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ABSTRACT

Developmental biology has grown into a data intensive science with
the development of high-throughput imaging and multi-omics
approaches. Machine learning is a versatile set of techniques that
can help make sense of these large datasets with minimal human
intervention, through tasks such as image segmentation, super-
resolution microscopy and cell clustering. In this Spotlight, | introduce
the key concepts, advantages and limitations of machine learning,
and discuss how these methods are being applied to problems in
developmental biology. Specifically, | focus on how machine learning
is improving microscopy and single-cell ‘omics’ techniques and data
analysis. Finally, | provide an outlook for the futures of these fields and
suggest ways to foster new interdisciplinary developments.
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Introduction
Developmental biology has undergone considerable transformations
in the past 10 years. It has moved from the study of developmental
genetics, which was mainly focused on the molecular scale, to an
integrative science incorporating dynamics at multiple scales; from
single molecules, to cells, to tissues. The development of new
microscopy techniques, such as light-sheet microscopy (McDole
et al., 2018) or high-resolution microscopy (Liu et al., 2018) has
enabled the study of entire embryos and single molecular processes in
the context of entire tissues. In parallel, high-throughput sequencing
techniques have opened new avenues for the study of gene expression
in developing embryos at a whole-genome scale (Briggs et al., 2018;
Wagner et al., 2018; Farrell et al., 2018). These techniques generate
terabytes of data and description in high-dimensional spaces; for this
reason, it has become difficult to explore this wealth of data by hand.
Therefore, we need to harness automated methods from computer
science and statistics to explore these datasets, and extract the key
features in a digestible manner. This requires asking the right
questions and identifying the right approaches to answer them.
Concurrently, computer science is being revolutionized by machine
learning, a subfield of artificial intelligence that implements inference
algorithms (statistical inference methods made possible by significant
computer power and large datasets) with minimal human intervention
(Mohri et al., 2018) (Fig. 1). Machine learing can be broadly divided
into supervised, unsupervised and reinforcement learning (Fig. 2), and
aims at solving the following common tasks: classification, regression,
ranking, clustering and dimensionality reduction (sometimes known as
manifold learning) (Mohri et al., 2018) (Fig. 3). Following a rich history
of methods applied to developmental problems, such as genetic
algorithms to infer  evolutionary-developmental  (evo-devo)
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relationships (Azevedo et al., 2005), deep learning is a popular
example of machine learning (Box 1; Fig. 1). Although deep learning
was invented many years ago, it has come to full performance by taking
advantage of large annotated datasets and the use of new hardware, such
as the graphical processing unit (GPU). Since then, there has been a
long line of very impressive successes of machine learning in a large
variety of fields. One such milestone was the victory of the computer
AlphaGo against the world champion of the strategic game Go (Silver
et al., 2016), but beyond these technological achievements, how can
machine learning really advance scientific fields?

It would be unrealistic to expect an exhaustive picture of the field of
machine learning. However, in this Spotlight, I give a brief overview
of this fast-growing, evolving field and explore the use of these
different methods through two main axes: (1) how they can help
improve microscopy techniques, and (2) how they can be used to
analyze the large datasets produced by single-cell omics techniques.

Microscopy

Machine learning has been particularly instrumental in the field of
fluorescent microscopy. Deep learning in particular has been
designed for, and is extremely well adapted to, the study of images
(Box 1). Here, I show how machine learning and deep learning
helps to improve processing of microscopy data.

Image segmentation

Image segmentation is the process of automatically identifying
regions of interest in an image and is an important part of
quantification of microscopy images in developmental biology.
Segmentation usually involves creating digital reconstructions of the
shape of nuclei or cell membranes, which can then be used to quantify
various features of these objects, such as their volume and shape
index, as well as additional signals such as the expression of a given
gene within these regions. For several years, the question of cell
segmentation was treated using more or less explicit models, which
means that they would include information a priori of the system
under study. Typical examples include image intensity thresholding
or active contours that incorporate a model of the continuity of the
membranes being segmented. However, the question of image
segmentation can be restated as a pixel classification task (Fig. 3A):
does a pixel belong to an object or not? This leads to more generic
models based on deep learning. Two recent approaches, StarDist and
Cellpose, have been particularly successful at segmentation in 2D and
3D (Schmidt et al., 2018; Weigert et al., 2020; Stringer et al., 2020).
These approaches are part of the family of supervised algorithms
(Fig. 2A). Although very successful, they require large datasets of
labeled data to train the models, which can be time consuming and
costly to establish. However, a recent study suggests that it is possible
to train segmentation models without needing labeled data, leading to
an unsupervised learning algorithm (Hollandi et al., 2020) (Fig. 2B).

Large-scale screens and tracking

In addition to image segmentation, machine learning can be applied
to in toto movies of developing embryos and high-throughput image

1

DEVELOPMENT


mailto:paul.villoutreix@univ-amu.fr
http://orcid.org/0000-0002-6333-5735

SPOTLIGHT

Development (2021) 148, dev188474. doi:10.1242/dev.188474

Machine learning

Deep learning

Fig. 1. Hierarchy of theories within the field of artificial intelligence.
Atrtificial intelligence is the general field of computer science that aims to
develop intelligent machines. Machine learning falls within the umbrella of
artificial intelligence and is concerned with the task of making accurate
predictions from very large datasets with minimal human intervention. Deep
learning is a family of models that has been extremely successful at various
tasks of machine learning, in particular with images.

data acquisition techniques for automatic phenotyping, cell tracking
and cell lineage reconstruction. Large phenotypic screens can be
performed automatically on large sets of images using supervised
deep learning algorithms (Fig. 2A); these are called image
classification or trajectory classification tasks (Khosravi et al.,
2019; Zaritsky et al., 2020 preprint) (Fig. 3A). Cell tracking relates
to the problem of object tracking, which is a widespread challenge in
the image analysis field; several methods have been directly
transferred to fluorescent microscopy images (Moen et al., 2019).
Lineage reconstruction, however, is more specific to developmental
biology because the tracked objects are dividing; dividing events
can be detected with a supervised deep learning method
(McDole et al., 2018). The precise history of these cell divisions
can be obtained from time-lapse movies, cell barcoding (which is a
molecular way of tagging cells of a similar descent, and
consequently enabling the reconstruction of their division history)
or a combination of these approaches. Once the cell lineage data are
obtained, one can investigate the developmental origin of various
tissues.

Image resolution

When considering the question of localizing individual molecules,
one can turn to super-resolution microscopy, which has benefitted
spectacularly from machine learning (Ouyang et al., 2018;
Belthangady and Royer, 2019). To improve image resolution, one
can train the model on a set of high-resolution images coupled with
their less-well-resolved counterparts, as demonstrated by the
method ANNA-PALM (Ouyang et al., 2018). Through this
supervised approach, the model learns the mapping that converts
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a low-resolution image to a high-resolution image. Once learned,
one can then acquire low-resolution images and improve them with
the model to predict the high-resolution image. Here, the algorithm
solves a regression task by predicting the value of individual pixels
varying continuously (their intensity value), which is different from
segmentation that instead aims to classify pixels (Fig. 3A,B). The
method CARE has a similar conceptual approach to predict a de-
noised image from a noisy one (Weigert et al., 2018). These types of
approaches are supervised learning techniques and hence rely on
high quality labeled datasets. It should be noted that, because they
are generating new artificial images, they are prone to potential
errors known as ‘hallucinations’, which consist of artefacts
generated when improving images without basis in the original
images.

Label-free imaging

Obtaining fluorescently labeled images is a long and costly process,
particularly when using immuno-based staining. Some approaches
have been proposed to predict labels from another less expensive
type of microscopy such as transmitted-light microscopy using
supervised deep learning techniques (Ounkomol et al., 2018;
Christiansen et al., 2018). In these examples, the model is learned
from pairs of images acquired in two modalities: the first modality
being the transmitted-light microscopy, and the other, the labeled
one. Once the model is learned, a new fluorescently labeled image
can be predicted from an image containing only the first modality.
Although very powerful, this label-free imaging framework works
only on a limited number of labels (those that correlate with the first
modality) and is thus not yet widely usable in developmental
biology.

Data integration

When many images are produced with various modalities, how can
one integrate them into a common representation, for example live
movies and fixed samples? This is the question of data fusion. We
proposed an approach to answer this question (Villoutreix et al.,
2017), using a regression model between several sets of images
containing various labels (e.g. DAPI or nuclei staining, protein
staining, RNA, time stamps). Using the model learned, we could
predict an integrative representation of multiple patterns of gene
expression at high spatial and temporal resolution.

These examples illustrate that machine learning provides us
with powerful methods and deep learning is particularly well
suited for many of the challenges of microscopy in developmental
biology. It should be noted that there is a large diversity of deep
learning architectures (ways of defining a model to be learned)
with many hyperparameters that define the characteristics of a
model, which need to be tuned and can change the results.

Fig. 2. Machine learning subdivision into
supervised, unsupervised and
reinforcement learning. (A) In the supervised
setting, the points are labeled (in red and blue)
and a decision criterion (dashed line) is learned
using these labels. (B) In the unsupervised

Environment

Action State  Reward setting, the points are unlabeled (they are all
green) and the clusters (represented by the
dashed circles) are learned from the

Agent relationships between the points. (C) In the

reinforcement learning setting, the agent (the
computer) interacts with its environment to gain
information through reward and to update its
state accordingly.
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Additionally, supervised learning approaches rely heavily on linear, low-dimensional embedding techniques have been

manually labeled data, which can be costly and cumbersome to
acquire. Training the dataset is crucial, because the quality of the
results of any supervised learning algorithm depends on the
quality of the training dataset. The size of the training dataset is
also an important factor; if the model has too many parameters and
is trained on a too small dataset, one risk is that the data could be
overfit and therefore have poor generalization power. Machine
learning approaches still need expert knowledge, both in biology
and in computer science, to examine the results cautiously and to
tune the models carefully.

Single-cell omics

Single-cell omics are a family of methods that take advantage of
high-throughput sequencing techniques, such as single-cell RNA
sequencing (Briggs et al., 2018; Wagner et al., 2018; Farrell et al.,
2018) and Hi-C (Nagano et al., 2013), to measure the quantity of
transcripts or the 3D conformation of DNA, respectively. Here, I
show how machine learning can be used to study these large
datasets.

Clustering

One of the main uses of single-cell transcriptomics in the past few
years has been the reconstruction of differentiation trajectories in
developing embryos. In particular, a series of papers have shown the
progression of gene expression for every cell in a developing embryo
(Briggs et al., 2018; Wagner et al., 2018; Farrell et al., 2018). The
principal issue with this approach is that the single-cell data is
obtained as a series of ‘snapshots’ at different developmental time
points; to be able to measure the content of every cell in a tissue, the
tissue has to be dissociated, thus stopping development. Therefore,
differentiation dynamics are reconstructed from several embryos at
different stages and then merged together. There are several
challenges associated with this type of measurement. The first
challenge comes from the high dimensionality of the data; here, a
dimension refers to the measured quantity of transcript for one gene.
In a typical single-cell RNA-sequencing experiment, there are about
20,000 dimensions. The second challenge is how to infer trajectories
from biologically independent embryos. The introduction of non-

particularly successful in the study of high-dimensional data.
These techniques aim to reduce the dimensionality of the data,
while preserving its main features. The popular principal component
analysis (PCA) is a linear way of reducing dimensionality, where the
new representation is linearly related to the high-dimensional one.
Non-linear dimensionality reduction techniques generalize this idea
when the datasets have non-linear intrinsic structures. They are
sometimes also called manifold learning techniques, the manifold
being the geometric shape of the data points (Fig. 3E). One
application of such techniques to transcriptomic data was the use of
t-SNE (t-distributed stochastic neighbor embedding) by Dana
Pe’er’s group in a framework called viSNE (Amir et al., 2013).
More recently, UMAP (uniform manifold approximation and
projection) has become more widely used, because of how well
the topology of the data points is preserved when reducing the
dimensionality. For example, a line in high dimension will stay a line
in low dimension and similarly for a circle. The topological
properties carry the qualitative relationships within the data (Becht
et al., 2019). Usually, the mapping between high dimensions and
low dimensions is inferred in a way that preserves the proximity
relationships between the measured data points, enabling the
visualization of clusters of similar cells, as well as the dynamics of
how cells are diverging from each other, for example during
development. The methods to explore these results are usually
clustering methods and regression (Fig. 3B,D).

Trajectory inference

Several methods have been designed to reconstruct the trajectories
of differentiating cells. When all the cells are undergoing the same
process, they will appear to follow one trend in the low-dimensional
embedding, which is what is used by pseudo-time inference
methods (Trapnell et al., 2014; Saelens et al., 2019). This one-
dimensional trend serves as an ordering of the cells, which can be
one-to-one in relation to the actual time. When the shape of the
manifold on which the points are lying is more complicated than just
a line, which is the case for developing embryos, more sophisticated
methods have been developed, relying on geometry inference
methods for discrete point clouds (Farrell et al., 2018). Going
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Box 1. What is deep learning?

Deep learning came to prominence in 2012, when its performance of
image classification tasks was shown to be highly superior to any other
approach (Krizhevsky etal., 2017 ; LeCun et al., 2015). We use elements
of LeCun et al. (2015) to summarize this subfield of machine learning.
Deep learning is a set of computational models that can learn
representations of data with multiple levels of abstraction. They are
called ‘deep’, because they are composed of a network of multiple
processing layers, the depth of which enables representation of very
complex functions. Each layer is composed of simple, but non-linear,
units (the artificial neurons), that transform the representation at one level
(starting with the raw data) into a representation in the next level in a more
abstract way; together, they form a deep neural network. For a
classification task (Fig. 3A), the higher levels will represent features
that have a strong discriminative power, whereas the irrelevant variations
will not be included. Many natural signals, like images, contain high-level
features that can be represented by a composition of low-level features;
this is the property that is successfully exploited by deep neural
networks. The main challenge when considering multilayered network
architectures is to find the weights associated with each subunit of the
model, i.e. to learn a good representation of the data, millions of
parameters have to be estimated. Gradient descent is the method used
to optimize the accuracy of the resulting layer to the task at hand. It is
coupled to a technique called backpropagation, which characterizes the
joint variation of all the layers together when updating each of the weights
within the network. Gradient descent and backpropagation are key to
training deep neural networks.

further, some authors have attempted to fuse data from different
sources to be able to infer correlation between variables that cannot
be measured at the same time, or to use joint measurements for the
embedding (Stuart and Satija, 2019; Liu et al., 2019 preprint).
Overall these methods fall within the umbrella of non-linear
dimensionality reduction methods, which are unsupervised
techniques (Fig. 2B). The main limitation of non-linear
dimensionality reduction methods comes from the difficulty of
getting explicit mappings between the initial high-dimensional
space and the final low-dimensional embedding; the new coordinate
system is dependent on the data set used, making it therefore
difficult to transfer to new situations.

Inference of spatial and temporal relationships

Finally, one recent interesting trend has been to devise
computational approaches based on the mathematical framework
of optimal transport to predict the spatial organization of cells from
their transcriptomic profile (Schiebinger et al., 2019; Nitzan et al.,
2019). The theory of optimal transport was originally developed by
the French mathematician Gaspard Monge in 1781 to solve the
problem of redistributing earth for the purpose of building
fortifications with minimal work. Now, it is a geometric approach
that aims at minimizing the distortion induced in mapping
probability distributions to one another. In a study by Schiebinger
and colleagues, differentiation trajectories within a large number of
data points are inferred through the estimation with optimal
transport of the coupling between consecutive time points
(Schiebinger et al., 2019). Nitzan and colleagues make the
hypothesis that the distance between cells in transcriptomic space
is preserved in the physical space of a tissue, i.e. cells that are close
in a tissue should have similar gene expression and vice versa
(Nitzan et al., 2019). This principle, formalized as an optimal
transport problem and applied to entire sets of cells, leads to accurate
results, with data from zebrafish and fly development. It is an
unsupervised learning method, in the same way as non-linear

dimensionality reduction approaches, and is thus dependent on the
dataset used for training so does not offer independent coordinate
systems (Fig. 2B). Therefore, much care must be taken when
generalizing to new situations. However, these two studies start to
tackle some of the main challenges of single-cell transcriptomics,
concerning its inability to measure spatial information or temporal
information directly.

Growing an interdisciplinary community

Overall, the applications of machine learning in developmental
biology are broad and the methods presented above are only a
starting point. Now, I describe the conditions that could foster new
interdisciplinary developments. The machine learning community
is successful at developing methods that can be of broad use for
data-intensive sciences. To grow an interdisciplinary community
that would be able to fruitfully transfer knowledge between machine
learning and developmental biology, we need to (1) establish well-
curated databases (Allan et al., 2012; Pierce et al., 2019), (2)
establish well-identified common tasks (Regev et al., 2017; Thul
etal., 2017), (3) establish computational platforms to run algorithms
(McQuin et al.,, 2018; Haase et al., 2020) and (4) improve
computational literacy in biologist communities (Ouyang et al.,
2019; Caicedo et al., 2019).

Machine learning methods are successful because they can take
advantage of very large datasets. This requires infrastructure and the
organization of research to advance science at the level of a
community. The main need when developing machine learning
models is labeled data used for training, where the relationship
between the source and the target is precisely established. Published
datasets can be used for many purposes, including being reused as
training sets for machine learning. In order to take full advantage of
the wealth of data that has been published — or is sitting siloed in
labs, unused — we can use large storage infrastructures and data
management tools, such as the platform OMERO for microscopy
images. OMERO has been developed by the Open Microscopy
Environment and is intended for accessing, processing and sharing
scientific image data and metadata (Allan et al., 2012). In addition,
to increase the speed of data dissemination we need to establish
ways of citing and reusing data without going through the process of
publishing peer-reviewed publications (Pierce et al., 2019).

Another way of organizing data at a large scale is to create
common goals. The Human Cell Atlas and the Human Protein
Atlas, which aim at providing reference maps for every human cell
and every human protein within cells, respectively, are excellent
examples of how to pool resources of various research teams (Regev
etal., 2017; Thul et al., 2017). Researchers can share their data and
benefit from the methods and insights stemming from the shared
datasets. Similarly, competitions around one task are a good way of
incentivizing computer scientists to develop the best algorithms,
and can go a long way towards establishing standard problems and
methods. One example is the 2018 Data Science Bowl challenge,
which established the problem of segmentation in microscopy
imaging and served as a source of data for various articles (Caicedo
et al., 2019).

In addition to the question of how to store data, the second
bottleneck is computational resources. As we have discussed,
machine learning methods, and deep learning in particular, require
specific hardware such as GPUs. The usual image processing
software packages used in developmental biology are adapting to
this growing need. For example, it is now possible to combine image
processing software, such as FIJI or CellProfiler 3.0, with a GPU
extension (McQuin et al., 2018; Haase et al., 2020).
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Finally, it is important to acknowledge that designing a deep
learning model is still a difficult task for someone with little
experience in programming. Fortunately, accessible platforms, such
as ZeroCostDL4Mic or ImJoy, can help bridge the gap between
model users and developers (Ouyang et al., 2019; Von Chamier et al.,
2020 preprint). Furthermore, computer science literacy initiatives
are crucial to prevent a divide between computer scientists and
biologists. NEUBIAS, the Network of European Biolmage
Analysists  (http:/eubias.org/NEUBIAS/training-schools/neubias-
academy-home/), is an excellent example of such effort.

Perspectives

The promises of machine learning are high; however, there are
several limitations that need to be mentioned. First, machine
learning usually involves a ‘black box’; when considering deep
learning, there are millions of parameters that are trained to obtain a
predictive model. These parameters are coupled in a non-linear way
and it is therefore very difficult to understand how a deep learning
model is actually making decisions. This is a major caveat,
particularly when considering the potential applications to the
medical field, where responsibility in decision making is crucial.
Luckily, there are various ways to make a predictive model
interpretable and open the black box (Gilpin et al., 2018).
Importantly, this interpretability can even be used for biological
discovery (Zaritsky et al., 2020 preprint). The second limitation of
machine learning comes from the fact that the generalization power
of these methods (i.e. their ability for extrapolation) is dependent on
the training datasets. Indeed, the model can only extract the
information of the dataset that has been used for training. There is
some theoretical work that provides bounds to the generalization
error but they are not always practical because they are not
necessarily computable in a reasonable time. An example of this is
the Rademacher complexity, which helps compute the
representativeness of a dataset (how well an underlying true
distribution is represented in the data) (Mohri et al., 2018). The
practical way of characterizing generalization error consists of using
cross-validation techniques (Friedman et al., 2009): the dataset is
split into subparts, upon which the accuracy of the model can be
evaluated. Cross-validation methods are, unfortunately, not
sufficient in every situation, in particular when a training dataset
is too small and leads to model overfitting or hallucinations.
Moreover, when considering deep learning models, even though
their high accuracy has been proved broadly, they are not immune to
specific adversarial examples (Finlayson et al., 2019). For example,
changing a few pixels of a chest X-ray can lead the classifier to
miscategorize a healthy chest into a pneumothorax and vice versa.
Adversarial examples are engineered for misclassification and
expose the vulnerabilities of deep learning models. They can
become a threat if a classifier is used routinely in a key real-world
application. We also discussed the fact that non-linear
dimensionality reductions methods extensively used in single-cell
omics need to be used with caution as well, as their results are highly
dependent on the datasets used. Finally, as mentioned previously,
there is a need for expert knowledge to tune models accurately and
examine their results, giving biologists and computer scientists
important roles and responsibilities.

For developmental biologists, it is interesting to observe that
machine learning has been largely inspired by research in
computational neuroscience; indeed, deep learning has been built
as an analogy to the circuitry of a brain. Developmental biology is a
science that is concerned with the study of organized and functional
systems emerging from individual units (cells). One can wonder if

developmental biologists could benefit from implementing the
principles of development into the algorithms of machine learning.
One successful attempt is the so-called Compositional Pattern
Producing Network (CPPN), which mimics pattern formation in
development to infer any kind of function (Stanley, 2007). More
precisely, this technique models the emergence of complex patterns
in space (on 2D or 3D domains) by composing very simple
functions (e.g. linear, quadratic or sinusoidal functions applied on
the entire domain) until a complex pattern is obtained. The final
pattern can be considered a composition of simple spatial patterns of
gene expression, such as gradients. It has recently been used to
automatically design reconfigurable organisms iz silico, which have
subsequently been generated in vitro (Kriegman et al., 2020). Cells
and tissues as cognitive agents could serve as an inspiration and a
model for autonomous computers and robots, evolving and
developing in a complex environment.

In the not-too-distant future, we can expect that machine learning
will be a part of many fields in the life sciences. Few studies have
taken advantage of reinforcement learning in developmental
biology and the intersection between machine learning and
physical inference is only beginning (Gilpin, 2019). Finally,
machine learning is a quickly changing field; new paradigms such
as federated learning (Yang et al., 2019) or self-supervised learning
(Jing and Tian, 2020) are emerging. Federated learning aims to take
advantage of distributed data acquisition devices. In this paradigm,
instead of updating machine learning models on a centralized data
repository, the models are updated first locally on the data
acquisition devices when new data is being acquired. The local
models are then aggregated globally, without any data transfer,
protecting data privacy and reducing the size of centralized data
storage infrastructures (Yang et al., 2019). Self-supervised learning
aims to overcome the need of labeled data for training deep learning
models. In this approach, labels are generated automatically from
large-scale unlabeled images or videos without any human
intervention. Recent results show that the performance of self-
supervised methods are comparable to supervised methods for
object detection and segmentation tasks (Jing and Tian, 2020).
Overall, progress in data management and machine learning model
performance will likely lead to new breakthroughs in developmental
biology.
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