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Model systems for regeneration: Drosophila
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ABSTRACT
Drosophila melanogaster has historically been a workhorse model
organism for studying developmental biology. In addition, Drosophila
is an excellent model for studying how damaged tissues and organs
can regenerate. Recently, new precision approaches that enable both
highly targeted injury and genetic manipulation have accelerated
progress in this field. Here, we highlight these techniques and review
examples of recently discovered mechanisms that regulate
regeneration in Drosophila larval and adult tissues. We also discuss
how, by applying these powerful approaches, studies of Drosophila
can continue to guide the future of regeneration research.
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Introduction
In the early 1900s, Thomas Hunt Morgan turned his research focus
to examine the genetic basis of heredity in the organismDrosophila,
moving away from previous efforts that included studying the
biology of regeneration in the flatworm Planaria. Over 100 years
later, it is clear that the strength of genetic approaches developed
by Morgan and his scientific descendants has circled back to
impact our understanding of regeneration. Importantly, these
approaches have revealed that specific developing and adult
tissues in Drosophila are capable of regenerating damaged
tissues. Moreover, given the extensive genetic resources available
in this well-established model system, Drosophila has contributed a
great deal to the study of regenerative mechanisms. Here, we
provide an overview of current approaches used for regeneration
research in Drosophila, highlighting the use of new methodology
that should position the field for exciting breakthroughs. Focusing
on techniques developed in the last 10 years, we discuss both recent
advances and current unanswered questions in the field.

Regeneration in juvenile and adult arthropods
Drosophila is one of many arthropods that have served as model
organisms for regeneration research. This research includes
studies using insect models such as larvae of the flour beetle
Tribolium castaneum, nymphs of the cricket Gryllus bimaculatus
and cockroaches such as Blattella germanica and Periplaneta
americana, as well as crustaceans such as the fiddler crab Uca
pugilator and the beach hopper Parhyale hawaiiensis (for reviews,
see Khan et al., 2016; Das, 2015). The regenerative capacity of the
appendages or appendage primordia of these animals is constrained

by the ability of each to grow. For example, holometabolous insects
(see Glossary, Box 1) such as Drosophila cannot regenerate
appendages after metamorphosis. Similarly, hemimetabolous
insects (see Glossary, Box 1), which develop as nymphs, are only
able to regenerate legs as long as they continue to molt. By contrast,
crustaceans that grow and molt throughout adulthood retain their
ability to replace appendages (for reviews, see Khan et al., 2016;
Das, 2015). Indeed, the presence and maintenance of regenerative
capacity across all animal species may be linked to the continual
growth of the organ or appendage (Hariharan et al., 2015). Recent
studies in these various arthropod species have begun to elucidate
the molecular mechanisms underlying tissue injury responses such
as wound closure, regeneration and re-patterning (for reviews, see
Khan et al., 2016; Das, 2015), but the wealth of genetic tools
and understanding of development in Drosophila give it an
experimental advantage over many of these other model systems.

The Drosophila regeneration toolkit
There are many advantages to studying regeneration in Drosophila.
Given their rapid life cycle, which proceeds from egg to adult in
∼10 days at 25°C, and short adult lifespan, which lasts ∼40 days at
25°C, regeneration experiments, including genetic screens, can be
carried out quickly. In addition, the genetic strengths of Drosophila
have facilitated in-depth mechanistic studies of regeneration, and
emerging tools are rapidly propelling Drosophila regeneration
research forward. As we highlight below, much of this work has
focused on the imaginal discs, which are the larval primordia of
adult structures. However, a number of more recent studies have also
examined regeneration in stem cell-containing tissues in the adult,
such as the midgut and germline, as well as in other tissues, such as
muscle and the brain.Drosophila have also been used to study other
responses that can occur after injury, such as wound healing and
changes in tissue fate called transdetermination. However, the
discussion here will focus on tissue restoration by cellular
regeneration, and we direct readers to excellent reviews on wound
healing (Razzell et al., 2011; Tsai et al., 2018; Zulueta-Coarasa and
Fernandez-Gonzalez, 2017) and transdetermination (Beira and

Model systems for regeneration
This article is part of a series entitled ‘Model systems for regeneration’.
This series of articles aims to highlight key model systems and species
that are currently being used to study tissue and organ regeneration.
Each article provides background information about the phylogenetic
position of the species, its life-cycle and habitat, the different organs and
tissues that regenerate, and the experimental tools and techniques that
are available for studying these organisms in a regenerative context.
Importantly, these articles also give examples of how the study of these
models has increased our understanding of regenerative mechanisms
more broadly, and how some of the open questions in the field of
regeneration may be answered using these organisms. To see the full
collection as it grows, please visit: https://dev.biologists.org/collection/
regeneration_models.

1Department of Pharmacology & Cancer Biology, Duke University Medical Center,
Durham, NC 27710, USA. 2Department of Cell Biology, Duke University Medical
Center, Durham, NC 27710, USA. 3Regeneration Next, Duke University, Durham,
NC 27710, USA. 4Department of Cell and Developmental Biology, University of
Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

*Author for correspondence (rsbolton@illinois.edu)

D.T.F., 0000-0002-0436-179X; E.C., 0000-0003-2390-3707; R.S., 0000-0003-
2196-8275

1

© 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev173781. doi:10.1242/dev.173781

D
E
V
E
LO

P
M

E
N
T

https://dev.biologists.org/collection/regeneration_models
https://dev.biologists.org/collection/regeneration_models
https://dev.biologists.org/collection/regeneration_models
mailto:rsbolton@illinois.edu
http://orcid.org/0000-0002-0436-179X
http://orcid.org/0000-0003-2390-3707
http://orcid.org/0000-0003-2196-8275
http://orcid.org/0000-0003-2196-8275


Paro, 2016; Worley et al., 2012). In addition, imaginal discs have
been used to study the cellular responses that occur after the
generation of ‘undead’ cells that initiate but do not complete
apoptosis, for example by irradiating cells but then overexpressing
the apoptosis inhibitors DIAP1 or p35. These cells remain in the
tissue and emit pro-growth signals (Huh et al., 2004; Kondo et al.,
2006; Pérez-Garijo et al., 2004, 2009; Ryoo et al., 2004;Wells et al.,
2006). Key findings using these methods, and the distinctions
between the tissue’s response to undead cells and to removal of
cells, have been discussed elsewhere (Martín et al., 2009; Mollereau
et al., 2013).

Inducing injury
Numerous approaches can be used to induce injury in specific
Drosophila tissues. The earliestDrosophila regeneration experiments
involved the isolation and surgical fragmentation of imaginal discs,
followed by their culture in the abdomen of an adult (e.g. Bryant,
1971; Hadorn et al., 1968; Schubiger, 1971). Subsequent studies
induced death in scattered cells, by using X-ray irradiation (Fukunaga
andKondo, 1985;Haynie andBryant, 1977) ormitotic recombination
to generate clones of cells homozygous for a temperature-sensitive
cell-lethal mutation (Addison et al., 1995; Brook et al., 1993).
These elegant in vivo culture and irradiation studies contributed
substantially to our understanding of the imaginal disc response to
damage, and we direct readers to excellent reviews of this
foundational work (Hariharan and Serras, 2017; Worley et al.,
2012). Importantly, fragmentation, irradiation, clones of cell-lethal
mutations, and ‘undead cells’ are still being used to ask specific
questions (e.g. Diaz-Garcia et al., 2016; Fogarty et al., 2016; Gerhold
et al., 2011; Verghese and Su, 2017; Yoo et al., 2016). In the adult,
injury in the midgut epithelium can be accomplished through oral
ingestion of agents that induce cell loss, such as the polysaccharide
dextran sodium sulfate (DSS), the DNA-damaging agent bleomycin,
and the oxygen radical-inducing agent paraquat. Pathogenic Gram-
negative bacteria, such as Pseudomonas entomophila, Serratia
marcescens or Erwinia carotovora, or acute starvation, can also be
used to trigger midgut injury.

Using targeted genetics to induce precise injuries
Recently, increasingly intricate genetic approaches have enabled
Drosophila researchers to injure specific tissues or remove large,
contiguous portions of a tissue through targeted cell ablation
(Bergantiños et al., 2010; Fox and Spradling, 2009; Jiang et al.,
2009; Smith-Bolton et al., 2009). Techniques to induce cell ablation
and regeneration in imaginal discs and other tissues have largely
employed binary expression systems that provide spatial control
over the portion of the disc to be removed, with added temporal
control provided by regulators of the binary expression system.
For example, tissue-specific promoters that drive the Gal4/UAS
system (Brand and Perrimon, 1993) have been used to express pro-
apoptotic genes, such as eiger or reaper, to ablate spatially restricted
portions of the wing disc (Bergantiños et al., 2010; Repiso et al.,
2013; Smith-Bolton et al., 2009), or midgut cells (Jiang et al.,
2009). In addition, using the temporal and regional gene expression
targeting (TARGET) system, the temperature-sensitive (ts)
repressor Gal80ts (McGuire et al., 2004) has been used to restrict
cellular ablation to the appropriate time window during
development (Smith-Bolton et al., 2009) (Fig. 1A). Such ablation
methods have enabled large-scale regeneration experiments and
screens for genes implicated in regeneration (Brock et al., 2017;
Khan et al., 2017; Worley et al., 2018).

Although these approaches have identified numerous regulators
of Drosophila regeneration (discussed in detail below), one
challenge has been marrying the injury techniques with the vast
Drosophila genetic toolkit. If a genetic system is used to injure a
tissue, it may not be possible to use that same system to query the
function of a gene. For example, if the widely used Gal4/UAS
system is used to express apoptotic genes to induce injury, then
theoretically this same system cannot be used to knock down or
misexpress a candidate regeneration gene. One exception is thewing
disc ablation system, in which 5-10% of targeted cells survive and
contribute to the regenerating tissue (Smith-Bolton et al., 2009).
Surprisingly, RNAi knockdown in these cells has been effective and
has produced phenotypes (Skinner et al., 2015), likely owing to the
‘shadow RNAi’ effect that exists in wing discs (Bosch et al., 2016),
whereby the RNAi-induced knockdown persists in progeny of the
original cells despite cessation of expression of the RNAi transgene
(Fig. 1A).

For more precise control over genetic perturbations, several next-
generation systems have been developed to facilitate independent
expression of transgenes in the wing disc. For example, the use of a
LexA/Gal4 hybrid (LHG) transcription factor enables control of
reaper expression through aLexAoperator, but the LHG transcription
factor is still regulated byGal80ts. The LHG approach achieves spatial
separation of the expression of reaper for cell ablation and, via aGal4-
induced transgene, genetic manipulation of a regeneration factor
(Santabárbara-Ruiz et al., 2015) (Fig. 1B). In addition, Gal4 has been
combined with the binary Q system to control injury and transgene
expression separately. In one such Q+Gal4 system, ablation using a
temperature-sensitive diphtheria toxin A (Bellen et al., 1992),
expressed under the control of QF/QUAS (Potter et al., 2010),
enables the use of Gal4 for expression of desired transgenes (Kashio
et al., 2016) (Fig. 1C). In another similar approach, the Q system
drives the expressionof a receptor for a toxin that is fed to the animal to
accomplish temperature-independent cell ablation, while Gal4 drives
transgene expression (Obata et al., 2015) (Fig. 1C). The LHG and
Q+Gal4 systems require the two transcription factors to be expressed
in domains that are at least partially non-overlapping. A separate
system, named the dual expression method for induced site-specific
eradication (DEMISE), instead requires just one binary expression

Box 1. Glossary of terms
Blastema. Undifferentiated cells that proliferate to contribute to tissue
regeneration.
Ecdysone.An insect steroid hormone that systemically regulates growth
and development.
Endocycle. A variant cell cycle involving repeated DNA synthesis
phases followed by intervening gap phases but no cell division. Cells
undergoing endocycles increase in DNA content (ploidy).
Enteroblast.A transient daughter cell of amidgut intestinal stem cell that
differentiates into an enterocyte.
Enterocyte. Differentiated absorptive cell in the midgut.
Enteroendocrine cell. Differentiated, endocrine hormone-expressing
cell in the midgut.
Hemimetabolous insects. Insects that develop as nymphs, which
progress through a series of molts before emerging from the final molt as
an adult.
Holometabolous insects. Insects that develop as larvae before
entering pupariation and metamorphosis to form the adult.
Imaginal rings. Adult progenitor cells that are a contiguous part of an
organ, such as the hindgut or salivary gland.
Prothoracic gland. Endocrine gland that regulates development by
secreting ecdysteroids.
Satellite cells. Skeletal muscle progenitor cells.
Optic lobe. A brain region involved in vision processing.
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system. This approach enables a fraction of cells to escape Gal4-
mediated injury, as FLP-FRT recombination excises a stop cassette in
front of reaper in only a subset of the Gal4+ cells. The remaining
Gal4+ cells survive the injury and thus can be geneticallymanipulated
(Cohen et al., 2018) (Fig. 1D). This approach also avoids raising
animals at 18°C, which is the permissive temperature for Gal80ts and
roughly doubles the time spent in development. DEMISE animals can
be raised at 25°C, and injury is induced using a 37°C pulse to excise
the stop cassette and activate ablation.

Approaches that employ temporal control of tissue ablation using
optogenetic methods to activate gene expression are also under
development (Makhijani et al., 2017). These new and emerging
tools will enable large-scale screens in the background of a precision
injury setting. Given the large collections of transgenic Drosophila
RNAi (Dietzl et al., 2007; Perkins et al., 2015) and CRISPR (Ewen-
Campen et al., 2017; Li-Kroeger et al., 2018; Meltzer et al., 2019)
lines, the field now has an expanded toolkit that can be used to
investigate regeneration mechanisms further.
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Fig. 1. Experimental tools for identifying molecular regulators of regeneration. Many transgene systems in Drosophila employ a transgene ‘driver’ that
directs transgene expression, such as an overexpression construct or a hairpin encoding a double-stranded RNA for gene knockdown, under the control
of a tissue-specific promoter. The driver can also be inhibited until the desired time of expression. Transgene expression systems can bemanipulated in numerous
ways, including via temperature change, mosaic cassette flipping, or by feeding. These manipulations turn on the transgenes of interest and/or cause cell death.
Combinations of various approaches have been employed in precision injury systems, as shown in each panel and described in detail in the text. For each system,
a pre-injury, injury, and recovery state is shown, using themanipulations outlined in the figure key. For simplicity, all cells are drawn to the same scale. (A) Through
use of the TARGET system, one can achieve temporally controlled cell ablation via the temperature-sensitive repressor Gal80ts (used to control Gal4-mediated
expression of both a cell death-inducing transgene and an RNAi transgene of interest), and through the shadow RNAi effect can also achieve persistent gene
knockdown. (B,C) LexA (LexAop-Apoptosis) or the Q-system (QF/QUAS toxins) can be combined with the Gal4 system tomanipulate tissue injury and transgene
expression separately. Note that for QF/QUAS toxins, as described in the text, the system can be adapted to be activated by either temperature (to control
activation of a temperature-sensitive DTA toxin) or feeding (to deliver CryA toxin). (D) The DEMISE system relies on Gal4 to drive both cell death and transgene
expression, but death is limited to those cells that also express FLP.
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Drosophila regenerative responses
Organ regeneration during development
Cell fates in Drosophila imaginal disc epithelia are specified during
the third larval instar stage, but cells do not fully differentiate until
metamorphosis (Held, 2002). With the exception of specialized
regions, proliferation then continues until shortly after pupariation
(Buttitta et al., 2007; Graves and Schubiger, 1982; Milán et al.,
1996; Schubiger and Palka, 1987). As mentioned above, the
imaginal discs can regenerate through most of the third larval instar
stage, but this capacity to regenerate ceases with metamorphosis and
the end of appendage growth.
Early experiments involving surgical damage and in vivo culture

showed the formation of a zone of proliferation around the damaged
site called the regeneration blastema (see Glossary, Box 1) (Abbott
et al., 1981; Dale and Bownes, 1980; Karpen and Schubiger, 1981;
O’Brochta and Bryant, 1987), which is similar to the regeneration
blastema or zone of de-differentiated, proliferating cells observed
in amputated vertebrate appendages (Tanaka, 2016). The use of
transgenic tools for tissue ablation has enabled further observation
of changes in proliferation and in patterning gene expression in the
regenerating tissue, and changes in the resulting adult appendage.
If sufficient contiguous tissue is ablated, a blastema forms (Smith-
Bolton et al., 2009; Bergantiños et al., 2010), and suppression of
proliferation elsewhere occurs through a mechanism in which nitric
oxide synthase activity in the prothoracic gland (see Glossary,
Box 1) reduces the systemic levels of ecdysone (see Glossary,
Box 1) needed for disc growth (Jaszczak et al., 2015). This
proliferation of cells near the wound replaces the lost tissue,
and there is no evidence for a rare population of progenitor cells
(Smith-Bolton et al., 2009) (Fig. 2A,B).
Tissue damage in the wing disc, via ablation or mechanical

damage, also causes localized loss of expression of patterning and
cell fate genes, such as the transcriptional activator vestigial, and
markers for wing veins and interveins (Díaz-García and Baonza,
2013; Smith-Bolton et al., 2009), indicating that blastema cells lose
cell fate specification, reminiscent of de-differentiated blastema
cells in vertebrates. These de-specified cells and their progeny can
adopt new cell identities, such as vein or intervein cells, to replace
lost cell types (Repiso et al., 2013), even crossing the anterior-
posterior compartment boundary under extreme conditions (Herrera
and Morata, 2014) (Fig. 2C). However, adult wings resulting from
damaged discs that have fully regenerated often have subtle
patterning mistakes, such as anterior bristles and veins in the
posterior of the wing, demonstrating that patterning can go awry
during regeneration (Schuster and Smith-Bolton, 2015). In addition,
adult wings resulting from damaged discs that have not fully
regenerated are grossly mis-patterned (Smith-Bolton et al., 2009),
indicating that insufficient regrowth inhibits proper repatterning.
Several of the conserved cell-cell signaling molecules required

for regeneration in imaginal discs, such as WNT/Wingless, Jun N-
terminal kinase (JNK), Jak/STAT, and calcium, were identified
while studying surgically damaged discs (Bosch et al., 2005, 2008;
Katsuyama et al., 2015; Restrepo and Basler, 2016; Schubiger et al.,
2010), and have also been shown to drive regeneration after disc
ablation (Bergantiños et al., 2010; La Fortezza et al., 2016; Smith-
Bolton et al., 2009). Tissue ablation experiments enabled the
identification of additional key signaling components such as
reactive oxygen species (ROS) (Khan et al., 2017; Santabárbara-
Ruiz et al., 2015), kinases such as p38 MAP kinase (Santabárbara-
Ruiz et al., 2015), Akt1 and Ask1 (Santabárbara-Ruiz et al., 2019),
chromatin modifiers such as Trithorax (Skinner et al., 2015) and
Taranis (Schuster and Smith-Bolton, 2015), and transcriptional

regulators such as Myc (Smith-Bolton et al., 2009), Yki (Grusche
et al., 2011; Sun and Irvine, 2011), Nrf2 (also known as Cnc) (Brock
et al., 2017) and Chinmo (Khan et al., 2017; Narbonne-Reveau and
Maurange, 2019).

Many tissues, including tadpole tails, skeletal muscle and
mammalian fingertips (Simkin et al., 2015; Slack et al., 2004;
Sousa-Victor et al., 2018), lose or decrease their capacity to regenerate
as they age or mature. Imaginal disc ablation experiments have
confirmed that, similarly, there is a window of competence for
regeneration in Drosophila that ends at the late third instar stage
(Halme et al., 2010; Smith-Bolton et al., 2009), and that damage at the
early-mid third instar stage leads to an extension of that larval phase
(Smith-Bolton et al., 2009). This delay in pupariation is due to a
damage- and growth-induced checkpoint that involves suppression of
ecdysone production by signaling through retinoids (Halme et al.,
2010) and the secreted peptide Ilp8 (Colombani et al., 2012; Garelli
et al., 2012; Katsuyama et al., 2015). The surge in ecdysone prior to
pupariation induces chromatin changes at damage-responsive
enhancers, disabling the regenerative response (Harris et al., 2016),
and these changes in chromatin are delayed by Ilp8 signaling. Thus,
although the form of an imaginal disc is distinct from vertebrate

B  Development

C  Regeneration

Pouch intervein cell
Key

Apoptosis No fate commitment

Pouch vein cell

Hinge cell

Respecification of fate commitment

No dedicated stem cell pool

A  Model: wing imaginal disc

Injury Blastema

Fig. 2. Regenerative responses in larval Drosophila imaginal discs.
Regeneration in the wing imaginal disc. (A) A tissue-level view of regeneration.
Injury leads to the formation of a regeneration blastema (white), followed by full
regeneration through cell proliferation. (B) During normal development, the
wing imaginal disc does not appear to have stem cells or a lineage hierarchy
aside from compartment restrictions. (C) During regeneration, wing cells lose
commitment to particular cell fates, such as pro-vein or intervein fates, and can
contribute to regeneration of multiple cell fates.
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appendages and organs, many aspects of regeneration are similar,
including formation of a blastema, activation of key signaling
pathways (Gauron et al., 2013; Langiewicz et al., 2018; Moya and
Halder, 2016; Stoick-Cooper et al., 2007), and constraints caused by
maturation and cessation of developmental growth.

Regeneration in adults
A number of adult Drosophila tissues that undergo homeostatic
renewal contain resident stem cells capable of driving organ-
specific regeneration. In recent years, the mechanisms underlying
this regenerative growth following tissue injury have been studied,
focusing primarily on three actively renewing tissues: the midgut
and the male and female germlines (Fig. 3A).

The midgut
Although it consists of regionally distinct domains (Buchon et al.,
2013; Driver and Ohlstein, 2014; Dutta et al., 2015; Marianes and
Spradling, 2013; Sawyer et al., 2017; Strand and Micchelli, 2011),
the Drosophila midgut contains repeated units of multipotent
intestinal stem cells (ISCs) throughout its length. During normal
homeostatic conditions, ISCs divide asymmetrically to self-renew
and produce daughter cells that ultimately differentiate into two
cell types: enteroendocrine cells (EEs; see Glossary, Box 1) and
enterocytes (ECs; see Glossary, Box 1) (Guo and Ohlstein, 2015;

Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006). ECs
are derived from transient precursors known as enteroblasts (EBs;
see Glossary, Box 1), which undergo multiple rounds of endocycles
(see Glossary, Box 1) to increase in ploidy and cell size (Edgar et al.,
2014; Ohlstein and Spradling, 2006), whereas EEs remain diploid
and are derived from the division of endocrine progenitor cells (Guo
and Ohlstein, 2015; Zeng and Hou, 2015). The differentiated cells
are lost and are replaced by the continued division of ISCs, much
like in the mammalian small intestine and colon (Fig. 3B).

The midgut can recover from various forms of injury to regenerate
lost cells. In many respects, regeneration of the midgut epithelium
represents an accelerated version of several processes that occur
during homeostasis (Fig. 3C). Namely, diverse injury stimuli increase
death and elimination of differentiated cells (Apidianakis et al., 2009;
Buchon et al., 2009a, 2010; O’Brien et al., 2011), ISC division rates
(Amcheslavsky et al., 2009; Apidianakis et al., 2009; Buchon et al.,
2009a; Jiang et al., 2009, 2011;O’Brien et al., 2011; Staley and Irvine,
2010), EB differentiation into ECs (Amcheslavsky et al., 2009;
Chatterjee and Ip, 2009; Staley and Irvine, 2010; Zhai et al., 2017),
and EC endocycles (Xiang et al., 2017).

The molecular circuitry underlying both homeostatic and
regenerative midgut renewal is complex, and we are unable to
comprehensively review it here; we instead direct the reader to
extensive reviews on this topic (Jiang et al., 2016; Schwartz and

B  Homeostatic renewal (uninjured)
Asymmetric
divisions

Migration

Elimination
(turnover)

D  Stem cell pool expansion E  Emerging concept: de-differentiation by amitosis

C  Accelerated homeostatic renewal

+++ ++++++

F  De-differentiation by niche occupancy Key
Stem cell Differentiating 

cell

Differentiated
cell Apoptosis 

Stem cell
niche

Injury Injury

A  Regeneration models
Midgut Germline(   )

Fig. 3. Regenerative responses in adultDrosophila tissues. (A) Two key regeneration models – the midgut and the germline – and their responses are shown.
Note that only themale is shown for the germline. Both tissues can recover from acute cell loss in specific contexts (see text for details). (B) Homeostatic renewal in
themidgut epithelium. (C-F) Distinct regeneration concepts revealed in these tissues are shown. In themidgut, regenerationmechanisms include: (C) accelerated
homeostatic renewal and asymmetric division of intestinal stem cells; (D) symmetric division of ISCs to expand the stem cell pool; and (E) amitosis of
differentiating enterocytes. Note that amitosis is a newly proposed mechanism of regeneration observed in a specific midgut region under severe starvation
conditions. (F) In the germline, regeneration is accomplished following acute depletion of germline stem cells through the de-differentiation of early-stage germ
cells back into stem cells through niche occupancy. The key indicates distinct cell states that participate in adult tissue regeneration. For simplicity, all cells are
drawn to the same scale.
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Rhiner, 2018; Sun and Irvine, 2014). However, it is important to call
attention to the overall conservation of the molecular circuitry that
controls Drosophila midgut regeneration and regenerative
responses in vertebrate tissues, such as the zebrafish fin, mouse
intestine and mouse liver. For example, the Hippo signaling
pathway is a crucial regeneration regulator in both the Drosophila
midgut and all of these vertebrate tissues (Brandão et al., 2019;
Karpowicz et al., 2010; Mateus et al., 2015; Moya and Halder,
2016; Ren et al., 2010; Shaw et al., 2010; Staley and Irvine, 2010).
Importantly, and as we highlight below, there are a few differences
between the molecular regulation of midgut regeneration versus
midgut homeostasis.
Upon infection with Erwinia carotovora, an immune defense

response triggers a regeneration program in the midgut that involves
upregulation of Unpaired cytokines, which signal from injured ECs
through Jak/STAT in ISCs to increase ISC proliferation. Indeed, in
diverse midgut injury models, Jak/STAT signaling increases the rate
of ISC division (Buchon et al., 2009a,b, 2010; Cronin et al., 2009;
Houtz et al., 2017; Jiang et al., 2011). By contrast, under
homeostatic conditions, Jak/STAT does not substantially regulate
ISC division rates, although it does influence differentiation in the
ISC lineage and can therefore impact ISC numbers (Beebe et al.,
2010; Jiang et al., 2009). E. carotovora infection also enhances ISC/
EB cell-cell contact, which is mediated by the transcription factor
Sox21a. This increased contact facilitates ISC-to-EB differentiation,
mediated by Delta/Notch signaling (Guo and Ohlstein, 2015;
Micchelli and Perrimon, 2006; Ohlstein and Spradling, 2006; Zhai
et al., 2017). During homeostasis, EC endocycles are regulated by
dietary input from insulin/Target of Rapamycin (TOR) signaling;
however, Pseudomonas entomophila infection triggers an
endocycle program mediated instead by Egfr/MAPK signaling
(Xiang et al., 2017). These studies highlight examples by which
multiple steps of the homeostatic midgut renewal program can be
regulated to regenerate damaged or lost midgut tissue.
In addition to involving accelerated homeostatic renewal, midgut

regeneration can involve cellular mechanisms not found during
homeostasis. For example, following injury induced by bleomycin,
ISCs divide symmetrically to expand the ISC pool in order to
facilitate rapid regeneration (Tian et al., 2017) (Fig. 3D). Symmetric
divisions to expand the ISC pool also occur if a new adult is starved
and then re-fed (O’Brien et al., 2011). In this context, the ISCs then
switch to asymmetric divisions to populate the adult gut epithelium
with differentiated cells. However, because the midgut is still
finishing development at the time of starvation, it is unclear whether
this mechanism also contributes to mature adult midgut regeneration
or recovery from ISC pool depletion. Injury stimulus may impact the
mode of regeneration, as symmetric ISC divisions are not reported
to increase following P. entomophila infection (Jin et al., 2017).
Related to this idea, ISC spindle orientation was recently tied to
division outcome (symmetric versus asymmetric), and was shown
to be differentially regulated by varying stress stimuli (Hu and
Jasper, 2019). Importantly, the injured mouse gut is also capable of
ISC-mediated regeneration (Barriga et al., 2017; Metcalfe et al.,
2014; Yan et al., 2012).
Interestingly, ISCs may not be the only drivers of adult midgut

regeneration. In a recent study, differentiating ECs of segment R4b-
R4c of the adult midgut were reported to be capable of amitosis, a cell
fission mechanism previously described in polyploid ciliates (Orias,
1991) that does not require entry into mitosis. Amitosis in this gut
region appears to be triggered by injury via severe starvation. Through
this mechanism, differentiating ECs that are beyond the EB state split
into two cells without a mitotic spindle, albeit occasionally with

unequal chromosome numbers, and generate new ISCs that regenerate
the local midgut (Fig. 3E) (Lucchetta and Ohlstein, 2017). This new
work highlights the continued potential of Drosophila to reveal
unexpected regeneration mechanisms.

The germline
The male and female germlines are maintained by proliferation of
germline stem cells. These stem cells can be depleted by mis-
expression of differentiation factors in the stem cells or by starvation
(Brawley and Matunis, 2004; Herrera and Bach, 2018; Kai and
Spradling, 2004). Following these acute stresses, immediate stem cell
daughters can de-differentiate back into stem cells to repopulate the
stem cell compartment (Fig. 3F). These reverted stem cells then
regenerate the germline,whichwould otherwise be depleted over time
(Brawley andMatunis, 2004; Kai and Spradling, 2004). Remarkably,
this process involves the fragmentation of interconnected groups of
germline cyst cells that then re-acquire stem cell characteristics
(Brawley and Matunis, 2004; Kai and Spradling, 2004; Sheng et al.,
2009). Such de-differentiation of spermatogonial progenitors can also
contribute to regeneration of themale germline inmice (Barroca et al.,
2009; Nakagawa et al., 2010). As a further parallel withmammals, de-
differentiation of intestinal enterocytes is reported to lead to
regeneration of stem cells in intestinal crypts, in situations in which
stem cell activity in crypts is ablated (Tetteh et al., 2016). Going
forward, this de-differentiation process may be exploited to identify
the molecular determinants that control regenerative plasticity.

Restoring tissue mass without cellular proliferation
Central to most regenerative responses is the ability of an injured
tissue to replace lost tissuemass through cell proliferation. However,
it is increasingly clear that many tissues replace lost tissue mass
without cell proliferation. Numerous Drosophila tissues, including
the Drosophila hindgut pylorus, adult abdominal epidermis and
adult follicular epithelium (Cohen et al., 2018; Losick et al., 2013,
2016; Tamori and Deng, 2013), as well as the mammalian liver,
bladder and kidney (Lazzeri et al., 2018; Miyaoka et al., 2012;
Wang et al., 2018), restore tissue mass by enlargement of the
remaining cells, often through an increase in cellular ploidy. As an
example, the adult Drosophila pylorus undergoes such a
compensatory hypertrophic response, which can be converted to a
regenerative proliferation response by knockdown of the cell-cycle
regulator fizzy-related, a negative regulator of mitotic cyclin
accumulation. However, inducing proliferation in the adult
pylorus experiencing chronic injury leads to gut leakage (Cohen
et al., 2018), highlighting that there may be trade-offs to remaining
in a pro-proliferative regeneration state. The injured Drosophila
abdominal epidermis undergoes a similar endocycle response, but
also relies on cell fusion to replace lost tissue mass (Losick et al.,
2013, 2016). Going forward, study of these non-proliferative injury
models as companion models to proliferation-driven regeneration
can reveal distinct regulation and function of diverse organ injury
responses. We refer the reader to a recent review on this emerging
topic (Gjelsvik et al., 2019).

Recent advances and emerging questions in Drosophila
regeneration
The role and regulation of ROS during regeneration
One important question in the regeneration field concerns how the
initial sensors of tissue damage are both constrained to limit damage
and sustained to activate the cascade of regeneration signaling. In
manyanimals, tissue damage leads to release ofROS,which serve as a
damage signal and perpetuate the damage response (van der Vliet and
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Janssen-Heininger, 2014). As we highlight below, genetic tissue
ablation techniques in Drosophila have enabled identification of the
regulators and downstream effectors of damage-induced ROS.
Damaged imaginal discs release ROS (Santabárbara-Ruiz et al.,

2015), which in the eye disc signal to immune cells (Fogarty et al.,
2016), and in the wing disc stimulate regeneration in the surrounding
epithelium (Santabárbara-Ruiz et al., 2015).A crucial effector ofROS
in damaged wing discs is the kinase Ask1, which is activated under
oxidative stress and can activate JNK and p38MAPKs (Santabárbara-
Ruiz et al., 2015; Santabárbara-Ruiz et al., 2019). Importantly, ROS
levels and the activation of their downstream effectors must
be constrained, as high ROS levels paradoxically dampen JNK
signaling and impair regeneration (Brock et al., 2017). ROS levels
are constrained by activation of the transcription factor Nrf2, which
regulates expression of anti-oxidant genes (Brock et al., 2017).
In addition, Ask1 activation is constrained by phosphorylation by
Akt1 (Santabárbara-Ruiz et al., 2019). Although ROS and their
downstream effectors must be tightly controlled, they must also be
sustained long enough for regeneration to complete. In many species,
such as zebrafish andXenopus, ROS are produced at a damage site for
at least 24 h and for up to several days, although the mechanism
underlying this sustained ROS production has been unclear (Gauron
et al., 2013; Love et al., 2013). However, the recent transcriptional
profiling of ablated Drosophila wing discs has identified a positive-
feedback loop in which JNK signaling activates expression of the
gene moladietz (mol), which encodes the dual oxidase (Duox)
maturation factor NIP, which plays a role in ROS production (Khan
et al., 2017). Thus, expression ofmol ensures ROS production, which
activates JNK signaling, thereby sustaining expression of mol (Khan
et al., 2017).
ROS are also implicated in regulating regeneration in the midgut,

and there are several similarities between ROS regulation in
regenerating imaginal discs and adult midgut epithelia. Many
midgut-damaging agents, such as paraquat and bleomycin, or
targeted cell ablation, induce ROS in the midgut. Upon midgut
infection with E. carotovora, the immune defense response is
triggered by an oxidative burst generated by Duox activity, and
blocking ROS production or detection prevents midgut regeneration
(Buchon et al., 2009b). As in the imaginal disc, Nrf2 is required for
midgut regeneration after paraquat ingestion (Hochmuth et al., 2011).
Furthermore, Ask1 is required for midgut regeneration in response to
multiple injury sources, and in these contexts both Ask1 and ROS
activate p38 signaling (Patel et al., 2019). Additional ROS-responsive
regeneration mechanisms in the midgut include activation of the
influx channel TRPA1 and the endoplasmic reticulum cation channel
RyR, both of which regulate cellular calcium signaling, to transmit a
Ras/MAPKinase signal to ISCs to increase division rates (Deng et al.,
2015; Xu et al., 2017). Thus, in both regenerating imaginal discs and
midguts, much of the molecular circuitry connecting ROS production
to regeneration signaling, and the regulators that constrain these
signals, have been identified.

Patterning during regeneration
Regenerating tissue must adopt appropriate cell fates to produce a
functional replacement tissue. How cell fates are impacted by tissue
damage and how the correct cells are specified in the correct positions
are still largely open questions. However, genetic screens for
mutations that cause consistent mis-patterning of regenerating
tissue, but do not affect normal imaginal disc development, can
reveal key mechanisms regulating cell fate (Schuster and Smith-
Bolton, 2015). For example, JNK signaling, which is essential
for wound closure and regenerative growth (Bergantiños et al.,

2010; Bosch et al., 2005), can disrupt expression of the posterior
selector gene engrailed, leading to posterior-to-anterior cell fate
transformations in regenerating wing discs (Schuster and Smith-
Bolton, 2015). Normally, these JNK-inducedmistakes are minimized
by the putative chromatin modifier Taranis (Tara), which is required
for posterior fate after damage but not during normal development
(Schuster and Smith-Bolton, 2015). Therefore, patterning during
regeneration is not identical to patterning during development, owing
to the presence of damage response signals, such as JNK, and the need
for protective factors, such as Tara.

In the adult midgut, aging can cause mis-patterning during both
normal homeostasis and regeneration. Aging elevates both JNK and
Jak/STAT signaling in specific midgut compartments, which can
disrupt midgut homeostasis through inappropriate expression of
differentiation signals such as Delta/Notch. Overexpressing these
signals in younger flies can mimic the effect of this age-dependent
signaling disruption on regeneration, causing metaplasia during
regeneration after paraquat-induced injury (Biteau et al., 2008; Li
et al., 2016). Therefore, Drosophila is a valuable model for
demonstrating how factors such as aging and the wound response
can disrupt cell fate during regeneration, and can highlight
differences between regeneration and development.

Regulating regeneration gene expression
The identification of numerous regeneration genes has raised the
question of how those genes are regulated after tissue damage. The
wing imaginal disc is competent for regeneration during a specific
window of development that ends before pupariation, when
expression of regeneration genes as well as activity of key signals
and transcription factors are no longer strongly upregulated upon
damage (Harris et al., 2016; Smith-Bolton et al., 2009). This
phenomenon was explained by the identification of bipartite damage-
response enhancers, which contain an activator region that induces
gene expression upon disc damage, and a repressor region that
mediates silencing of the enhancer via chromatin changes when
ecdysone levels peak before pupariation (Harris et al., 2016). Tissue
ablation methods have also been coupled with genomic approaches
such as transcriptional profiling and chromatin profiling in an attempt
to understand the mechanisms that drive regeneration (Khan et al.,
2017; Vizcaya-Molina et al., 2018). Indeed, ATAC-seq profiling of
regenerating wing discs at multiple time points has identified many
regions with increased chromatin accessibility, suggesting changes in
enhancer activity across the genome (Vizcaya-Molina et al., 2018).
Such damage-responsive enhancer elements have also been identified
in acoel worms aswell as in zebrafish andmouse hearts (Gehrke et al.,
2019; Kang et al., 2016; Wang et al., 2019). Future studies of these
genomic loci will no doubt yield a trove of information about the
mechanisms that control regeneration, and comparative analyses may
reveal commonalities in how regeneration is regulated across species.

Turning regeneration off
Once enough tissue has been generated to compensate for cells lost to
injury, a tissue must return to a steady state. Failure to do so risks
acquiring a hyperplastic or cancerous phenotype. As discussed above,
when imaginal discs are damaged, expression of Ilp8 delays
metamorphosis to buy time for regenerative growth. However,
metamorphosis eventually occurs, and with it silencing of the
damage-responsive genes, preventing runaway regrowth (Colombani
et al., 2012; Garelli et al., 2012; Katsuyama et al., 2015; Harris et al.,
2016). By contrast, in the Drosophila midgut, hyperactivation of
many pro-regeneration factors can cause hyperplasia (Biteau and
Jasper, 2011; Johansson et al., 2019), and little is known about the
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mechanisms that actively turn off the regeneration program. In the
regenerating midgut, two distinct modes of BMP/Decapentaplegic
(Dpp) signaling differentiate between the pro- and anti-regenerative
states (Ayyaz et al., 2015; Tracy Cai et al., 2019). After bacterial
challenge, the BMP-family receptor Punt binds to its co-receptor
Saxophone and drives pro-regeneration gene expression, mediated by
the transcription factor Smad on X (Smox). Later in regeneration, the
Punt co-receptor Thickveins is more abundant, and this receptor
complex activates different genes via Mothers against Dpp (Mad),
returning the midgut to homeostasis. Future work in Drosophila
regenerationmodelsmay benefit from focusing onnegative regulation
of pro-regeneration factors, such as injury-mediated activation of Jak/
STAT or JNK signals. Additionally, negative-feedback signaling
from newly created cells, such as from progeny to stem cells may turn
out to be a common mechanism of terminating the regenerative state
(Ge and Fuchs, 2018). Identifying mechanisms that end regeneration
may impact our understanding of not only regenerative growth control
but also cancer prevention mechanisms.

Expanding regeneration studies to other organs
Although most Drosophila regeneration studies have focused on
imaginal discs, the midgut and the germline, additional tissue
regeneration models continue to be identified. Imaginal rings (see
Glossary, Box 1), for example, are constituent components of larval
organs (such as the hindgut, foregut and salivary gland) that have
recently been shown to regenerate. These structures persist
throughout metamorphosis and contribute heavily to the
replacement of larval organs with adult organs. An example is the
hindgut, where the imaginal ring is housed in a structure at the
midgut-hindgut junction known as the pylorus. A recent study
revealed that pro-apoptotic ablation of ∼90% of all pyloric cells
leads to complete regeneration of pylorus-derived tissue of the adult
hindgut, through increased rounds of cell division of remaining
imaginal ring cells (Cohen et al., 2018). Regeneration can also be
examined in the context of muscle. Mechanical injury to adult flight
muscle, for instance, triggers proliferation of cells that retain muscle
progenitor properties and express a specific isoform of the
transcription factor Zfh1. These cells can produce daughter cells
that both renew skeletal muscle and regenerate damaged muscle
fibers (Boukhatmi and Bray, 2018; Chaturvedi et al., 2017). Thus,
Drosophila contain cells resembling the regenerative muscle stem
cells (termed ‘satellite cells’; see Glossary, Box 1) found in
mammalian skeletal muscle. Similarly, mechanical injury to the
adult Drosophila brain initiates proliferation in the medulla cortex
of the optic lobes (see Glossary, Box 1), likely initiated by putative
progenitor cells that express the transcription factor Deadpan
(Fernández-Hernández et al., 2013; Moreno et al., 2015). We also
note that the brain, muscle, hindgut pylorus and adult abdomen all
represent examples of cells that respond to injury from a quiescent
state (Chaturvedi et al., 2017; Fernández-Hernández et al., 2013;
Fox and Spradling, 2009; Losick et al., 2013). Mechanisms of injury
response in these tissues may therefore differ from injury responses
in the already cycling midgut and imaginal discs, and therefore may
reveal injury response mechanisms that are distinct to exiting
quiescence. The study of these new models of regeneration, along
with the new genetic precision injury methods, will no doubt
unearth new regeneration paradigms.

Conclusions
Given the impact of Drosophila on regeneration research in the last
decade, this stalwart model of development still has much to
contribute to our understanding of how injured organs are rebuilt.

Moving forward, new precision injury tools in both established and
new tissue regeneration models can lead the way. Other promising
approaches, such as live imaging of intact adult midgut tissue
(Martin et al., 2018), high-resolution chromatin mapping in
imaginal discs (Uyehara et al., 2017; Vizcaya-Molina et al., 2018)
and single-cell sequencing (Deng et al., 2019) will also help
uncover new regeneration biology. Given the genetic prowess and
the tools now available in this model, Drosophila will be a major
player in the regeneration field for decades to come.
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Sousa-Victor, P., Garcıá-Prat, L. and Mun ̃oz-Cánoves, P. (2018). New
mechanisms driving muscle stem cell regenerative decline with aging.
Int. J. Dev. Biol. 62, 583-590. doi:10.1387/ijdb.180041pm

Staley, B. K. and Irvine, K. D. (2010). Warts and Yorkie mediate intestinal
regeneration by influencing stem cell proliferation. Curr. Biol. 20, 1580-1587.
doi:10.1016/j.cub.2010.07.041

Stoick-Cooper, C. L., Moon, R. T. and Weidinger, G. (2007). Advances in
signaling in vertebrate regeneration as a prelude to regenerative medicine.Genes
Dev. 21, 1292-1315. doi:10.1101/gad.1540507

Strand, M. and Micchelli, C. A. (2011). Quiescent gastric stem cells maintain the
adult Drosophila stomach. Proc. Natl. Acad. Sci. USA 108, 17696-17701. doi:10.
1073/pnas.1109794108

Sun, G. and Irvine, K. D. (2011). Regulation of Hippo signaling by Jun kinase
signaling during compensatory cell proliferation and regeneration, and in
neoplastic tumors. Dev. Biol. 350, 139-151. doi:10.1016/j.ydbio.2010.11.036

Sun, G. and Irvine, K. D. (2014). Control of growth during regeneration. Curr. Top.
Dev. Biol. 108, 95-120. doi:10.1016/B978-0-12-391498-9.00003-6

Tamori, Y. and Deng, W.-M. (2013). Tissue repair through cell competition and
compensatory cellular hypertrophy in postmitotic epithelia. Dev. Cell 25, 350-363.
doi:10.1016/j.devcel.2013.04.013

Tanaka, E. M. (2016). The molecular and cellular choreography of appendage
regeneration. Cell 165, 1598-1608. doi:10.1016/j.cell.2016.05.038

Tetteh, P. W., Basak, O., Farin, H. F., Wiebrands, K., Kretzschmar, K., Begthel,
H., van den Born, M., Korving, J., de Sauvage, F., van Es, J. H. et al. (2016).
Replacement of lost Lgr5-positive stem cells through plasticity of their enterocyte-
lineage daughters. Cell Stem Cell 18, 203-213. doi:10.1016/j.stem.2016.01.001

Tian, A., Wang, B. and Jiang, J. (2017). Injury-stimulated and self-restrained BMP
signaling dynamically regulates stem cell pool size during Drosophila midgut
regeneration. Proc. Natl. Acad. Sci. USA 114, E2699-E2708. doi:10.1073/pnas.
1617790114

Tracy Cai, X., Li, H., Safyan, A., Gawlik, J., Pyrowolakis, G. and Jasper, H.
(2019). AWD regulates timed activation of BMP signaling in intestinal stem cells to
maintain tissue homeostasis. Nat. Commun. 10, 2988. doi:10.1038/s41467-019-
10926-2

Tsai, C.-R., Wang, Y. and Galko, M. J. (2018). Crawling wounded: molecular
genetic insights into wound healing from Drosophila larvae. Int. J. Dev. Biol. 62,
479-489. doi:10.1387/ijdb.180085mg

Uyehara, C. M., Nystrom, S. L., Niederhuber, M. J., Leatham-Jensen, M., Ma, Y.,
Buttitta, L. A. and McKay, D. J. (2017). Hormone-dependent control of
developmental timing through regulation of chromatin accessibility. Genes Dev.
31, 862-875. doi:10.1101/gad.298182.117

van der Vliet, A. and Janssen-Heininger, Y. M.W. (2014). Hydrogen peroxide as a
damage signal in tissue injury and inflammation: murderer, mediator, or
messenger? J. Cell. Biochem. 115, 427-435. doi:10.1002/jcb.24683

Verghese, S. and Su, T. T. (2017). STAT, Wingless, and Nurf-38 determine the
accuracy of regeneration after radiation damage in Drosophila. PLoS Genet. 13,
e1007055. doi:10.1371/journal.pgen.1007055

Vizcaya-Molina, E., Klein, C. C., Serras, F., Mishra, R. K., Guigó, R. and
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