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MS ID#: DEVELOP/2020/197475 
 
MS TITLE: Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF 
 
AUTHORS: Hao Li, Jussi Kupari, Kristen Kurtzeborn, Yujuan Gui, Edward Siefker, Benson Lu, Kart 
Matlik, Soophie Olfat, Ana R Montano-Rodriguez, Sung-Ho Huh, Franklin D Costantini, Jaan-Olle 
Andressoo, and Satu Kuure 
 
I have now received all the referees' reports on the above manuscript, and have reached a decision. 
The referees' comments are appended below, or you can access them online: please go to 
BenchPress and click on the 'Manuscripts with Decisions' queue in the Author Area. 
 
As you will see, the referees express considerable interest in your work, but have some significant 
criticisms and recommend a substantial revision of your manuscript before we can consider 
publication. If you are able to revise the manuscript along the lines suggested (see also editor's 
note), which may involve further experiments, I will be happy receive a revised version of the 
manuscript. Your revised paper will be re-reviewed by one or more of the original referees, and 
acceptance of your manuscript will depend on your addressing satisfactorily the reviewers' major 
concerns. Please also note that Development will normally permit only one round of major revision. 
 
We are aware that you may be experiencing disruption to the normal running of your lab that make 
experimental revisions challenging. If it would be helpful, we encourage you to contact us to 
discuss your revision in greater detail. Please send us a point-by-point response indicating where 
you are able to address concerns raised (either experimentally or by changes to the text) and 
where you will not be able to do so within the normal timeframe of a revision. We will then provide 
further guidance. Please also note that we are happy to extend revision timeframes as necessary.  
 
Please attend to all of the reviewers' comments and ensure that you clearly highlight all changes 
made in the revised manuscript. Please avoid using 'Tracked changes' in Word files as these are lost 
in PDF conversion. I should be grateful if you would also provide a point-by-point response detailing 
how you have dealt with the points raised by the reviewers in the 'Response to Reviewers' box. If 
you do not agree with any of their criticisms or suggestions please explain clearly why this is so. 
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Editor’s note: 
 
- Appraisal of the impact of renal hypoplasia due to premature cessation of nephrogenesis on the 
postnatal phenotype in the GDNF mouse model  
- lack of quantitative data of nephron progenitors in relation to the reduced fetal nephrogenesis 
and prolonged (or delayed) postnatal nephrogenesis 
- Further information to support the role/ contribution of Wnt11 activity 
- Provision of a cohesive view of the gene regulatory circuit/pathway that has been affected, and 
the impact on the functional attributes of the progenitors by the hyper-GDNF or hyper GDNF/Wnt11 
condition 
 
Reviewer 1 
 
Advance summary and potential significance to field 
 
Hao et al. analyze mice with enhanced GDNF activity and demonstrate prolonged nephrogenesis 
after birth. Nephron progenitors in the postnatal GDNF-hyper mice are maintained longer than the 
control mice, although high GDNF in the embryonic kidneys results in progenitor depletion. The 
former finding is novel in the research field of developmental nephrology, and may also be useful 
for medical strategies to regulate congenital nephron endowment.  
 
Comments for the author 
 
While the overall description of the data is reasonable, the authors underestimate the secondary 
effects caused by severe renal hypoplasia that occurs before birth. Alternatively, GDNF expression, 
which is elevated during gestation, may simply return to normal levels after birth, which permits 
nephrogenesis only postnatally. For GDNF to prolong nephron progenitor lifespan after birth, GDNF 
would need to be activated specifically after birth. If this is not the case, the authors should tone 
down their claim throughout the text. In addition, quantitative data showing nephron progenitor 
maintenance should be included in all of the related figures.  
 
Major points 
1. The authors underestimate the secondary effects caused by severe renal hypoplasia that 
occurs before birth. Inclusion of FGF9/20 knockout data does not completely exclude the possibility 
of such secondary effects. Alternatively, GDNF expression, which is elevated during gestation may 
simply return to normal levels after birth, which permits nephrogenesis only postnatally. To 
unequivocally claim that GDNF prolongs nephron progenitor lifespan after birth, GDNF would need 
to be activated specifically after birth. The authors should include these points in the discussion 
and tone down their claim throughout the text, including in the title and abstract. 
2. The kidneys of GDNF-hyper mice are hypoplastic at birth and possess smaller numbers of 
ureteric buds than the control mice. Even if nephrogenesis continues longer, the total number of 
nephrons that form in such small numbers of nephrogenic niches are likely less than those in the 
control mice. The authors should present such a calculation and discuss the limitations of this 
mouse model.  
Indeed, the glomerular numbers in the postnatal GDNF-hyper mice are fewer than in the wild-type 
mice. Thus the previously reported let7/Lin28 manipulation (Yermalovich et al. Nat Commun 2019) 
is a better model for prolonged postnatal nephrogenesis, and the authors’ claims of the superiority 
of GDNF-hyper mice over other models in terms of tumorgenicity should be toned down. 
3. The nephron progenitor numbers should be quantified and statistical analyses should be 
performed for all of the related figures. The numbers of examined animals and sections/fields per 
kidney should also be described.  
4. Regarding the genetic cross of GDNF-hyper mice with Wnt11+/- mice postnatal nephron 
progenitor maintenance is not analyzed, although it is the main focus of this manuscript.  
Rather, double mutant mice exhibited further renal size reduction before birth. In addition, Wnt11 
is not upregulated in the postnatal GDNF-hyper mice. The significance of Wnt11 in postnatal 
progenitor maintenance is vague in the present form of this manuscript, and it should be explained 
more clearly.  
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Minor points 
 
1. Explain the principle of GDNF activation in GDNF-hyper mice in the introduction section, as 
this is a key point that is necessary for the readers to interpret the data precisely.  
2. The legend for Supplementary Figure 1F is missing. 
 
 
Reviewer 2 
 
Advance summary and potential significance to field 
 
There is intense interest in extending nephron progenitor lifespan in the developing kidney because 
genetic or environmental factors that disrupt progenitor maintenance result in low nephron number 
and predisposition to kidney disease. The majority of nephrons form just before birth in humans 
and just after birth in mice. As such, extending this period of nephron formation could have a 
dramatic impact on nephron number and potentially protect at-risk individuals such as pre- 
term babies from the detrimental effects of low nephron number. 
 
This work presents a new observation that nephron progenitor cells can be maintained past the 
point that they would usually differentiate by increased levels of a growth factor important for 
kidney development- gdnf. However, the work in its current form does not adequately address: the 
reality that very few progenitors are maintained, the source of gdnf expression, or major 
morphological abnormalities that are also evident in this model.  
 
Gdnf is an important and well known regulator of kidney development. As such, the field will be 
interested in this work and take note of the results. However, many would have reservations about 
this work in its current form. 
 
Comments for the author 
 
This paper presents an analysis of nephron progenitor (NP) cell maintenance and differentiation in a 
Gdnf hypermorphic mouse line. The finding that NP cells are maintained past the time these cells 
differentiate in wildtype animals is new, as is the finding that Wnt11 and Gdnf- two genes proposed 
to interact in a positive feedback loop- have seemingly independent effects on kidney size. 
 
Although of interest, the study is limited by selectively highlighting specific results without due 
acknowledgment of other phenotypes, or a sense of proportion to the results being described. For 
example the summary of the article states "growth factor augmentation substantially extends 
nephron progenitor lifespan and nephrogenesis in postnatal kidney". What this and other sections of 
the manuscript do not highlight is that the kidney is severely hypoplastic, nephron number is lower 
than controls, and most nephron progenitors are depleted early in kidney development. However, 
the few progenitors that remain do so beyond their normal lifespan and continue to generate 
nephrons. The implication that Gdnf could be used to extend nephrogenesis is intriguing but the 
effect of higher levels of this growth factor on the rest of the kidney are alarming. 
 
Analysis of proliferation and Gdnf target gene expression led to the proposal that excess Gdnf 
depletes nephron progenitor cells by suppressing proliferation but maintains these cells for an 
extended period by increased levels of Wnt11 and other Gdnf targets that are known to influence 
nephron progenitor maintenance. The link to proliferation is new. While the Wnt11 hypothesis is 
feasible and consistent with previous work, this finding does not offer additional mechanistic 
insight into how gdnf or its targets regulate nephron progenitor cells.  
 
A major question arising from this work is where is Gdnf being expressed? The authors focus 
nephron progenitor cells - “Gdnf, expressed by the nephron progenitor population”, however 
Magella et al., Dev Biol 2018 identify the cortical stroma as a source of Gdnf, in addition to NP 
cells. Other single cell data sets support this finding and expression at lower levels in other stromal 
populations. Given the paucity of NP cells from E14.5 onwards, and the persistent and dramatic 
effects on the ureteric tip and other areas of the kidney into early postnatal life (see large ureteric 
tips at P3 in Fig.3), it’s unlikely that NP cells are the major source of Gdnf in this model. Indeed, 
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the authors show a 6-fold increase on wildtype GDNF levels at postnatal day 7, when by their own 
characterisation the NP population is no longer present. 
 
Suggestions and comments Introduction- Please provide a brief description of the GDNF hyper 
mouse including the genetic modification, level of expression, and an overview of phenotypes 
previously associated with that line. Relevant papers are cited but as this mouse forms the basis of 
the current study it should be described at the start of the manuscript.  
 
The images of E11.5 kidneys presented in Figure 1A show an expanded UB and reduced number of 
NPs in the Gdnf hyper/hyper mouse compared to control, which are consistent with the culture 
experiments and E14.5 (Fig1.d,f). The results section reports “NP amount in Gdnfhyper/hyper 
kidneys resembled that in wild type kidneys but was quickly decreased”. Please include a note 
about the early UB phenotype which is well-illustrated in supp fig1B.  
 
Please include the embryonic stage (E12.5) for this statement as it contrasts with data presented in 
the same figure from other stages (E14.5). “Quantification of NP cell amounts confirmed similar NP 
amounts in both genotypes, while analysis of pHH3 specifically in NP population revealed 57% 
reduction in mitotic cells of (Figure 1G-H).” Please provide more detail about how these samples 
were imaged and how cell numbers were quantified. The description in the methods was not 
detailed enough to understand the experiment. Were any other stages quantified?  
 
Regarding the in vitro experiment assessing “whether recombinant GDNF can control NP cell 
proliferation in vitro”, were multiple concentrations tested? Was the 100ng/mL concentration 
based on any prior work or optimisation? If so, please include a reference or comment to this 
effect. 
 
Please consider expanding or clarifying the statement “The results show general decrease in early 
nephron precursor numbers and indicate nephron differentiation hysteresis in embryonic Gdnf 
hyper/hyper kidneys”. Assuming hysteresis means the history of dependence- what is the 
dependence and altered response in reference? 
 
The figure legend description is missing for supplementary figure 1F. Please provide some 
representative images for this analysis. This figure describes glomerular density in mm^2, a proxy 
for glomerular/nephron number, with text highlighting lower overall density in gdnf hyper mice, 
but an increase in proportional glomerular density in the cortex in comparison to controls. The 
conclusions and comparisons from this analysis may be confounded by other aspects of the 
phenotype such as changes in kidney size, the noted decrease in nephron formation in Gdnf hyper 
mice earlier in development, and the large cysts reported to form at this stage (Kumar et al., 
2015). Please include some text in the supplementary figure or methods detailing how these factors 
were accounted for or perhaps focus on the results that despite a reduced NP population, nephron 
formation continues? 
 
The following statement referencing the proportional differences in glomerular density should be 
revised: “This shows that despite the early deceleration of NP self-renewal, a larger proportion of 
late born nephrons develop in the kidneys facing excess GDNF during organogenesis.” At present it 
is unlikely to be true as Short et al., 2014 showed that over 50% of nephrons form after birth during 
normal development. “late born nephrons” would encompass that 50% of nephrons born after birth 
in the control so without measuring the number of nephrons before birth and into adulthood this is 
still unclear. The number of nephrons would be much lower in hyper/hyper mice. 
 
Regarding the retention of some NP cells after cessation- the data in Figure 3 shows a number of 
examples where a thin layer of NP cells is present in gdnf hyper/hyper kidneys and not controls. 
While the Gdnf hyper/hyper mice are clearly delayed in their cessation of nephrogenesis, the 
staining referenced in Fig4C is more in line with an early committing nephron than persistent NP 
cells at this stage. Rumballe et al., Dev Biol., 2011, report the transition from NP -> early 
committing nephron at cessation is marked partly by a change in localisation of NP cells, but 
primarily by the formation of a Collagen IV+ basement membrane around NP clusters, which 
coincides with morphological evidence of increasing polarity - seen as a rosette of NP nuclei with a 
gap in the centre (Rumballe et al., Fig 3b and c). These signs of polarisation are evident in Fig. 4C 
(arrow on the left), the central arrow points to an isolated cell, the right arrow points to a cluster 
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of cells similar to one marked in the control (asterisk in the right of Fig. 4A). This section could 
perhaps focus on a consistent delay in gdnf hyper/hyper mice compared to controls.  
 
Authors point out how an excess of GDNF can prolong the nephrogenic program and compare this to 
other models like Lin28/Let7 overexpression which create a much more dramatic phenotype, but 
can lead to cancer. However, they fail to acknowledge the dramatic abnormalities associated with 
the Gdnf hyper/hyper mice. 
 
The authors comment on the phenotype of mice with a single Gdnf hyper allele stating that this 
single allele is insufficient to maintain nephron progenitor cells however they only show data from 
postnatal day 5 (supp fig 5 E,F), which past the point that NP cells are maintained in the gdnf 
hyper/hyper line.  
 
Figure 6: are new nephrons formed at P7 or are these the same nephrons that formed at P4? Are 
these nephrons stalled at an early stage? 
 
The paper focuses on nephron progenitor maintenance and extension of nephrogenesis but NP cells 
are only visualised early in kidney development (E11.5, 14.5) and at postnatal day 3. It would be 
useful to know whether this population remains scarce, or has a resurgence between E15.5-P2.  
 
Comment- Figure 3 D seems to show a strong upregulation of Pax2 in the ureteric tip compared to 
controls. 
 
 
Reviewer 3 
 
Advance summary and potential significance to field 
 
In "Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF" Hao and colleagues 
describe the nephron progenitor phenotype of Gdnf hyper mice during the first week of postnatal 
development.  
 
The authors describe that Â“excess Gdnf, expands the nephrogenic program beyond its normal 
cessation by maintaining NP cells and nephrogenesis in postnatal mouse kidneysÂ” 
 
There is an ongoing effort to understand how nephron progenitors can be expanded in vitro for 
experimental purposes and   
potential regenerative therapeutic ends, and with a growing number of premature births surviving, 
it is important to recognize the impact of premature cessation of nephrogenesis and the impact this 
has on nephron endowment and ultimately quality of life and health. Further, there is an inherent 
interest in understanding the biology underpinning nephron progenitor growth, expansion and 
differentiation.  
 
The significance of this manuscript rests on its finding that higher expression of Gdnf can result in a 
delayed end to nephrogenesis. The delay is from approximately day 4 to day 7 of postnatal 
development. The debate of whether nephron progenitors commit to differentiate during this 
period due to an intrinsic or extrinsic clock, or a change in environment, is still on going. 
 
The authors show the following: 
1. in Gdnf-hyper mice NPCs persist longer. 
2. Fgf9/Fgf20 deficient mice do not display this (argument being hypoplasia is therefore not cause 
of NPC survival in Gdnf-hyper mice) 
3. The Gdnf-hyper mice phenotype can be modified on a Wnt11 het background. 
 
As a reviewer, what I am missing is the obvious connection between these experiments, and some 
form of cohesive view of a gene regulatory circuit/pathway being modified. How is the biology of 
NPCs altered on the hyper or hyper/Wnt11 backgrounds? Without these, it is not clear that this 
warrants publication in Development at this time as the advance remains primarily descriptive.  
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Comments for the author 
 
The authors build up an argument that initial NPC endowment is similar in wildtype and Gdnf-hyper 
kidneys but this relies on data in Figure 1/S1 and it is not clear how NPCs are quantified, is it per 
area, per kidney, per tip?  
 
The authors do state the analyses are done on E12.5 kidneys, but if the Gdnf-hyper kidneys have 
altered branching morphogenesis and tip numbers, are they taking this into account? The authors 
quantify NPC amounts at E12.5 and argue that the start-point are similar for wt and hyper kidneys. 
However, in Figure 1A-B there is a clear difference at E11.5 (which is not quantified), and similarly, 
there is a striking difference at E14.5 (also not quantified) which begs the question of whether the 
E12.5 data is indeed accurate. Better descriptions of the quantification and the caveats of the 
quantification method are needed. 
 
The authors also quantify PHH3+ NPCs in wildtype and hyper kidneys as well as in cultured kidneys 
exposed to Gdnf and show a consistent decrease, concomitant with reduced nephrogenesis. Again, 
more detailed descriptions of how this was performed and the caveats (as based on the other Gdnf 
phenotypes exhibited) are needed. 
 
The authors describe cortical to cortical-to-total glomerular density as a measurement where 
wildtype and hyper kidneys differ. This raises the question, are all renal corpuscles not typically 
positioned in the cortex? The is a fairly sharp boundary between the Outer Medulla and the Cortex 
where renal corpuscle, S1, and S2 are within the Cortex. Could the authors elaborate on the 
meaning of this wording and how the analyses were performed? 
 
“However, our analysis failed to detect SIX2- and/or PAX2-positive cells in the NP niche of Fgf9;20 
deficient kidneys (Supplemental figure 2). This together with published data (O'Brien, 2018; Urbach 
et al., 2014; Yermalovich et al., 2019)  
suggests that prolonged nephrogenesis derives from increased GDNF, not from renal hypoplasia.”  
While this is possible, it could also be due to renal hypoplasia. I would argue a negative outcome 
here i.e. non-detection of Six2 NPCs in Fgf9/Fgf20 deficient kidneys, does not suggest a positive 
conclusion. Renal hypoplasia can occur due to many conflicting situations. All the authors can 
conclude is that the phenotype in Fgf9/Fgf20 deficient mice is not the same as in the Gdnf-hyper 
kidneys. Without the underlying mechanism it is hard to make further arguments. 
 
 “Removal of one functional Wnt11 allele in Gdnfhyper/hyper background  
(Gdnfhyper/hyper;Wnt1+/-) did not improve postnatal kidney size from that in Gdnfhyper/hyper 
pups (Supplemental figure 7A-E). However, removal of Wnt11 allele in Gdnfhyper/hyper individuals 
enhanced SIX2-positive NP population and improved nephrogenesis, as evidenced by increased 
PAX2-positivity in the cortical differentiation zone of Gdnfhyper/hyper;Wnt1+/- kidneys (Figure 8, 
compare also to Figure 1F). Thus, this result suggests that WNT11 mediates GDNF’s regulatory 
functions to NP cells.” 
 
There is a typo in the above sentence but more importantly this is not supported by clear 
quantification of Six2+ progenitor populations.  
 
Further, knowing that modifications to Gdnf signalling alters branching morphogenesis, is it not 
plausible that a higher level of Gdnf protein results in expanded tips, with consequent larger Wnt11 
expression domains? The Gdnfhyper/hyper; Wnt11+/- could therefore just have restored the tip 
size? The authors describe this phenotype in S7 (red arrows). Following on from that the authors 
describe “cyst in glomerular tuft (black arrow)” in S7D-E. The glomerular tuft refers to the 
capillaries that form the glomerulus. To me it looks like these cysts are made from an expansion of 
the Bowman’s space.  
 
“Gdnf, expressed by the nephron progenitor population, is lost from wild type kidneys by P2 
(www.gudmap.org) while its mRNA and protein were still present in Gdnfhyper/hyper kidneys as 
late as P7 (Figure 7A-D).”  
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Given the importance of understanding the dynamics of Gdnf expression during postnatal days of 
development, it is surprising to me that the authors did not perform a time-course of in situ 
hybridization experiments to pinpoint the exact differences between wildtype and hyper kidneys.   
 
I was under the impression that mouse genes are written as follows Gdnf while their protein are 
Gdnf. This contrasts to human nomenclature GDNF/GDNF. 
 
Supplemental figure 1 lacks texts describing S1F.  
 

 

 
 
First revision 
 
Author response to reviewers' comments 
 
Reviewer 1 Advance Summary and Potential Significance to Field: 
Hao et al. analyze mice with enhanced GDNF activity and demonstrate prolonged nephrogenesis 
after birth. Nephron progenitors in the postnatal GDNF-hyper mice are maintained longer than the 
control mice, although high GDNF in the embryonic kidneys results in progenitor depletion. The 
former finding is novel in the research field of developmental nephrology, and may also be useful 
for medical strategies to regulate congenital nephron endowment. 
 
Comments for the Author: 
While the overall description of the data is reasonable, the authors underestimate the secondary 
effects caused by severe renal hypoplasia that occurs before birth. Alternatively, GDNF 
expression, which is elevated during gestation, may simply return to normal levels after birth, 
which permits nephrogenesis only postnatally. For GDNF to prolong nephron progenitor lifespan 
after birth, GDNF would need to be activated specifically after birth. If this is not the case, the 
authors should tone down their claim throughout the text. In addition, quantitative data showing 
nephron progenitor maintenance should be included in all of the related figures. 
 
Response: We thank the reviewer for acknowledging the importance of our results and pointing out 
our overtly positive way of describing and interpreting them. We appreciate valuable and 
knowledgeable comments and have now addressed them substantially in the revised manuscript 
(edits and new results written in red). 
 
Please see our responses to the specific comments below. 
 
Major points 
1. The authors underestimate the secondary effects caused by severe renal hypoplasia 
that occurs before birth. Inclusion of FGF9/20 knockout data does not completely exclude the 
possibility of such secondary effects. Alternatively, GDNF expression, which is elevated during 
gestation, may simply return to normal levels after birth, which permits nephrogenesis only 
postnatally. To unequivocally claim that GDNF prolongs nephron progenitor lifespan after birth, 
GDNF would need to be activated specifically after birth. The authors should include these points 
in the discussion and tone down claim throughout the text, including in the title and abstract. 
 
Response: This is very important point that, as the reviewer acknowledges, we had already 
addressed in our original submission, though we agree we cannot draw definite conclusion without 
activating endogenous GDNF expression after birth. 
We agree with the reviewer about the dynamics of the elevated GDNF expression, and in the 
abstract of our initial manuscript we tried to communicate this by stating “Decline of GDNF levels 
in postnatal kidneys normalizes the ureteric bud niche and creates a permissive environment for 
continuation of prolonged nephrogenic program, as demonstrated by morphologically and 
molecularly normal postnatal nephron progenitor self-renewal and differentiation.” In the revised 
manuscript we have modified this to better highlight this possibility. 
The impact of renal hypoplasia was originally addressed in FGF9;20 mutant kidneys, and thorough 
literature search. We agree that although neither of these indicate that small size (=hypoplasia) per 
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se would be able to maintain nephron progenitors longer than in “normal sized” kidney, they do not 
comprehensively exclude that possibility. 
Recently several new studies demonstrate wide variability in healthy kidney size and timing of 
nephrogenesis cessation (Bennett et al., 2020; Bonsib, 2020; Charlton et al., 2020; Kuure and 
Sariola, 2020; Ryan et al., 2018; Sutherland et al., 2011). None of these shows or suggests 
correlation between reduced kidney size and persistence of nephrogenesis, which should manifest 
as small kidneys where glomerular density is higher than in normal sized kidneys. 
 
We have now additionally also analyzed the postnatal presence of nephron progenitors in a model 
where renal hypoplasia is caused by impaired ureteric bud branching (similarly as in Gdnfhyper/hyper 

mice), namely Hoxb7Cre; Mek1;Mek2 mice. Deletion of all four alleles results in very severe renal 
hypodysplasia and newborn lethality (Ihermann-Hella et al., 2014) but inactivation of ¾ alleles is 
compatible with life as kidneys show only mildly reduced size. Again, no signs of prolonged 
nephrogenesis could be detected (Fig. S3), strongly supporting the view that renal hypoplasia as 
such is not enough to maintain postnatal nephrogenesis. However, we do recognize that other renal 
defects in Gdnfhyper/hyper mice evoke severe concerns that deserve attention and have now 
substantially discussed about these in the revised manuscript and toned down claims about GDNF’s 
positive effects in abstract, end of introduction and discussion chapters. 
Based on these and other results and views we present in the revised manuscript we hope that our 
original title still faithfully reflects our findings as this is what actually we show to happen; fetal 
increased GDNF expression has a major impact on nephron progenitors. 
 
2. The kidneys of GDNF-hyper mice are hypoplastic at birth and possess smaller numbers 
of ureteric buds than the control mice. Even if nephrogenesis continues longer, the total number 
of nephrons that form in such small numbers of nephrogenic niches are likely less than those in the 
control mice. The authors should present such a calculation and discuss the limitations of this 
mouse model. Indeed, the glomerular numbers in the postnatal GDNF-hyper mice are fewer than in 
the wild-type mice. Thus, the previously reported let7/Lin28 manipulation (Yermalovich et al. Nat 
Commun 2019) is a better model for prolonged postnatal nephrogenesis, and the authors’ claims of 
the superiority of GDNF-hyper mice over other models in terms of tumorgenicity should be toned 
down. 
 
Response: We agree and apologize for not bringing up enough the branching morphogenesis defect 
of Gdnfhyper/hyper mice that we have published earlier (Li et al., 2019) and which clearly results in 
hypodysplastic kidneys with reduced nephron endowment despite the continued postnatal 
nephrogenesis. 
 
In the revised manuscript we have now described the glomerular density results in a manner that 
will give the reader more thorough understanding of the effects that fetal excess of GDNF has on 
renal differentiation in general and especially on glomerular density, which is indeed not improved 
to the level of wild type kidneys (Table 1 of the revised manuscript). We have also removed the 
superiority statements of GDNF-hyper mice over other models throughout the text. 
 
3. The nephron progenitor numbers should be quantified and statistical analyses should 
be performed for all of the related figures. The numbers of examined animals and sections/fields 
per kidney should also be described. 
 
Response: The overall nephron progenitor numbers were quantified in the original manuscript at 
the initiation of branching morphogenesis (E12.5) in Gdnfhyper/hyper kidneys. 
In the revised manuscript the overall nephron progenitor numbers are additionally quantified at 
E11.5 and E14.5 kidneys. These show “an initial increase in NPC numbers, which was transiently 
normalized at E12.5 but severely decreased at E14.5 Gdnfhyper/hyper kidneys (Fig. 1G-H, S1E-F)”. 
Comparison of the nephron progenitor numbers in Gdnfhyper/hyper and Gdnfhyper/hyper; Wnt11+/- at E14.5 
and P0 revealed that removal of one Wnt11 allele resulted in 1,4 and 1,5 higher average of nephron 
progenitors/niche, respectively (Fig. 8 of revised manuscript). 
We have also quantified how many of nephrogenic niches have nephron progenitors in wild type and 
Gdnfhyper/hyper kidneys at P3-P6 (Fig3-4, S1H). This revealed that while in wild type animals at P3 10% 
of the UB tips (niches) are capped with NPCs (Fig. 3A, 48 tips analyzed in 2 kidneys), in 
Gdnfhyper/hyper mice 59% of analyzed niches have NPs at the same age (Fig. 3B, 107 tips analyzed in 2 
kidneys). At P4 and P5 NPCs were undetectable in wild type niches (Fig. 4A-B, 315 and 10 tips 
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analyzed, respectively). At P6 calbindin-positive epithelium resembling tip morphology was almost 
undetectable in the wild type kidney cortex, which restricted substantially the number of tips that 
could be analyzed. In P4 Gdnfhyper/hyper kidneys NPCs were detected in 18% of the analyzed niches 
while only committed NPCs were detected at P6 (Fig. 4C-D, 245 and 16 tips analyzed, respectively). 
 
4. Regarding the genetic cross of GDNF-hyper mice with Wnt11+/- mice, postnatal 
nephron progenitor maintenance is not analyzed, although it is the main focus of this manuscript. 
Rather, double mutant mice exhibited further renal size reduction before birth. In addition, 
Wnt11 is not upregulated in the postnatal GDNF-hyper mice. The significance of Wnt11 in 
postnatal progenitor maintenance is vague in the present form of this manuscript, and it should be 
explained more clearly. 
 
Response: We thank the reviewer for the constructive comment on the complex outcome of this 
genetic cross and agree with challenges in the interpretation of the results. 
We would like to start by pointing out that the size reduction seen in newborn Gdnfhyper/hyper kidneys 
after deletion of one Wnt11 allele likely reflects improved morphology of the Gdnfhyper/hyper; 
Wnt11+/- kidneys in comparison to Gdnfhyper/hyper kidneys (please see revised manuscript fig. 8E-H, 
S9D-E). Gdnfhyper/hyper kidneys typically have big collecting duct cysts leading to severely enlarged 
pelvis, which is not seen in four analyzed Gdnfhyper/hyper; Wnt11+/-  kidneys. This result shows, as we 
have stated in the revised manuscript, that lowering Wnt11 dosage in Gdnfhyper/hyper background fails 
to rescue kidney size but it also suggests that Wnt11 reduction diminishes ureteric bud derived 
defects thus resulting in smaller kidney size. 
Next, we have tried to generate new pups to complement the nephron progenitor analysis in 
Gdnfhyper/hyper; Wnt11+/- beyond the newborn stage. Unfortunately we failed to generate any 
Gdnfhyper/hyper; Wnt11+/- offspring in the timeframe of manuscript revision and could therefore not 
provide additional data on this. We hope that the reviewer appreciates our other efforts to address 
this question as described above (=improved NPC/niche in Gdnfhyper/hyper; Wnt11+/-) and as further 
detailed below. 
To gain more information on the mechanisms how GDNF can regulate nephron progenitors we 
performed additional experiments to identify gene regulatory networks possibly affected by excess 
GDNF, which produces huge ureteric bud. We did this by analyzing Wnt/b-cateinin targets, which 
could mediate increased canonical WNT signaling as response to upregulated Wnt9b and -11 in 
ureteric buds (Fig. 7), and previously shown to negatively impact nephron progenitor maintenance 
(Dapkunas et al., 2019; Kiefer et al., 2012). This analysis detected significant increase in axin2 
expression at E14.5 Gdnfhyper/hyper kidneys (Fig. S7A in revised manuscript). Notably, the nephron 
progenitor specific Wnt/b-catenin targets Amph, Cited1 and Uncx4.1 (Karner et al., 2011) showed 
trend of downregulation, likely reflecting the overall decrease in nephron progenitor numbers in 
embryonic Gdnfhyper/hyper kidneys. In this light the slightly increased but statistically insignificant 
Tafa4 expression is interesting and suggests that increased canonical WNT signaling contributes to 
observed inhibitory function of excess GDNF on NPCs. This is supported by our new experiments, 
which show that chemical inhibition of WNT signaling in the presence of excess GDNF significantly 
alleviates extended ureteric bud tip morphology (Fig. S8). Of note, WNT inhibition by IWR1 and 
IWP2 (data not shown) disrupts nephron progenitor coherence, which likely derives from the 
imbalance the chemicals cause to progenitor autonomous WNT signaling. 
The expression of canonical WNT targets is reversed in P5 Gdnfhyper/hyper kidneys, where Wnt9b and -
11 no longer are significantly upregulated (Fig. 7F). Our new results however show that their 
canonical targets Cited1 and Uncx4.1 (Karner et al., 2011) together with R-spondin1, a known Wnt 
signaling agonist, which together R-spondin3 is essential for the nephron progenitor maintenance 
and differentiation (de Lau et al., 2014; Vidal et al., 2020), showed increased expression in 
Gdnfhyper/hyper kidneys (Fig. S7B). 
 
These new results together with our data in Fig. 7 suggest that increased GDNF levels augment 
several bud- derived GDNF/Ret targets, which not alone but in combination with each other and 
together with increased canonical WNT signaling are inhibitory to nephron progenitor proliferation 
and differentiation in embryonic kidneys. In postnatal kidneys, GDNF expression gradually 
decreases and generates permissive environment for normal nephrogenesis. The results also suggest 
that GDNF may act as a previously unrecognized master regulator of ureteric bud-derived signals 
that function to control events in the nephrogenic niche. 
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Minor points 
 
1. Explain the principle of GDNF activation in GDNF-hyper mice in the 
introduction section, as this is a key point that is necessary for the readers to interpret the data 
precisely. 
 
Response: We have now added an explanation for genetic upregulation of GDNF to the Introduction 
section of the revised manuscript (p. 4, last chapter). 
 
2. The legend for Supplementary Figure 1F is missing. 
 
Response: We apologize for the missing legend. In the revised manuscript Fig. S1F is designated as 
Table 1 and the legends is provided. 
 
Reviewer 2 Advance Summary and Potential Significance to Field: 
There is intense interest in extending nephron progenitor lifespan in the developing kidney 
because genetic or environmental factors that disrupt progenitor maintenance result in low 
nephron number and predisposition to kidney disease. The majority of nephrons form just before 
birth in humans and just after birth in mice. As such, extending this period of nephron formation 
could have a dramatic impact on nephron number and potentially protect at-risk individuals such 
as pre-term babies from the detrimental effects of low nephron number. 
This work presents a new observation that nephron progenitor cells can be maintained past the 
point that they would usually differentiate by increased levels of a growth factor important for 
kidney development- gdnf. However, the work in its current form does not adequately address: 
the reality that very few progenitors are maintained, the source of gdnf expression, or major 
morphological abnormalities that are also evident in this model. 
Gdnf is an important and well known regulator of kidney development. As such, the field will be 
interested in this work and take note of the results. However, many would have reservations about 
this work in its current form. 
 
Response: We thank the reviewer for acknowledging the importance of our results and pointing out 
the shortcomings of our original manuscript. We appreciate valuable and knowledgeable comments 
and have now addressed them substantially in the revised manuscript (edits and new results written 
in red). 
 
Please see our responses to the specific comments below. 
 
Comments for the Author: 

1. This paper presents an analysis of nephron progenitor (NP) cell maintenance and 
differentiation in a Gdnf hypermorphic mouse line. The finding that NP cells are maintained past 
the time these cells differentiate in wildtype animals is new, as is the finding that Wnt11 and 
Gdnf- two genes proposed to interact in a positive feedback loop- have seemingly independent 
effects on kidney size. 
 
Although of interest, the study is limited by selectively highlighting specific results without due 
acknowledgment of other phenotypes, or a sense of proportion to the results being described. For 
example the summary of the article states "growth factor augmentation substantially extends 
nephron progenitor lifespan and nephrogenesis in postnatal kidney". What this and other sections 
of the manuscript do not highlight is that the kidney is severely hypoplastic, nephron number is 
lower than controls, and most nephron progenitors are depleted early in kidney development. 
However, the few progenitors that remain do so beyond their normal lifespan and continue to 
generate nephrons. The implication that Gdnf could be used to extend nephrogenesis is intriguing 
but the effect of higher levels of this growth factor on the rest of the kidney are alarming. 
 
Response: We thank the reviewer for remarking our clearly too overtly positive interpretation of 
the results. We agree that our earlier work which shows branching defect and hypodysplastic 
kidneys in Gdnfhyper/hyper mice (Li et al., 2019) should be better explained to properly contextualize 
our results. 
In the revised manuscript we have now pointed these out in several different sections. We have 
additionally described the glomerular density results in a manner that will give the reader more 
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thorough understanding of effects that the fetal excess of GDNF has on glomerular density, which is 
not improved to the level of wild type kidneys (Table 1 of the revised manuscript). 
We hope that the reviewer appreciates our attempt to tune down overtly positive interpretation of 
the results throughout the revised manuscript. Changes are shown in red font throughout the text. 
These are exemplified by the change of Summary statement, which now runs: “We show that the 
dosage of neurotropic factor GDNF regulates of nephron progenitors and that in utero growth 
factor augmentation can extend postnatal lifespan and differentiation of nephron progenitors.” 
We have also revised the last sentence of Discussion, which referred to the use of GDNF as a 
clinical mean to extend nephrogenesis: “Additional experimentation is needed to identify possible 
means to excessively activate GDNF signaling without harmful effects on kidney growth.” 
 

2. Analysis of proliferation and Gdnf target gene expression led to the proposal that 
excess Gdnf depletes nephron progenitor cells by suppressing proliferation but maintains these 
cells for an extended period by increased levels of Wnt11 and other Gdnf targets that are known 
to influence nephron progenitor maintenance. The link to proliferation is new. While the Wnt11 
hypothesis is feasible and consistent with previous work, this finding does not offer additional 
mechanistic insight into how gdnf or its targets regulate nephron progenitor cells. 
 
Response: We acknowledge the reviewer for pointing out insufficient analysis of nephron progenitor 
regulation in our initial manuscript. 
To gain more information on the mechanisms how GDNF regulates nephron progenitors we have 
now performed additional experiments to identify gene regulatory networks possibly affected by 
excess GDNF and enlarged ureteric bud. Based on previous information showing that increased 
canonical WNT signaling negatively impacts nephron progenitor maintenance (Dapkunas et al., 
2019; Kiefer et al., 2012) we first analyzed the expression of Wnt/b-cateinin targets, which could 
mediate the effects of upregulated Wnt9b and -11 in Gdnfhyper/hyper ureteric buds reported in our 
initial manuscript (Fig. 7). This analysis detected significant increase in axin2 expression in 
Gdnfhyper/hyper kidneys at E14.5 (revised Fig. S7A). Notably, the nephron progenitor specific Wnt/b-
catenin targets Amph, Cited1 and Uncx4.1 (Karner et al., 2011) showed trend of downregulation 
likely reflecting the overall decrease in nephron progenitor numbers. In this light the slightly 
increased but statistically insignificant Tafa4 expression is interesting and suggests that increased 
canonical WNT signaling contributes to observed inhibitory function of excess GDNF on NPCs. 
This is supported by our new experiments, which show that chemical inhibition of WNT signaling in 
the presence of excess GDNF alleviates extended ureteric bud tip morphology (Fig. S8). Of note, 
WNT inhibition by IWR1 and IWP2 (data not shown) disrupts nephron progenitor coherence, which 
likely derives from the imbalance the chemicals cause to progenitor autonomous WNT signaling. 
The expression of canonical WNT targets is reversed in P5 Gdnfhyper/hyper kidneys, where Wnt9b and -
11 no longer are significantly upregulated (Fig. 7F). Our new results however show that their 
canonical targets Cited1 and Uncx4.1 (Karner et al., 2011) together with R-spondin1, a known Wnt 
signaling agonist, which together R-spondin3 is essential for the nephron progenitor maintenance 
and differentiation (de Lau et al., 2014; Vidal et al., 2020), showed increased expression in 
Gdnfhyper/hyper kidneys (Fig. S7B). 
These new results together with our data in Fig. 7 suggest that increased GDNF levels augment 
several bud- derived GDNF/Ret targets, which not alone but in combination with each other and 
together with increased canonical WNT signaling are inhibitory to nephron progenitor proliferation 
and differentiation in embryonic kidneys. In postnatal kidneys, GDNF expression gradually 
decreases and generates permissive environment for normal nephrogenesis. The results also suggest 
that GDNF may act as a previously unrecognized master regulator of ureteric bud-derived signals 
that function to control events in the nephrogenic niche. 
 

3. A major question arising from this work is where is Gdnf being expressed? The authors 
focus nephron progenitor cells - “Gdnf, expressed by the nephron progenitor population”, however 
Magella et al., Dev Biol 2018 identify the cortical stroma as a source of Gdnf, in addition to NP 
cells. Other single cell data sets support this finding and expression at lower levels in other 
stromal populations. Given the paucity of NP cells from E14.5 onwards, and the persistent and 
dramatic effects on the ureteric tip and other areas of the kidney into early postnatal life (see 
large ureteric tips at P3 in Fig.3), it’s unlikely that NP cells are the major source of Gdnf in this 
model. Indeed, the authors show a 6-fold increase on wildtype GDNF levels at postnatal day 7, 
when by their own characterisation the NP population is no longer present. 
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Response: As the reviewer points out, the single cell sequencing data indicates that GDNF is 
expressed also in renal stroma. We have performed in situ hybridization analysis of Gdnf expression 
throughout development to compare its localization in wild type and Gdnfhyper/hyper kidneys (figure 
below). This reveals increased expression without major changes in the transcript localization 
pattern, reflecting the result shown in main figure 7 of manuscript. 
We have now rephrased the sentences referring to Gdnf expressing cells in the revised manuscript 
(p. 3 and 8 of the revised manuscript). In the introduction, we added metanephric mesenchyme as 
a source of Gdnf and in the beginning of the Results chapter “Persistent postnatal nephrogenesis 
depends on changes in GDNF induced signaling”) the new sentence now runs “Gdnf expression is 
lost from wild type kidneys by P2 (www.gudmap.org) while its mRNA and protein were still present 
in Gdnfhyper/hyper kidneys as late as P7 (Fig. 7A-D).” 
 
We have removed unpublished data provided for the referees in confidence. 
 
 
Suggestions and comments 
1. Introduction- Please provide a brief description of the GDNF hyper mouse including the 
genetic modification, level of expression, and an overview of phenotypes previously associated 
with that line. Relevant papers are cited but as this mouse forms the basis of the current study it 
should be described at the start of the manuscript. 
Response: We agree that this is important and have now added this information to the Introduction 
section of the revised manuscript (p. 4, last chapter). The sentence now runs: “We previously 
reported that genetic disruption of Gdnf’s 3’ untranslated region causes 3-6-fold increased 
expression of endogenous GDNF and results in renal hypoplasia due to the UB branching defect 
(Kumar et al., 2015).” 
2. The images of E11.5 kidneys presented in Figure 1A show an expanded UB and reduced 
number of NPs in the Gdnf hyper/hyper mouse compared to control, which are consistent with the 
culture experiments and E14.5 (Fig1.d,f). The results section reports “NP amount in 
Gdnfhyper/hyper kidneys resembled that in wild type kidneys, but was quickly decreased”. Please 
include a note about the early UB phenotype, which is well-illustrated in supp fig1B. Please 
include the embryonic stage (E12.5) for this statement as it contrasts with data presented in the 
same figure from other stages (E14.5). “Quantification of NP cell amounts confirmed similar NP 
amounts in both genotypes, while analysis of pHH3 specifically in NP population revealed 57% 
reduction in mitotic cells of (Figure 1G-H).” Please provide more detail about how these samples 
were imaged and how cell numbers were quantified. The description in the methods was not 
detailed enough to understand the experiment. Were any other stages quantified? 
Response: We have now added stages to our analysis (E11.5, E12.5, E14.5 and postnatal days 0, 3-6) 
and clarified their description. We have also included abnormal UB to the sentence describing 
nephron progenitors in Gdnfhyper/hyper kidneys in beginning of the chapter “The embryonic 
nephrogenic program depends on GDNF” on p. 4. The sentence now runs: “NPs in Gdnfhyper/hyper 

kidneys were distributed around abnormally wide UB as a thinner layer (Fig. 1A-F, S1A-B).” 
We have now also described in more detail the imaging and quantification processes in the Methods 
section of revised manuscript. 
 
In addition to quantification of the nephron progenitor numbers at E12.5 in the original manuscript, 
we have now additionally quantified at E11.5 and E14.5 kidneys and included the result: 
“Quantification of NPs at E11.5 revealed an initial increase in NPC numbers, which was transiently 
normalized at E12.5 but severely decreased at E14.5 Gdnfhyper/hyper kidneys (Fig. 1G-H, S1E-F)”. 

Comparison of the nephron progenitor numbers in Gdnfhyper/hyper and Gdnfhyper/hyper; Wnt11+/- at 
E14.5 and P0 revealed that removal of one Wnt11 allele resulted in 1,4 and 1,5 higher average of 
nephron progenitors/niche, respectively (Fig. 8 of revised manuscript). 
In addition, we have now quantified how many of nephrogenic niches have nephron progenitors in 
wild type and Gdnfhyper/hyper kidneys at P3-P6 (Fig3-4, S1H). This revealed that while in wild types 
only 10% of the analyzed UB tips (niches) were capped with NPCs (Fig. 3A, 48 tips analyzed in 2 
kidneys) at P3, 59% of analyzed niches in Gdnfhyper/hyper have NPs at P3 (Fig. 3B, 107 tips analyzed in 
2 kidneys). At P4 and P5 NPCs were not detected in wild type niches (Fig. 4A-B, 315 and 10 tips 
analyzed, respectively). Of note, it was really difficult to find calbindin-positive epithelium 
resembling tip morphology in the cortex of P6 wild type kidneys, which restricted the analyzed tip 

http://www.gudmap.org/
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numbers substantially. In P4 Gdnfhyper/hyper kidneys NPCs were detected in 18% of the analyzed 
niches while only committed NPCs were detected at P6 (Fig. 4C-D, 245 and 16 tips analyzed, 
respectively). 
 
3. Regarding the in vitro experiment assessing “whether recombinant GDNF can control 
NP cell proliferation in vitro”, were multiple concentrations tested? Was the 100ng/mL 
concentration based on any prior work or optimisation? If so, please include a reference or 
comment to this effect. 
 
Response: We apologize for not including reference for the concentration of GDNF protein in the 
initial manuscript. The reference to the original paper (Sainio et al., 1997) is now included in the 
revised manuscript (p. 14, chapter “Organ culture”). Of note, GDNF is used at 50-100ng/ml 
concentrations in many other publications, few of which are referred here (Kuure et al., 2005; Lu 
et al., 2009; Menshykau et al., 2019; Ola et al., 2011). 
 
4. Please consider expanding or clarifying the statement “The results show general 
decrease in early nephron precursor numbers and indicate nephron differentiation hysteresis in 
embryonic Gdnf hyper/hyper kidneys”. Assuming hysteresis means the history of dependence- what 
is the dependence and altered response in reference? 
 
Response: Thank you for the note, we have now replaced “hysteresis” with reduced nephron 
differentiation. The sentence now runs: “This showed general decline in early nephron precursor 
numbers and indicate reduced nephron differentiation in embryonic Gdnfhyper/hyper kidneys (Figure 
2)” 
 
5. The figure legend description is missing for supplementary figure 1F. Please provide 
some representative images for this analysis. This figure describes glomerular density in mm^2, a 
proxy for glomerular/nephron number, with text highlighting lower overall density in gdnf hyper 
mice, but an increase in proportional glomerular density in the cortex in comparison to controls. 
The conclusions and comparisons from this analysis may be confounded by other aspects of the 
phenotype such as changes in kidney size, the noted decrease in nephron formation in Gdnf hyper 
mice earlier in development, and the large cysts reported to form at this stage (Kumar et al., 
2015). Please include some text in the supplementary figure or methods detailing how these 
factors were accounted for or perhaps focus on the results that despite a reduced NP population, 
nephron formation continues? 
 
Response: We apologize for the missing legend. The revised manuscript includes legend for the Fig. 
S1F, which is now designated as Table 1. In the revised manuscript, the representative images are 
shown in Fig. S5A-B. 
The glomerular density measurements as such take into account the overall area of the kidney, 
where the number of glomeruli are counted, but indeed fails to take into account the size increase 
caused by large cysts. We followed the reviewer’s suggestion to focus on the description of these 
results to emphasize continued nephrogenesis in Gdnfhyper/hyper (p.5, please see the last chapter of 
the section “The embryonic nephrogenic program depends on GDNF”). 
 
6. The following statement referencing the proportional differences in glomerular 
density should be revised: “This shows that despite the early deceleration of NP self-renewal, a 
larger proportion of late born nephrons develop in the kidneys facing excess GDNF during 
organogenesis.” At present it is unlikely to be true as Short et al., 2014 showed that over 50% of 
nephrons form after birth during normal development. “late born nephrons” would encompass 
that 50% of nephrons born after birth in the control so without measuring the number of nephrons 
before birth and into adulthood this is still unclear. The number of nephrons would be much lower 
in hyper/hyper mice. 
 
Response: Please see also our response to the previous comment. The sentence is now rephrased to 
“This indicates that despite the early deceleration of NP self-renewal and differentiation, the 
kidneys facing excess GDNF during organogenesis have ongoing postnatal nephrogenesis with a 
minor increase in the latest born nephrons (Rumballe et al., 2011).” 
 
7. Regarding the retention of some NP cells after cessation- the data in Figure 3 shows a 
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number of examples where a thin layer of NP cells is present in gdnf hyper/hyper kidneys and not 
controls. While the Gdnf hyper/hyper mice are clearly delayed in their cessation of nephrogenesis, 
the staining referenced in Fig4C is more in line with an early committing nephron than persistent 
NP cells at this stage. Rumballe et al., Dev Biol., 2011, report the transition from NP -> early 
committing nephron at cessation is marked partly by a change in localisation of NP cells, but 
primarily by the formation of a Collagen IV+ basement membrane around NP clusters, which 
coincides with morphological evidence of increasing polarity - seen as a rosette of NP nuclei with a 
gap in the centre (Rumballe et al., Fig 3b and c). These signs of polarisation are evident in Fig. 4C 
(arrow on the left), the central arrow points to an isolated cell, the right arrow points to a cluster 
of cells similar to one marked in the control (asterisk in the right of Fig. 4A). This section could 
perhaps focus on a consistent delay in gdnf hyper/hyper mice compared to controls. 
 
Response: We agree with the reviewer that P6 nephron progenitors resemble more committed than 
fully undifferentiated progenitors and this is now also stated in the revised manuscript (p. 6 of 
results section and in fig.4 legend). However, based on our new analysis of how many of 
nephrogenic niches have nephron progenitors we would still like to highlight that not all progenitors 
are committed in Gdnfhyper/hyper  at P4 (Fig. 4 of revised manuscript). 
The results are now described as: “Finally, we found that approximately 18% of the NP niches 
sustained SIX2-positive NPCs at P4, and committed NPCs were present in Gdnfhyper/hyper kidneys until 
P6, while committed NPCs were detected in WT kidneys only until P4 (Fig. 4).” 
 
8. Authors point out how an excess of GDNF can prolong the nephrogenic program and 
compare this to other models like Lin28/Let7 overexpression which create a much more dramatic 
phenotype, but can lead to cancer. However, they fail to acknowledge the dramatic abnormalities 
associated with the Gdnf hyper/hyper mice. 
 
Response: We agree and apologize for not discussing and contextualizing better the branching 
morphogenesis defect of Gdnfhyper/hyper mice that we have published earlier (Li et al., 2019), and 
which clearly results in hypodysplastic kidneys. 
We do recognize that these renal defects in Gdnfhyper/hyper mice evoke severe concerns and describe 
the limitations of our model now in several sections of the revised manuscript, where also the 
superiority of GDNF-hyper mice over the other models is now substantially toned down. 
 
9. The authors comment on the phenotype of mice with a single Gdnf hyper allele, 
stating that this single allele is insufficient to maintain nephron progenitor cells however they 
only show data from postnatal day 5 (supp fig 5 E,F), which past the point that NP cells are 
maintained in the gdnf hyper/hyper line. 
 
Response: We apologize for the confusion here. The SIX2 staining to detect nephron progenitors is 
performed at P4 and P6 stages of wild type and Gdnfhyper/hyper kidneys (Fig. 4) The point we want to 
make with Gdnfwt/hyper kidneys stained with SIX2 at P5 that similar to wild type kidneys, they do not 
show any SIX2 positivity (nor in undifferentiated or committed nephron progenitors). Therefore we 
do conclude that GDNF increase by single allele 3’UTR disruption is not sufficient to maintain 
nephron progenitors in postnatal kidneys. 
10. Figure 6: are new nephrons formed at P7 or are these the same nephrons that formed 
at P4? Are these nephrons stalled at an early stage? 
Response: Unfortunately we are unable to comprehensively answer to these questions. We do think 
that based on the persistent presence of nephron progenitors until P4, new nephrons could be still 
forming in P7 Gdnfhyper/hyper kidneys but genetic experiments to verify this are not possible within 
the timeframe of the revision. 
11. The paper focuses on nephron progenitor maintenance and extension of nephrogenesis 
but NP cells are only visualised early in kidney development (E11.5, 14.5) and at postnatal day 3. 
It would be useful to know whether this population remains scarce, or has a resurgence between 
E15.5-P2. 
Response: We apologize for the confusing presentation. We show SIX2 and PAX2 staining of nephron 
progenitors at E11.5, E12.5 (cultured kidneys), E14.5, P0, P3, P4 and P6 (Figs. 1, 3, 4 and 8; S1). 
Nephron precursors are visualized by different markers at E14.5, E16.5, P0, P3-P7 and P12 (Figs. 2., 
5. and 6.; S4) 
We included here also additional staining of SIX2 at E16.5 (Fig. SIX2-positive nephron progenitors 
below). Based on this and the results presented in the manuscript it is in our opinion safe to say 
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that nephron progenitors do not resurgence at any developmental stage in Gdnfhyper/hyper kidneys. 
 
We have removed unpublished data provided for the referees in confidence. 
 
12. Comment- Figure 3 D seems to show a strong upregulation of Pax2 in the ureteric tip 
compared to controls. 
13.  
Response: Thank you for this notion! This is very interesting and we will address GDNF regulation of 
Pax2 and other transcription factors in our next study. 
 
Reviewer 3 Advance Summary and Potential Significance to Field: 
 
In "Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF" Hao and colleagues 
describe the nephron progenitor phenotype of Gdnf hyper mice during the first week of postnatal 
development. 
 
The authors describe that “excess Gdnf, expands the nephrogenic program beyond its normal 
cessation by maintaining NP cells and nephrogenesis in postnatal mouse kidneys” 
 
There is an ongoing effort to understand how nephron progenitors can be expanded in vitro for 
experimental purposes and potential regenerative therapeutic ends, and with a growing number of 
premature births surviving, it is important to recognize the impact of premature cessation of 
nephrogenesis and the impact this has on nephron endowment and ultimately quality of life and 
health. Further, there is an inherent interest in understanding the biology underpinning nephron 
progenitor growth, expansion and differentiation. 
 
The significance of this manuscript rests on its finding that higher expression of Gdnf can result in 
a delayed end to nephrogenesis. The delay is from approximately day 4 to day 7 of postnatal 
development. The debate of whether nephron progenitors commit to differentiate during this 
period due to an intrinsic or extrinsic clock, or a change in environment, is still on going. 
 
The authors show the following: 

1. in Gdnf-hyper mice NPCs persist longer. 

2. Fgf9/Fgf20 deficient mice do not display this (argument being hypoplasia is therefore 
not cause of NPC survival in Gdnf-hyper mice) 

3. The Gdnf-hyper mice phenotype can be modified on a Wnt11 het background. 
 
As a reviewer, what I am missing is the obvious connection between these experiments, and some 
form of cohesive view of a gene regulatory circuit/pathway being modified. How is the biology of 
NPCs altered on the hyper or hyper/Wnt11 backgrounds? Without these, it is not clear that this 
warrants publication in Development at this time as the advance remains primarily descriptive. 
 
Response: We thank the reviewer for acknowledging the importance of our results and pointing out 
the missing characterization of gene regulatory circuits of nephron progenitors in the presence of 
excess GDNF. We appreciate valuable comments and have now addressed these concerns 
substantially in the revised manuscript (edits and new results written in red). 
 
Please see our responses to the specific comments below. 
 
Comments for the Author: 

1. The authors build up an argument that initial NPC endowment is similar in wildtype 
and Gdnf- hyper kidneys but this relies on data in Figure 1/S1 and it is not clear how NPCs are 
quantified, is it per area, per kidney, per tip? 
 
Response: We apologize for incomplete description of the nephron quantification method in our 
original manuscript. The ureteric bud tips are inherently taken into account in our method, which 
counts nephron progenitors in their niches = around each ureteric bud tip. This is now described in 
more detail in the Methods section of the revised manuscript. 
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2. The authors do state the analyses are done on E12.5 kidneys, but if the Gdnf-hyper 
kidneys have altered branching morphogenesis and tip numbers, are they taking this into account? 
The authors quantify NPC amounts at E12.5 and argue that the start-point are similar for wt and 
hyper kidneys. However, in Figure 1A-B there is a clear difference at E11.5 (which is not 
quantified), and similarly, there is a striking difference at E14.5 (also not quantified) which begs 
the question of whether the E12.5 data is indeed accurate. Better descriptions of the 
quantification and the caveats of the quantification method are needed. 
The authors also quantify PHH3+ NPCs in wildtype and hyper kidneys as well as in cultured kidneys 
exposed to Gdnf and show a consistent decrease, concomitant with reduced nephrogenesis. Again, 
more detailed descriptions of how this was performed and the caveats (as based on the other Gdnf 
phenotypes exhibited) are needed. 
 
Response: We agree with the critique and have now included both new data and deeper Methods 
section. Please see also our answer to the first comment. 
 
In addition to quantification of the nephron progenitor numbers at E12.5 in the original manuscript, 
we have now additionally quantified them at E11.5 and E14.5 kidneys. In the revised ms data 
description is added on page 5 as: “Quantification of NPs at E11.5 revealed an initial increase in 
NPC numbers, which was transiently normalized at E12.5 but severely decreased at E14.5 
Gdnfhyper/hyper kidneys (Fig. 1G-H, S1E-F)”. 
 
Furthermore, comparison of the nephron progenitor numbers in Gdnfhyper/hyper and Gdnfhyper/hyper; 
Wnt11+/- at E14.5 and P0 revealed that removal of one Wnt11 allele resulted in 1,4 and 1,5 higher 
average of nephron progenitors/niche, respectively (Fig. 8 of revised manuscript). 
 
We have also quantified how many of nephrogenic niches have nephron progenitors in wild type and 
Gdnfhyper/hyper kidneys at P3-P6 (Fig3-4, S1H). This revealed that while in wild types at P3 only 10% 
of the UB tips (niches) are capped with NPCs (Fig. 3A, 48 tips analyzed in 2 kidneys), 59% of 
analyzed niches in Gdnfhyper/hyper have NPs at P3 (Fig. 3B, 107 tips analyzed in 2 kidneys). At P4 and 
P5 NPCs were no longer detected in wild type niches (Fig. 4A-B, 315 and 10 tips analyzed, 
respectively). Of note, it was really difficult to find calbindin-positive epithelium resembling tip 
morphology in the cortex of P6 wild type kidneys, which substantially restricted the number of tips 
available for analyzes. In P4 Gdnfhyper/hyper kidneys NPCs were present in 18% of the analyzed niches 
while at P6 only committed NPCs were detected (Fig. 4C- D, 245 and 16 tips analyzed, 
respectively). 
 

3. The authors describe cortical to cortical-to-total glomerular density as a measurement 
where wildtype and hyper kidneys differ. This raises the question, are all renal corpuscles not 
typically positioned in the cortex? The is a fairly sharp boundary between the Outer Medulla and 
the Cortex where renal corpuscle, S1, and S2 are within the Cortex. Could the authors elaborate 
on the meaning of this wording and how the analyses were performed? 
 
Response: We agree with the critique and apologize for incomplete description of the glomeruli 
quantification method in our original manuscript. As the reviewer acknowledges, there is a clear 
boundary between cortical and outer medulla regions in the kidney, and these are present in late 
embryonic and early postnatal kidneys. We first measured the kidney area from where the 
glomeruli were counted in each section by Fiji program. The total number of glomeruli and number 
of glomeruli in the cortex were then counted separately. The average measured area, overall and 
cortical glomeruli numbers were then calculated for each sample. Average glomerular density was 
calculated by dividing the average glomerular number by the average of measured area. The 
average cortical glomerular density was calculated by dividing the average cortical glomerular 
number by the average of measured total area. This does not give real cortical glomerular density 
but rather indicates the amount of glomeruli located in the cortex. 
 
In the revised manuscript we have now included the description of our calculation to the Methods 
section of revised manuscript (p.18 new, text in red). We have also re-labelled what we called 
average cortical glomerular density to average cortical glomerular density within the total area in 
the revised manuscript to more faithfully present our calculations (Table 1.). Finally, we describe 
the glomerular density results in a manner that gives the reader more thorough understanding of 
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effects that the fetal excess of GDNF has on renal differentiation in general and especially on 
glomerular density, which is not improved to the level of wild type kidneys (p. 5 of the revised 
manuscript). It now runs: 
 
“Glomerular density assessment further supported this and demonstrated lower overall densities 
in hypodysplastic Gdnfhyper/hyper kidneys than in wild type (WT) kidneys (Fig S1G). Interestingly, 
analysis of the cortical glomeruli within the total measured area and especially cortical-to-total 
glomeruli ratios revealed slightly higher than WT ratios in Gdnfhyper/hyper (Table 1; 17% in 
Gdnfhyper/hyper, 12% in WT). This indicates that despite the early deceleration of NP self-renewal 
and differentiation, the kidneys facing excess GDNF during organogenesis have ongoing postnatal 
nephrogenesis with minor increase in the latest born nephrons (Rumballe et al., 2011).” 
“However, our analysis failed to detect SIX2- and/or PAX2-positive cells in the NP niche of Fgf9;20 
deficient kidneys (Supplemental figure 2). This together with published data (O'Brien, 2018; 
Urbach et al., 2014; Yermalovich et al., 2019) suggests that prolonged nephrogenesis derives from 
increased GDNF, not from renal hypoplasia.” While this is possible, it could also be due to renal 
hypoplasia. I would argue a negative outcome here i.e. non-detection of Six2 NPCs in Fgf9/Fgf20 
deficient kidneys, does not suggest a positive conclusion. Renal hypoplasia can occur due to many 
conflicting situations. All the authors can conclude is that the phenotype in Fgf9/Fgf20 deficient 
mice is not the same as in the Gdnf-hyper kidneys. Without the underlying mechanism it is hard to 
make further arguments. 
 
Response: Renal hypoplasia as a possible cause of continued postnatal nephrogenesis is a very 
important aspect of our study. It was originally addressed in FGF9;20 mutant kidneys, and thorough 
literature search. We agree that although neither of these indicate that small size (=hypoplasia) per 
se would be able to maintain nephron progenitors longer than in “normal sized” kidney, they do not 
comprehensively exclude that possibility. 
Recently several new studies demonstrate wide variability in healthy kidney size and timing of 
nephrogenesis cessation (Bennett et al., 2020; Bonsib, 2020; Charlton et al., 2020; Kuure and 
Sariola, 2020; Ryan et al., 2018; Sutherland et al., 2011). None of these shows or suggests 
correlation between reduced kidney size and persistence of nephrogenesis, which should manifest 
as small kidneys where glomerular density is higher than in normal sized kidneys. 
In the revised manuscript we have now additionally analyzed the postnatal presence of nephron 
progenitors in a model where renal hypoplasia is caused by impaired ureteric bud branching 
(similarly as in Gdnfhyper/hyper mice), namely Hoxb7Cre; Mek1;Mek2 mice. Deletion of all four alleles 
results in very severe renal hypodysplasia and newborn lethality (Ihermann-Hella et al., 2014) but 
inactivation of ¾ alleles is compatible with life as kidneys show only mildly reduced size. Again, no 
signs of prolonged nephrogenesis could be detected (Fig. S3), strongly supporting the view that 
renal hypoplasia as such is not enough to maintain postnatal nephrogenesis. 
Based on these and other results we present in the revised manuscript we think that increased fetal 
GDNF expression, not the small kidney size it causes, has a major impact on nephron progenitors. 
To acknowledge the imperfection of our experimentation and in agreement of “the negative result 
does not suggest a positive conclusion” in the results section we now write: “Also published data 
demonstrates that renal hypoplasia alone is unable to support postnatal NP maintenance (Kuure and 
Sariola, 2020), which further suggests active role for GDNF but cannot completely exclude the 
possibility that increased fetal amount of other growth factor signals, which may or may not reduce 
kidney size, will not have the same effect.” (p. 6-7). 
“Removal of one functional Wnt11 allele in Gdnfhyper/hyper background 
(Gdnfhyper/hyper;Wnt1+/-) did not improve postnatal kidney size from that in Gdnfhyper/hyper 
pups (Supplemental figure 7A-E). However, removal of Wnt11 allele in Gdnfhyper/hyper individuals 
enhanced SIX2-positive NP population and improved nephrogenesis, as evidenced by increased 
PAX2-positivity in the cortical differentiation zone of Gdnfhyper/hyper;Wnt1+/- kidneys (Figure 8, 
compare also to Figure 1F). Thus, this result suggests that WNT11 mediates GDNF’s regulatory 
functions to NP cells.” 
There is a typo in the above sentence but more importantly this is not supported by clear 
quantification of Six2+ progenitor populations. 
 
Response: Here we refer to our response to the reviewer’s comment 2: We have now quantified 
nephron progenitors at all stages from which there is data presented in our manuscript. This 
includes comparison of the nephron progenitor numbers in Gdnfhyper/hyper and Gdnfhyper/hyper; Wnt11+/- 

at E14.5 and P0. This validates our original conclusion that removal of one Wnt11 allele in 
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Gdnfhyper/hyper background results in enhanced nephron progenitor maintenance (1,4 and 1,5 higher 
average of nephron progenitors/niche, respectively) and supports also improved nephrogenesis (Fig. 
8 of revised manuscript). 
 
Further, knowing that modifications to Gdnf signalling alters branching morphogenesis, is it not 
plausible that a higher level of Gdnf protein results in expanded tips, with consequent larger 
Wnt11 expression domains? The Gdnfhyper/hyper; Wnt11+/- could therefore just have restored 
the tip size? The authors describe this phenotype in S7 (red arrows). Following on from that the 
authors describe “cyst in glomerular tuft (black arrow)” in S7D-E. The glomerular tuft refers to 
the capillaries that form the glomerulus. To me it looks like these cysts are made from an 
expansion of the Bowman’s space. 
Response: We agree with the reviewer that the expanded ureteric bud in Gdnfhyper/hyper kidneys, 
caused by the excess expression of GDNF, likely contributes to the increased expression of not only 
Wnt11 but other transcriptional targets of GDNF as well as Wnt9b. Indeed, in the revised 
manuscript we now show that increased Wnt11 and -9b are accompanied by significantly increased 
expression of canonical WNT target Axin2 at E14.5 kidneys (Fig. S7A in revised manuscript). Of 
note, excess canonical WNT signaling is previously shown to negatively impact nephron progenitor 
maintenance (Dapkunas et al., 2019; Kiefer et al., 2012). Furthermore, our new experiments show 
that chemical inhibition of WNT signaling in the presence of excess GDNF alleviates extended 
ureteric bud tip morphology (Fig. S8). Of note, WNT inhibition by IWR1 and IWP2 (data not shown) 
disrupts nephron progenitor coherence, which likely derives from the imbalance the chemicals 
cause to progenitor autonomous WNT signaling. 
In postnatal kidneys the nephron progenitor specific canonical WNT targets (Karner et al., 2011) 
Cited1 and Uncx4.1 together with R-spondin1, a known Wnt signaling agonist, which together R-
spondin3 is essential for the nephron progenitor maintenance and differentiation (de Lau et al., 
2014; Vidal et al., 2020), showed increased expression in Gdnfhyper/hyper  kidneys (Fig. S7B). 
These new results together with our data in Fig. 7 suggest that increased GDNF levels augment 
several bud- derived GDNF/Ret targets, which not alone but in combination with each other and 
together with increased canonical WNT signaling are inhibitory to nephron progenitor proliferation 
and differentiation in embryonic kidneys. In postnatal kidneys, GDNF expression gradually 
decreases and generates permissive environment for normal nephrogenesis. The results also suggest 
that GDNF may act as a previously unrecognized master regulator of ureteric bud-derived signals 
that function to control events in the nephrogenic niche. 
We thank the reviewer for pointing out incorrect nomenclature used in previous legend for the fig. 
S7D-E. We have now changed the labeling of what we previously called glomerular tuft to 
Bowman’s space in the figure legend of fig. S9 in the revised manuscript. 
 
“Gdnf, expressed by the nephron progenitor population, is lost from wild type kidneys by P2 
(www.gudmap.org) while its mRNA and protein were still present in Gdnfhyper/hyper kidneys as 
late as P7 (Figure 7A-D).” 
Given the importance of understanding the dynamics of Gdnf expression during postnatal days of 
development, it is surprising to me that the authors did not perform a time-course of in situ 
hybridization experiments to pinpoint the exact differences between wildtype and hyper kidneys. 
 
Response: To state what the reviewer cites above we indeed have analyzed Gdnf expression by in 
situ hybridization through postnatal (and developmental) stages (P0-P6) to compare its localization 
in wild type and Gdnfhyper/hyper kidneys (figure below). As shown for P4 in the main figure 7A-B of the 
revised manuscript, this reveals increased expression without major changes in the transcript 
localization pattern, reflecting well rest of the result of the figure (Fig. 7C-D). It is worth 
mentioning that qRT-PCR is much more sensitive method than in situ hybridization and thus can 
detect traces of expression in tissues where the latter method fails to show transcripts. 
 
We have removed unpublished data provided for the referees in confidence. 
 
I was under the impression that mouse genes are written as follows Gdnf while their protein are 
Gdnf. This contrasts to human nomenclature GDNF/GDNF. 
 
Response: We have carefully double-checked all gene and protein names in the manuscript, and can 
confirm that we do adhere to official guidelines on nomenclature rules as laid out by 
http://www.informatics.jax.org/mgihome/nomen/. In essence, mouse gene symbols begin with an 

http://www.gudmap.org/
http://www.informatics.jax.org/mgihome/nomen/
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uppercase letter followed by all lowercase letters and are italicized in published articles (Gdnf). 
Protein designations follow the same rules as gene symbols, with the distinctions that they use all 
uppercase letters and are not italicized (SIX2). 
 
Supplemental figure 1 lacks texts describing S1F. 
. 
Response: We apologize for the missing legend. In the revised manuscript Fig. S1F, is designated as 
Table 1 and the legend is included. 
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