drive ooplasmic segregation (Shamipour et al., 2019).
Notably, the positive regulation of bulk actomyosin contractility in
mitosis contrasts with regulation at the cortex, where contractility is
inhibited at mitotic entry and rises at mitotic exit. This differential
regulation is not yet fully elucidated on a mechanistic level.
However, it predicts that actomyosin-dependent flows would be
observed at different phases of the cell cycle: at interphase for
cortical contractions and at mitotic entry for bulk contractions. This
prediction is confirmed by observations in Drosophila and zebrafish
embryos (Deneke et al., 2019; Shamipour et al., 2019).

Microtubule-dependent regulation of nuclear movements

In addition to actomyosin-dependent cortical dynamics, microtubules
also play a role in the spatial distribution of nuclei in Drosophila
embryos and Xenopus extracts (Baker et al., 1993; Nguyen et al.,
2014; Cheng and Ferrell, 2019; Mitchison, 2020; Pelletier et al.,
2020; Deshpande et al., 2019). In fly embryos, microtubules are
important in controlling the migration of nuclei to the surface (Baker
et al., 1993) following actomyosin-driven axial expansion and in
regulating internuclear distance (Telley et al., 2012; Deshpande et al.,
2019; de-Carvalho et al., 2020 preprint). Similar processes have been
observed and well characterized in Xenopus extracts (Nguyen et al.,
2014; Field and Mitchison, 2018; Pelletier et al., 2020). Importantly,
these microtubule-driven processes are also linked to the cell cycle.
For example, in Drosophila embryos, nuclear migration happens in
three cycles (nuclear cycles 7 to 9), in which nuclear movements
towards the cortex are restricted to mitotic exit/early interphase (Foe
and Alberts, 1983). In the future, it will be important to dissect how
the cell cycle oscillator and microtubule dynamics are integrated to
ensure that nuclei move towards the cortex at the correct time and in
the correct direction.

Cell cycle slowing at the mid-blastula transition promotes
embryonic patterning

The mid-blastula transition (MBT) is a distinct stage of embryonic
development in most organisms characterized by slowing of the cell
cycle and ultimately the inclusion of gap phases. This lengthening
of the cell cycle likely gives embryos the time necessary to turn on
zygotic transcripts, so the MBT also coincides with a transition from
maternal to zygotic control of mRNA products (Fig. 4A). Recent
studies have focused on identifying the mechanisms that control this
crucial developmental transition by initiating these dramatic
changes in transcription and cell cycle control.

Increased Chk1 activity mediates cell cycle slowing at the MBT

Slowing of the cell cycle at the MBT is pronounced and often
follows a more gradual slowing of pre-MBT cycles that is observed,
e.g. in cycles 10-13 of Drosophila embryogenesis (Sibon et al.,
1997; Farrell et al., 2012) and less so in cycles 10-12 in Xenopus
(Howe et al., 1995). The timing of cell cycle slowing is tied to DNA
content. In Drosophila, one of the clearest illustrations of this
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Fig. 4. Convergence of multiple events at the Drosophila mid-blastula transition. (A) The cell cycle is remodeled at the mid-blastula transition (MBT) through
the lengthening of S phase and then introduction of G2. This slowing of the cell cycle coincides with a transition from maternal to zygotic transcription.

(B) Transcriptional output from zygotic nuclei also coincides with the increase in nuclear density. The expression of S-phase and, later, G2-phase genes
progressively increases with time due to increased numbers of nuclei and to an increase in the transcription-competent cell cycle length. (C) We illustrate the
embryo compartment and the nuclei inside before and after a nuclear division to illustrate titration as the nuclear-to-cytoplasmic (N/C) ratio changes. A titration
model has been proposed as a mechanism by which nuclear events, such as DNA content and transcription, might correlate to cell cycle remodeling at the MBT.
Early on, the binding of histones (blue) prevents the access of transcription factors to DNA, preventing the expression of zygotic genes. An increase in the N/C ratio
leads to less competition between histones and transcription factors (green), promoting the expression of zygotic genes. Moreover, cells spend an increased time
in the transcription-competent phases of the cell cycle. Histone proteins themselves may also feedback on Chk1, which inhibits cell cycle progression (left box).
Cooperatively, these changes allow the embryo to undergo this crucial moment in development.

concept comes from studies of haploid embryos, which undergo an
additional division before cellularization to reach the appropriate
DNA content for the MBT (Edgar et al., 1986). The lengthening of
the cell cycles preceding the MBT is due to slower DNA replication.
The duration of S phase in the last cycle preceding the MBT (cycle
13) is more than three times longer than the duration in cycle 10
(14 versus 4 min), whereas the duration of M phase itself'is constant.
This cell cycle lengthening is mediated by the DNA replication
checkpoint and requires the activity of the checkpoint kinase Chk1.
The molecular regulation of Chk1 activity and its impact on Cdk1
have been demonstrated and investigated in both Xenopus (Lee
etal., 2001; Shimuta et al., 2002; Petrus et al., 2004) and Drosophila
(Sibon et al., 1997; Su et al., 1999; Takada et al., 2007; Royou et al.,
2008; Fasulo et al., 2012). Chk1 activity likely increases in response
to increased DNA content in the embryo. In Drosophila embryos, it

has been shown that increasing Chk1 activity causes Cdk1 activity
to rise progressively more slowly during interphase of nuclear
cycles 12 and 13 (Fig. 1B), thus delaying the cell cycle to correctly
couple DNA replication and mitosis (Deneke et al., 2016). Negative
feedback from Cdk1 to Chkl activity, which has been observed in
cell culture (Shiromizu et al., 2006; Enomoto et al., 2009; Xu et al.,
2012), might further sharpen and control the transition between S
phase and M phase (Yuan et al., 2012; Deneke et al., 2016). This
early remodeling of the cell cycle due to S-phase lengthening is
followed by a more dramatic slowing at the MBT with the inclusion
of gap phases. Cell cycle remodeling at the Drosophila MBT is
controlled by downregulating maternal Cdc25 to pause the cell
cycle in G2 (Farrell et al., 2012). This downregulation is mainly
controlled post-translationally through mechanisms targeting Cdc25
for degradation (Farrell and O’Farrell, 2013; Di Talia et al., 2013).
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Maternal cdc25 mRNA degradation (Edgar and Datar, 1996)
ensures that pulses of zygotic Cdc25 transcription can then
drive entry into mitosis in the subsequent cycles (Edgar and
O’Farrell, 1990). Regulation of Cdc25 levels is also required for cell
cycle slowing in zebrafish and in frogs (Shimuta et al., 2002; Dalle
Nogare et al., 2009).

Titration of histone proteins and/or of the DNA replication
machinery has been suggested as a mechanism to regulate the cell
cycle at the MBT (Collart et al., 2013; Pérez-Montero et al., 2013;
Amodeo etal., 2015; Joseph et al., 2017; Liu et al., 2019; Djabrayan
et al., 2019). Recently, a molecular mechanism has been proposed
by which titration of histones might be linked to activation of Chk1
(Shindo and Amodeo, 2021). The authors show that the tail of
histone H3 is a direct competitive inhibitor of Chk1 activity. This
model can explain why Chkl1 activity is low in earlier cycles, in
which maternally deposited H3 is present in excess, and higher in
later cycles, when histones have been sufficiently titrated to allow
Chkl1 activity to rise (Fig. 4C). In zebrafish, recent work has shown
that histone proteins directly compete on chromatin with
transcription factors necessary for zygotic transcription. Thus, the
dilution of histone protein can also time the onset of zygotic
transcription (Joseph et al., 2017), a hallmark feature of the MBT
together with cell cycle remodeling and degradation of several
maternal mRNAs.

Cell cycle control of zygotic gene activation

Titration of factors involved in both DNA replication or zygotic
gene activation (Almouzni and Wolffe, 1995; Collart et al., 2013;
Amodeo et al., 2015; Joseph et al., 2017) could explain how DNA
content impinges on all MBT processes. A complication in this
analysis is that the cell cycle and zygotic gene activation are strongly
co-regulated. The early cleavage divisions are not conducive to gene
expression, as transcription aborts during mitosis and the short
interphase only leaves time to transcribe a few short mRNAs (Heyn
et al., 2014; Jukam et al., 2017). Thus, lengthening of the cell cycle
favors zygotic gene activation. In turn, transcription can promote
activation of the DNA replication checkpoint (Sibon et al., 1997,
Blythe and Wieschaus, 2015) and zygotic gene products can inhibit
the rapid cell cycle (Edgar et al, 1994b), further supporting
transcription. These feedback mechanisms are likely to ensure a
robust coordination of all the MBT processes, but they have made
dissecting the mechanisms driving the control of the MBT difficult.
For example, it was recently argued that slowing of the cell cycle is
not merely a central feature of the MBT but is the driving process of
this developmental transition in Drosophila embryos. Arresting the
cell cycle as early as cycle 12 through inhibition of Cdkl activity
triggers the initiation of several MBT processes, namely zygotic
gene expression and gastrulation, even when DNA content is below
the amount usually needed for the MBT (Strong et al., 2020). Even
genes previously identified as dependent upon the embryo reaching
a critical N/C ratio were transcribed in Cdkl-inhibited embryos
arrested in interphase 12. These and other experiments led the
authors to argue that rapid cell cycles are a major inhibitor of the
MBT (Strong et al., 2020).

Quantitative arguments support the role of the cell cycle in
inhibiting transcription. For example, in cycle 13 embryos there are
eight times more nuclei than in cell cycle 10 embryos. Moreover,
interphase, i.e. the period compatible with transcription, is at least
three times longer (Foe and Alberts, 1983; Farrell and O’Farrell,
2014). Thus, in principle, the embryo would have increased its
overall transcriptional capacity by about 25-fold just by nuclear
proliferation and cell cycle remodeling (Fig. 4B). Therefore, gradual

inhibition of Cdk1 by Chk1 might be the initiating and controlling
event of the MBT, ultimately allowing sufficient time for a
significant upregulation of zygotic genome activation, and
consequent cell cycle remodeling and morphogenetic processes.
Live imaging of transcription also revealed a crucial role for the cell
cycle in regulating gene expression, while also arguing for effects
independent of cell cycle control (Syed et al., 2021). Imaging of
zygotic transcription at single-cell resolution in Xenopus embryos
revealed significant and systematic differences in the timing of
zygotic gene activation. This argued that cell size, which dictates the
N/C ratio in individual cells, controls zygotic genome activation
(Chen et al., 2019). The importance of the N/C ratio in Xenopus
embryos is further supported by observations in embryonic
chimeras of Xenopus laevis and Xenopus tropicalis, which result
in embryos with different DNA content (Jukam et al., 2021
preprint). The local nature of the sensing of the N/C ratio and its
impact on cell cycle control was also suggested in Drosophila,
where altering the mechanisms of nuclear positioning can generate
embryos with different N/C ratios across the anterior-posterior axis.
These different ratios are likely the cause for different cell cycle
durations along the embryo (Deneke et al., 2019). Importantly, in
zebrafish, cell cycle control and the N/C ratio can be decoupled from
zygotic transcription and, instead, genome activation is timed from
fertilization through the translation of chromatin modifiers from
maternal mRNAs and the deposition of epigenetic marks (Chan
et al., 2019).

The MBT is a complex transition point for the early embryo that
involves multiple hallmark phenomena, most importantly the
slowing of the cell cycle and a significant increase in zygotic
transcription (Fig. 4A). Quantitative approaches coupled with
classical embryological approaches are likely to reveal the
mechanisms by which embryos reproducibly initiate these events
and how these processes feedback on one another.

Cell cycle control during gastrulation

The remodeling of the cell cycle during gastrulation is most clearly
illustrated in Drosophila when cells first begin to divide
asynchronously. After cellularization in the Drosophila embryo,
25 mitotic domains emerge that have local synchrony of cell
division but are asynchronous with other neighboring domains in
the embryo (Foe, 1989). In these domains, mitosis often begins in
few cells and spreads in a wave-like pattern to the boundary of that
domain (Foe, 1989). Disruption of the timing of these mitotic
patterns can have consequences for embryo viability (Edgar and
O’Farrell, 1989). It has been proposed that mitotic domains map to
specific fates later in development and may facilitate the
establishment of cell populations that show a similar response to
differentiation signals (Edgar et al., 1994a; Cambridge et al., 1997).
Specifically, mitotic domains must avoid conflicts between cell
division and cytoskeletal rearrangements that drive morphogenesis.
This is illustrated by the control of mesoderm specification, where a
delay is introduced in the cell cycle machinery to ensure that cell
divisions always follow the apical constriction process that drives
invagination (Grosshans and Wieschaus, 2000).

The spatiotemporal pattern of cell divisions during gastrulation in
Drosophila is controlled by the transcriptional activation of string
(stg), one of the two Cdc25 phosphatases present in Drosophila
(Edgar and O’Farrell, 1989, 1990) (Fig. SA). Quantitative imaging
experiments revealed that almost all cells across the embryo are
equally sensitive to Cdc25 levels and that the rapid accumulation of
Cdc25 can drive mitotic entry independently of Cdkl-positive
feedback (Di Talia and Wieschaus, 2012). At the MBT, both
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Fig. 5. Differential levels in Cdc25 protein result in spatial asynchrony of
mitotic divisions in Drosophila. (A) The timing of Cdc25 transcription
correlates with the speed of division in mitotic domains (MDs) in Drosophila.
MD1 and MD2 are the first two of 25 groups of cells to divide during the
asynchronous 14th mitosis in Drosophila embryos. The onset of mitosis
correlates to levels of Cdc25 in each mitotic domain. (B) A ratio of activators
and repressors to initiate new cdc25 transcription controls the timing of mitosis
in gastrulating fly embryos. (C) Using multiple activators and repressors whose
expression is responsive to patterning genes allows for robustness and
reproducibility of the highly stereotyped divisions that give rise to the proper
body plan in Drosophila.

maternal String and Twine (the other Cdc25 phosphatase) are
degraded, and thus pulses of Cdc25 transcription become rate-
limiting to initiate mitotic divisions 14-16 (Edgar et al., 1994b). The
developmental patterning genes that control differentiation and fate
specification, rather than input from the cell cycle, promote string
transcriptional activation (Edgar et al., 1994a). This was supported
by the observation that homozygous mutants in patterning genes
lead to spatial changes in mitotic domains or even the loss of entire
domains (Edgar et al., 1994a). However, this approach did not
provide clear insights into the mechanisms encoding the timing
of stg expression. These came from a different genetic approach
that used heterozygous deficiencies to perform whole-genome
screening for regulators of the timing of division in mitotic domains
1 and 2 (Momen-Roknabadi et al., 2016). The authors found that
not only are mitotic domains established by spatially restricted
transcriptional regulatory networks, but within a domain, the timing
of division is tuned by a subset of those same transcriptional
regulators. It was proposed that a balance between inhibitory and
activating transcription factors controls mitotic precision in each
region of the embryo (Momen-Roknabadi et al., 2016) (Fig. 5B,C).
Using a combination of inhibitors and activators to time division
might reduce the impact of fluctuations in the levels of the
transcriptional regulators. However, both theoretical and
experimental work is still needed to address this idea and to
elucidate how transcriptional networks can achieve both rapid and
precise control of cell cycle timing during gastrulation.

How asynchronous divisions are timed during morphogenesis
has also been investigated in the chordate ascidian (sea squirt)
Ciona (Ogura and Sasakura, 2016). In Ciona, the 11th mitosis,
which occurs after gastrulation, is the first asynchronous mitosis in
embryonic development and spreads in a wave across the embryo.

Interestingly, asynchrony is already observed in S phase during cell
cycle 10. As in cell cycle 11, anterior cells progress more slowly
through S phase than posterior cells. However, there is a reciprocal
compensation in G2 so that mitosis in cell cycle 10 remains
synchronous, whereas in cycle 11 there is no G2 compensation,
leading to asynchronous mitosis across the embryo. As in the
mitotic domains of the Drosophila gastrula, asynchrony in Ciona
also depends on the regulation of Cdc25. Two developmentally
regulated transcription factors, ci-AP-2 and ci-GATAD, were shown
to promote Cdc25 transcription, and loss of these two proteins in
cell cycle 10 can disrupt mitotic synchrony (Ogura and Sasakura,
2016). It will be of great interest to determine whether, similar to
Drosophila, the combinatorial action of activators and repressors is
responsible for timing divisions. Understanding whether similar
strategies are used in these different embryos to obtain precise
transcriptional control of mitotic timing has the potential to reveal
general insights on how precise timing is achieved during
morphogenesis.

Asynchronous cell divisions are not only observed during
gastrulation. In the roundworm C. elegans, division is
asynchronous as early as the two-cell stage. In this case, the two
cells (AB and P) are of different sizes, with AB being larger and
reproducibly dividing earlier than P; (Sulston et al., 1983;
Schierenberg and Wood, 1985; Encalada et al., 2000; Brauchle
et al., 2003). Regulation does not occur at the level of transcription,
as it takes place before zygotic transcription is active. Rather, the
PAR proteins, which regulate anterior-posterior symmetry, partition
more Polo kinase PLK-1, another positive regulator of mitosis
known to contribute to the control of the mitotic switch
(Archambault and Glover, 2009), to the AB cell (Rivers et al.,
2008; Budirahardja and Gonczy, 2008). Loss of function in chk-1
and wee-1 in C. elegans diminishes the delay between the AB and
Py cells, suggesting that the feedback on Cdkl activity through
inhibitory phosphorylations is likely important (Brauchle et al.,
2003; Michael, 2016). It has been proposed that differences in the
nuclear-cytoplasmic ratio might contribute to cell cycle slowing in
C. elegans (Brauchle et al., 2003), similar to what is observed
in other systems. How polarity cues might play into cell cycle timing
in other systems has not been well studied. Comparisons across
species will uncover both general principles and species-specific
mechanisms of the regulation of cell cycle timing.

Future directions and open questions

The recent use of quantitative imaging tools to dissect the
dynamics and molecular mechanisms that couple cell division,
morphogenesis, actomyosin dynamics and cytoplasmic flows in
developing embryos has given us a better understanding of the
coordinated processes that shape early embryogenesis from flies to
vertebrates. Here, we have focused on the ways in which molecular
mechanisms that control the cell cycle act locally and globally
to coordinate development. Developing biochemical sensors of Cdk1
activity in diverse model systems will likely uncover the mechanisms
by which embryos coordinate the cell cycle and subsequent physical
or morphological events across the expanse of an embryo. These tools
have been useful in the Drosophila embryo, and directly measuring
Cdk1 activity in vivo in vertebrates may also provide new insights as
these embryos have different geometries and perhaps different spatial
regulation of the cell cycle. The syncytial nature of the early fly
embryo is very different from the cellular nature of fish embryos, for
example. Therefore, although the molecular mechanisms across
model systems are likely to be conserved, how each species uses these
mechanisms for their own unique biology and body plan organization
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will be an interesting avenue for future work. Moreover, using
imaging biosensors and quantitative approaches will uncover how
waves and flows contribute to collective decision making in other
biological systems (Hubaud et al., 2017; Sonnen et al., 2018;
Streichan et al., 2018; Jorg et al., 2019; Saadaoui et al., 2020; De
Simone et al., 2021).

In mammals, the series of rapid divisions before gastrulation is
slightly delayed in comparison with other vertebrate embryos due the
need to establish extra-embryonic tissues soon after fertilization
(O’Farrell et al.,, 2004). However, the rapid divisions of the pre-
gastrulating epiblast cells in mammalian embryos share similar cell
cycle dynamics with non-mammalian embryos, as gap phases in
epiblast cell cycles are shortened or absent (O’Farrell et al., 2004).
New technology that enables imaging of mammalian embryos ex vivo
or in reconstituted systems (Shahbazi et al., 2016; Deglincerti et al.,
2016; McDole et al., 2018; Zheng et al., 2019; Minn et al., 2020;
Kohrman et al., 2021) provides developmental biologists with the
opportunity to address how cell cycle machinery might coordinate
developmental events in mammalian embryos. It will be interesting to
see whether mechanisms similar to ones described in this Review are
at play in the rapid cell divisions that precede gastrulation and in the
transition to asynchronous divisions after gastrulation (Mac Auley
et al., 1993). Most importantly, there may be previously unidentified
feedback mechanisms involving cell cycle machinery that are crucial
for gastrulating mammalian embryos.
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