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Original submission 

 
First decision letter 

 
MS ID#: DEVELOP/2020/194589 
 
MS TITLE: EPySeg: a coding-free solution for automated segmentation of epithelia using deep 
learning 
 
AUTHORS: Benoit Aigouy and Benjamin Prud'homme 
 
I have now received all the referees' reports on the above manuscript, and have reached a decision. 
The referees' comments are appended below, or you can access them online: please go to 
BenchPress and click on the 'Manuscripts with Decisions' queue in the Author Area. 
 
As you will see, the referees recognise the potential utility of your software, but have some 
significant criticisms and recommend a substantial revision of your manuscript before we can 
consider publication. All three referees make several suggestions to improve the documentation of 
the software. These include requests to explain various parameters and details of the methods. In 
addition, the software needs to be demonstrated on different datasets, particularly non-Drosophila 
data, to show its limitations and provide a fairer comparison with Cellpose. This will be crucial for 
readers so that they can assess the likely usefulness of the software to their systems. 
 
If you are able to revise the manuscript along the lines suggested, which will involve further 
analyses, I will be happy receive a revised version of the manuscript. Your revised paper will be re-
reviewed by one or more of the original referees, and acceptance of your manuscript will depend 
on your addressing satisfactorily the reviewers' major concerns. Please also note that Development 
will normally permit only one round of major revision. 
 
We are aware that you may currently be unable to access the lab to undertake experimental 
revisions. If it would be helpful, we encourage you to contact us to discuss your revision in greater 
detail. Please send us a point-by-point response indicating where you are able to address concerns 
raised (either experimentally or by changes to the text) and where you will not be able to do so 
within the normal timeframe of a revision. We will then provide further guidance. Please also note 
that we are happy to extend revision timeframes as necessary.  
 
Please attend to all of the reviewers' comments and ensure that you clearly highlight all changes 
made in the revised manuscript. Please avoid using 'Tracked changes' in Word files as these are lost 
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in PDF conversion. I should be grateful if you would also provide a point-by-point response detailing 
how you have dealt with the points raised by the reviewers in the 'Response to Reviewers' box. If 
you do not agree with any of their criticisms or suggestions please explain clearly why this is so. 
 
 
Reviewer 1 
 
Advance summary and potential significance to field 
 
In the present manuscript, the authors offer a simple and accessible software tool to allow users 
with no programming experience to access deep learning methodologies to segment imaging data 
from ImageJ files, which can be generated from any imaging platform. The democratisation of AI 
image segmentation is a worthy and timely goal, as these tools are in the process of revolutionising 
data analysis in a number of fields, yet the difficulty of implementing these approaches without 
access to skilled programmers and GPU clusters are likely to put off many potential users. The 
authors propose an online version through Google Colab, as well as a GUI that supports both using 
pre-trained networks and training several network architectures using self-generated datasets. 
 
We tested EPSyG using our own epithelial movie datasets. The Google platform was easy to use and 
relatively fast. Compared with our own U-net tool, EPSyG performed very commendably, especially 
considering that it had not been trained on our dataset. Given the short time span of a review, we 
did not have time to extensively test the training feature. Overall, this is a very useful package that 
looks likely to allow many new users to try and play around with deep learning methods. I would 
therefore be happy to recommend publication in Development, provided the points below are 
addressed.  
 
Comments for the author 
 
1. The example provided is of a very high-quality image of the fly head. The authors should 
show how robust the software is with more messy/noisy datasets, using the same metrics applied to 
the example showed by the authors.  
 
2. The authors should provide access to the training datasets so that users can appreciate the 
type of data that was used, and decide whether or not to do further training with their own data. 
 
3. The programme includes two network architectures, but it is not clear what the differences 
are. The authors should explain this in the manuscript. The outputs from the two architectures are 
also different (eg: “predict” (which itself contains different intermediate steps for one of the 
models) versus “refined predict”), so the authors should explain what the different outputs 
correspond to for non-specialist users. 
 
4. The authors could improve the explanations of some of the parameters that the user is 
asked to set when running the code (eg: step 10, normalisation methods, clip intensity…). Ideally, 
they would write a small blurb for each of these that the user can access by hovering over the 
parameter or clicking on a question mark link next to the parameter. 
 
 
Reviewer 2 
 
Advance summary and potential significance to field 
 
Aigouy and Prud'Homme present a simple tool for segmentation of cells in confocal images of 
Drosophila epithelia. The paper presents standard computer vision approaches and its value lies 
predominantly in the ease-of-use of the software. An open source Python package is provided, as 
well as an environment for Google Collab. The authors stress that deployment of the software is 
coding free while allowing for extension by qualified users. 
 
In principle, the paper describes a useful tool for the developmental biology community. Novelty 
from the point of view of computer vision is lacking. The authors select published CellPose software 
as a benchmark. This is however not a particularly fair comparison, since CellPose is a much more 
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broadly applicable segmentation tool, trained on significantly more diverse data. EPySeq is trained 
exclusively on Drosophila E-cadherin data and with one exception (fish, presumably EVL epiboly, 
very simple sample to segment) applied to similar Drosophila datasets. It is expected that such 
networks will perform better under these circumstances. Moreover, the data presented in Figure 2 
show that CellPose fails predominantly on large holes in the epithelium which is trivial to fix. This 
is somewhat diminishing the need to switch to the new framework. 
 
Comments for the author 
 
Nevertheless, the paper is fixable. I suggest to show much more of the datasets (that are currently 
only summarised in a supplementary Table, it should be in the main text) and to apply the 
framework to non-Drosophila data to show its limitations. The title and abstract should embrace 
the limitations of the networks to Drosophila epithelia and similar datasets. 
User-friendliness of the software should be demonstrated with screen shots and a proper, tutorial 
style documentation in the supplements. 
 
Minor comments: 
Introduction: 
- "rewamped" is a sloppy, spoken language. 
- the use of CNN by no means alleviates the need for user correction of segmentation! 
- it is usually not necessary to train the networks on "big data". In fact authors did not train their 
networks on "big data", the statement is a misleading use of a buzzword. 
- authors make a confusing statement about how manual correction of watershed result SHOULD 
improve network training. I am not sure what they mean and if it is an important point, 
quantitative evidence must be presented. 
- "decently trained network" is not a appropriate expression 
- "we flawlessly trained and run ... " is not a scientific statement. 
- the image quality of Figure 1 is low. Also, its message is trivial and should be expanded to 
highlight the strength of the contribution, i.e. user friendly software and GoogleCollab. 
- Figure 2 should be significantly expanded, showing more results on representative datasets. 
- it is not clear what offset is referred to in the inset of the panel A. I don't see any Cellpose 
outlines.  
 
 
Reviewer 3 
 
Advance summary and potential significance to field 
 
I have difficulties identifying advances made in this paper. 
 
Comments for the author 
 
The submitted manuscript tackles a very important analysis step in many research projects. The 
presented work is in my view, unfortunately, not yet ready for publication. 
 
Main points of concern: 
------------------------ 
- The quantification of obtained results is insufficient to understand where strength and weaknesses 
of the presented method lie. 
- The contribution by the authors is to make an existing network and training available via an open 
source software package. No new technical tricks are introduced and even the combination of 
modules that are hooked up is very default and bears zero novelty. 
- Results are only compared to results obtained by Cellpose, and I expect that the pre-trained 
Cellpose model from Janelia Farms was used (the manuscript did not mention to have trained 
Cellpose for the specific data). This is bad because the comparison is flawed. While EPySeg is 
allowed to train on data very similar to the validation data, Cellpose must make the best out of the 
very different data it was trained on. Since Cellpose is also open source, nothing stops the authors 
from training on the same body of data and then do a proper comparison. 
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- Cellpose is not the only baseline that would be interesting to compare to. In fact, Cellpose is not 
even the most important baseline method. Obvious baselines would e.g. be a 3-Class U-Net (very 
basic and known to everyone), StarDist (Weigert et. al.), or DenoiSeg (Buchholz, Prakash, et al.). 
- The authors suggest to use the trained EPySeg model as a "generalist neural network" (page 1). 
While in the context of segmentation this can indeed work ok, it is clear that this comes with 
strong limitations. New data that is different to the training data will not work well at all and this 
is also the reason why the comparison with Cellpose is so deeply flawed. 
- The description of augmentation and training is insufficient. Whats the learning rate? Does it 
adapt during training? What was the optimizer, what's the precise network architecture? How can 
IoU be the loss (IoU is non-differentiable, see also 
https://stackoverflow.com/questions/40475246/why-does-one-not-use-iou-for-training). All data is 
presented at each epoch, but does that mean all pixels are presented (since small tiles are fed)? 
Are the same augmented versions shown over and over, or is the augmentation different between 
epochs? Which dataset was using which patch and batch size? Etc. etc. 
- The 'segmentation quality' metric introduced is strange and it is really not needed to introduce 
such a metric (there is already too many around that even make sense). 
 - The metric is: (#correct - #overseg - #underseg)/#truecells. Now, each over or 
undersegmentation removes 1 from #correct, but causes another subtraction by 1 in the nominator. 
Hence, this metric will be 0 as soon as half the cells are over or undersegmentations. Weird! I 
suggest for example to use AP scores or any other established metric. 
 
Other concerns: 
---------------- 
- All work only applies to 2D data and this might go into the title to not elicit false hopes. 
- Several claims in the paper are not right or overly emphasized. 
 - Page 1: "Training cannot be done directly in FIJI/ImageJ" - yes, it can! DenoiSeg comes with such 
an option (https://imagej.net/DenoiSeg). 
 - Page 1: I'm not sure if it is fair to say that the computer vision field got "revamped" at certainly 
the need for user correction is by far not "alleviated". Deep learning improved things, but 
segmentation remains a hard problem that is by far not automatically solvable. 
 - "the majority of scientific computers are not deep learning-ready", depending on what the 
authors mean, I might have to strongly disagree. Today it is hard to even buy a laptop that is not 
powerful enough for a number of useful deep learning (please exclude Mac computers here, but for 
very different reasons). Anyway, every single microscope workstation should be more then enough 
for EPySeg, Cellpose, et al. 
- I'm not sure about the validity of the hypothesis that EPySeg training is working better due to the 
non-human (but Watershed) origin of the training data. I would like to see such a claim backed up 
by adequate control experiments. It would, for example, be very interesting to see if a network 
trained on such data has the tendency to put the outline of cells at roughly constant intensity 
values (such as Watershedding does). Anyways, at all the crucial places the network is again trained 
on user annotations (curations) and the argument seems not to hold any longer. 
- Authors say that EPySeg does not work on cells in culture. This is of course true, because it was 
not trained for this use-case. Still, could a version of EPySeg exist that was trained on this data? If 
so, why not do it and serve a much larger community. If not - why not? 
- The caption of Figure 2 does not write their own method name correctly... 
- A table to compare results would be important. The supplementary table comes without caption 
and must be enriched by other baselines to make sense. 
- One would wish for many more qualitative examples of inputs and results in the supplement. 
 
 

 
 
First revision 
 
Author response to reviewers' comments 
 
We would like to thank the reviewers for their useful and constructive comments on our manuscript. 
In the revised version, we believe we have successfully addressed the comments of all three 
reviewers. Mainly, we have greatly improved the documentation of our tool. Also, we now 
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demonstrate that the use of our tool is not restricted to segmenting fly epithelia and does not require 
the model to be retrained. Finally, we make two of our training datasets publicly available. 
 
Reviewer 1 Advance Summary and Potential Significance to Field: 
 
In the present manuscript, the authors offer a simple and accessible software tool to allow users with 
no programming experience to access deep learning methodologies to segment imaging data from 
ImageJ files, which can be generated from any imaging platform. The democratisation of AI image 
segmentation is a worthy and timely goal, as these tools are in the process of revolutionising data 
analysis in a number of fields, yet the difficulty of implementing these approaches without access to 
skilled programmers and GPU clusters are likely to put off many potential users. The authors propose 
an online version through Google Colab, as well as a GUI that supports both using pre-trained 
networks and training several network architectures using self-generated datasets. 
 
We tested EPSyG using our own epithelial movie datasets. The Google platform was easy to use and 
relatively fast. Compared with our own U-net tool, EPSyG performed very commendably, especially 
considering that it had not been trained on our dataset. Given the short time span of a review, we 
did not have time to extensively test the training feature. Overall, this is a very useful package that 
looks likely to allow many new users to try and play around with deep learning methods. I would 
therefore be happy to recommend publication in Development, provided the points below are 
addressed. 
 
Reviewer 1 Comments for the Author: 
 
1. The example provided is of a very high-quality image of the fly head. The authors should show 
how robust the software is with more messy/noisy datasets, using the same metrics applied to the 
example showed by the authors. 
 
In order to challenge further our tool with unseen model organisms, tissues and staining, we used a 
plant leaf sample labelled with a plasma membrane marker (A. thaliana UBQ10::acyl:tdTomato) and 
a vertebrate heart sample labelled with phalloidin (actin staining). Of note, the plant sample 
presents numerous irregular/wiggly cells and the vertebrate heart sample provides a complex mix of 
adjacent small and big cells. In addition, we show an image of the Drosophila histoblast nest that 
contains remarkable cell size differences with giant polyploid larval cells and tiny pupal epithelial 
nest cells. Also, we provide a difficult case of the fly wing with very dim stretched cells (sup Fig. 
1E). Altogether we believe these new samples (including images the model was not trained for) 
provide several segmentation challenges (dim, stretched, wiggly cells and tissues with a high area 
variability and or a combination of these features) and we are glad to see that our tool performs well 
on all images (Fig. 2, sup. Fig. 1 and sup. Fig. 2). 
 
2. The authors should provide access to the training datasets so that users can appreciate the type 
of data that was used, and decide whether or not to do further training with their own data. 
 
In order to address the reviewer comment, we are now releasing two training datasets out of the 
three we used (we don’t own the copyright for the remaining dataset so we cannot release it). In 
addition, we are also providing several of our test files so that the users can visually evaluate whether 
their data resembles one of the already tested ones. These additional datasets and images can be 
found here (https://gitlab.com/baigouy/models). More generally, we are confident that any 
membrane marker should be sufficient to segment cells with our tool. 
 
3. The programme includes two network architectures, but it is not clear what the differences are. 
The authors should explain this in the manuscript. The outputs from the two architectures are also 
different (eg: “predict” (which itself contains different intermediate steps for one of the models) 
versus “refined predict”), so the authors should explain what the different outputs correspond to for 
non-specialist users. 
 
Bearing in mind that the simpler the better, we have now reduced the number of pre-trained models 
in our software to one, especially because the remaining model most often outperforms the other 
one and is more constant on all test samples. Thereby we are now left with a single architecture: a 
Linknet architecture (https://arxiv.org/abs/1707.03718) with a vgg16 encoder. Please note that the 



Development | Peer review history 

© 2020. Published by The Company of Biologists under the terms of the Creative Commons Attribution License 

(https://creativecommons.org/licenses/by/4.0/). 6 

complete model architecture is printed in the log window of the software upon loading (the detailed 
architecture/log is given in an answer to reviewer 3, search for #Model architecture). Because of 
its length and complexity, and availability in the log window of the software, we chose to not include 
the model organization in the manuscript. 
 
“Predict” and “refine” are now explained in the documentation (within the software in the 
‘predict’ help window and online 
https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/predict.md) and in 
the software help button located on the side of the refine box. Briefly, “Predict” saves the raw 
output of the model that consists of 5 watershed-like segmentations and 2 watershed-like seeds. 
Most often (but not always) this raw data is not good enough to be used directly as a segmentation 
mask (after thresholding) and needs be further processed in ‘refine’ to generate an optimized mask 
(see also Fig. 1). 
 
4. The authors could improve the explanations of some of the parameters that the user is asked to 
set when running the code (eg: step 10, normalisation methods, clip intensity…). Ideally, they would 
write a small blurb for each of these that the user can access by hovering over the parameter or 
clicking on a question mark link next to the parameter. 
 
We now provide a clear and complete documentation for all the parameters of the software 
through a careful selection of internet links along with some documentation we wrote ourselves). 
The help is accessible from within the software by clicking the ‘question marks/help’ buttons as 
suggested by the reviewer. In addition, we provide three complete tutorials, one showing how to 
train a model from scratch, another showing how to further train a pre-trained model and the last 
one showing how to use a pre- trained model for segmentation 
(https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/getting_started.md, 
https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/getting_started3.md, 
https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/getting_started2.md) 
 
 
Reviewer 2 Advance Summary and Potential Significance to Field: 
 
Aigouy and Prud'Homme present a simple tool for segmentation of cells in confocal images of 
Drosophila epithelia. The paper presents standard computer vision approaches and its value lies 
predominantly in the ease-of-use of the software. An open source Python package is provided, as 
well as an environment for Google Collab. The authors stress that deployment of the software is 
coding free while allowing for extension by qualified users. 
 
In principle, the paper describes a useful tool for the developmental biology community. Novelty 
from the point of view of computer vision is lacking. The authors select published CellPose software 
as a benchmark. This is however not a particularly fair comparison, since CellPose is a much more 
broadly applicable segmentation tool, trained on significantly more diverse data. EPySeq is trained 
exclusively on Drosophila E-cadherin data and with one exception (fish, presumably EVL epiboly, very 
simple sample to segment) applied to similar Drosophila datasets. It is expected that such networks 
will perform better under these circumstances. 
 
Cellpose and StarDist, for example, are basic Unet models with varying number of model outputs and 
post- processing. We use a different architecture (Linknet) and have also different outputs and post-
processing too, so altogether our tool is not less nor more innovative, than the afore mentioned tools, 
from the point of view of computer vision. 
 
Regarding the fly specificity of our model, we now show that EPySeg, even though trained specifically 
on fly tissues labelled E-cadherin, does perform well on plant and vertebrate tissues labelled with 
very different plasma-membrane markers (see Fig. 2, sup. Fig.1 and Table 1). We also added a 
sentence in the main text acknowledging the versatility of the Cellpose tool: EPySeg is ‘likely to be 
less efficient at segmenting non-cellular objects than Cellpose’. Altogether, we hope this addresses 
the reviewer concerns. 
 
Moreover, the data presented in Figure 2 show that CellPose fails predominantly on large holes in 
the epithelium which is trivial to fix. This is somewhat diminishing the need to switch to the new 
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framework. 
 
The revised sup. Fig.1, sup. Fig. 2 and Table 1 show that EPySeg outperforms CellPose in several 
cases: stretched cells, when cells in the tissue have different sizes, when the cell borders are not 
regular. Clearly some if not most of these segmentation errors can’t be fixed even with further 
training of Cellpose as they are inherent features of the Cellpose method (This point is also addressed 
in more details later). Also, we tried tuning the cellpose ‘flow_threshold ‘ and ‘cellprob_threshold’ 
parameters but never achieved better segmentation of large holes (we assume the Cellpose ‘cell 
probability’ must go to 0 in these regions or the size tweaks of Cellpose simply do not allow cells in 
these regions to be properly segmented). 
 
Reviewer 2 Comments for the Author: 
 
Nevertheless, the paper is fixable. I suggest to show much more of the datasets (that are currently 
only summarised in a supplementary Table, it should be in the main text) and to apply the framework 
to non- Drosophila data to show its limitations. The title and abstract should embrace the limitations 
of the networks to Drosophila epithelia and similar datasets. User-friendliness of the software should 
be demonstrated with screen shots and a proper, tutorial style documentation in the supplements. 
 
In the revised manuscript, we have added new test images in the main Figure 2 (and in the 
supplement) and make public two of our training datasets. We now show that our tool is not 
restricted to be used with Drosophila epithelia even though it was trained only with fly samples. 
Indeed, we now show that our model can, for example, very efficiently segment a vertebrate tissue 
(heart) and a plant epithelium, and should be able to segment any membrane-labelled cell. Also, as 
suggested by reviewer 2, we have added three classical tutorials with screenshots (also accessible 
from within the software ‘help’ tab) demonstrating how the software should be used, the first 
tutorial shows how one can use our model to segment epithelial cells using our pre-trained model, 
the second one shows how to train a model from scratch and the third one shows how one can 
further train our pre-trained model 
(https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/getting_started2.md
,https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/getting_started.md, 
https://github.com/baigouy/EPySeg/blob/master/epyseg/deeplearning/docs/getting_started3.md)
. 
 
Minor comments: 
 
Introduction: 
 

- "rewamped" is a sloppy, spoken language. 
 
 We replaced ‘revamped’ with ‘reshaped’ 
 

- the use of CNN by no means alleviates the need for user correction of segmentation! 
 
It definitely does, as an example when we compare segmentation with Tissue Analyzer (with 
optimized parameters) to that of EPySeg with the default settings, we can see that the number of 
cells to manually correct goes down from 1065 to 7 (See figure below). Of note, the image contains 
713 cells but the giant larval cells are highly over-segmented. Altogether, this constitutes a 
substantial reduction in the number of corrections the user has to do to obtain an optimal 
segmentation, and therefore a significant gain of time. Although, we agree with the reviewer that 
manual correction is still needed, especially for training deep learning, therefore we replaced ‘user’ 
by ‘end-user’ to distinguish the person that trains the algorithm from the one that merely uses it. 
We toned down the sentence to reflect that deep learning approach could, ‘in theory, reduce or 
even eliminate end-user corrections’. 
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– 
 

- it is usually not necessary to train the networks on "big data". In fact, authors did not train their 
networks on "big data", the statement is a misleading use of a buzzword. 
 
Currently, we have trained the model on about 200 000 cells per epoch (as a comparison, the Cellpose 
dataset only contains 70 000 objects) and since we use augmented data (some of which is randomly 
generated), we more or less always have different cells presented to the model at each epoch. So 
altogether the model sees, as a rough estimation, up to 50 million (+/- 10 million) different cells 
during the entire training; this, to some extent, might be considered as big data. However, we agree 
with the reviewer that ‘big data’ is an ill-defined term and thereby we removed “big data” from the 
text. 
 

- authors make a confusing statement about how manual correction of watershed result SHOULD 
improve network training. I am not sure what they mean and if it is an important point, quantitative 
evidence must be presented. 
 
Reducing user input will inevitably reduce human bias and this could theoretically improve the 
learning, but on the other hand one might also argue that the model will learn the biases of the 



Development | Peer review history 

© 2020. Published by The Company of Biologists under the terms of the Creative Commons Attribution License 

(https://creativecommons.org/licenses/by/4.0/). 9 

watershed. As testing this hypothesis formally sounds extremely difficult (especially if that means 
segmenting all the training images entirely manually. Such task would easily take several months and 
up to a year). For this reason we removed the entire sentence from the text. 
 

- "decently trained network" is not a appropriate expression 
 
We replaced "to get a decently trained network" with “to train a network” 
 

- "we flawlessly trained and run ... " is not a scientific statement. 
 
We replaced "we flawlessly trained and ran ... " with “. We also successfully trained and ran …” 
 

- the image quality of Figure 1 is low. Also, its message is trivial and should be expanded to highlight 
the strength of the contribution, i.e. user friendly software and GoogleCollab. 
 
In the revised manuscript, we have modified the Figure 1 to highlight the internal organization of 
EPySeg. Also, we now provide new tutorials reviewer 2 suggested that we think address user 
friendliness better than a figure. 
 

- Figure 2 should be significantly expanded, showing more results on representative datasets. 
 
As described previously, we now include more test samples in the figures and in the supplement of 
our manuscript. 
 

- it is not clear what offset is referred to in the inset of the panel A. I don't see any Cellpose outlines. 
 
We made an inset in sup. Fig. 1E that better shows the difference (this difference is also captured 
in the SEG scores found in Table 1). Of note, the Cellpose outline is significantly shifted away from 
the membrane maximum intensity (Cellpose detects the cell cytoplasm rather than the cell outline). 
 
 
Reviewer 3 Advance Summary and Potential Significance to Field: 
 
I have difficulties identifying advances made in this paper. 
 
We here present a tool to segment epithelial tissues using deep learning, this tool may also be used 
more generally to train deep learning networks even by people with very limited experience with 
computers or images and without any equipment except an internet connection; we believe this tool 
does constitute an advance in the field. 
 
Reviewer 3 Comments for the Author: 
 
The submitted manuscript tackles a very important analysis step in many research projects. The 
presented work is in my view, unfortunately, not yet ready for publication. 
 
Main points of concern: 
 
------------------------ 
 

- The quantification of obtained results is insufficient to understand where strength and weaknesses 
of the presented method lie. 
 
In agreement with reviewer 3 comments, we have changed our quantification and now rely on the 
standard quantification methods used in the field (SEG and AP scores, see methods). The results 
are qualitatively unchanged but the scores are much higher. This makes sense given that the new 
quantifications are less stringent than the ones we used previously. Altogether, we hope this fully 
addresses reviewer 3 concerns. 
 

- The contribution by the authors is to make an existing network and training available via an open 
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source software package. No new technical tricks are introduced and even the combination of 
modules that are hooked up is very default and bears zero novelty. 
 
Most existing models to segment cells and nuclei rely on the classical Unet architecture (with a 
classical Unet encoder and decoder) as reviewer#3 describes later. Here we used a different encoder 
(vgg16) and a Linknet architecture, a combination that was never used by any of the other tools 
mentioned (Cellpose, DenoiSeg, StarDist). 
 
Regarding novelty, it’s largely a matter of semantic. In Cellpose, for instance, the only modification 
to the classical Unet lies in the number of outputs (3 vs 1) and their type. Indeed, Cellpose produces 
3 outputs, a horizontal and a vertical gradient along with a binary mask for the presence/absence of 
cells; these 3 outputs are then post-processed to produce the final segmentation mask. In our case, 
our model produces seven outputs, 5 of which are similar to watershed masks, while the remaining 
two can be seen as watershed seeds. Combining and post-processing these seven outputs produces a 
single segmentation outline for the cells (as shown in the revised Figure 1). To our knowledge this 
concept has not been used elsewhere. 
 
Of note, by construction, Cellpose cannot segment non convex/complex cells, and Stardist is optimal 
for round shapes but less so for complex shapes (1,2), whereas our tool can handle complex shapes 
well (see Fig. 2B, sup. Fig. 2B, B’ and Table 1). In addition, Cellpose has a mandatory size parameter 
that dramatically impairs segmentation if not properly set (not shown) and prevents Cellpose from 
properly segmenting tissues where big and small cells co-exist (in such case Cellpose will only 
segment the most frequent of the two cell populations and ignore the other one (sup. Fig. 1D), in 
contrast our tool only offers size filtering as an option, thereby allowing to segment tissues with a 
wide range of cell areas. 
 

- Results are only compared to results obtained by Cellpose, and I expect that the pre-trained 
Cellpose model from Janelia Farms was used (the manuscript did not mention to have trained 
Cellpose for the specific data). This is bad because the comparison is flawed. While EPySeg is allowed 
to train on data very similar to the validation data, Cellpose must make the best out of the very 
different data it was trained on. Since Cellpose is also open source, nothing stops the authors from 
training on the same body of data and then do a proper comparison. 
 
We have now trained Cellpose with the dataset we used to train EPySeg, but we got very poor results 
by doing so (see Figure below): cell outlines produced upon retraining of Cellpose with our dataset 
become extremely spiky, and less cells are detected with the retrained Cellpose compared to 
default/original pre- trained Cellpose model (see Figure below). These results, however, are not 
easy to interpret. Since we didn’t train Cellpose with our augmented dataset, as Cellpose comes with 
its own data augmentation algorithms, the difference may come from there. Alternatively, the 
training of Cellpose, made on a very broad sample dataset (ranging from sea shells to cells), may 
make it more globally robust at segmenting any cellular object than ours, if that is the case, it is 
likely that training EPySeg with the Cellpose dataset may render it even more efficient than it 
actually is. However, we could not test the latter hypothesis as the training sample for Cellpose is 
not public and cannot be made available, for legal reasons, because images used to train Cellpose 
are gathered from the internet and contain numerous copyrighted material; already some images on 
the Cellpose webpage are copyrighted and exhibit a clear watermark* (e.g., see top left of the 
Cellpose image test image http://www.cellpose.org/static/images/img22.png, original copyrighted 
image https://www.pinterest.fr/pin/517139969706606279/?nic_v2=1a6WT9ICb). 
*https://en.wikipedia.org/wiki/Digital_watermarking 

http://www.cellpose.org/static/images/img22.png
http://www.pinterest.fr/pin/517139969706606279/?nic_v2=1a6WT9ICb)
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- Cellpose is not the only baseline that would be interesting to compare to. In fact, Cellpose is not 
even the most important baseline method. Obvious baselines would e.g. be a 3-Class U-Net (very 
basic and known to everyone), StarDist (Weigert et. Al.), or DenoiSeg (Buchholz, Prakash, et al.). 
 
The reasons why we don’t include StarDist in our comparison are many. First, StarDist has historically 
been developed to segment nuclei (and not cells), second StarDist cannot readily be used to segment 
epithelia like Cellpose and EPySeg do. And finally, Cellpose does compare itself to StarDist in their 
manuscript and concludes that it outperforms it at segmenting cells (and nuclei). 
 
We did not see DenoiSeg straight away when it appeared on Arxiv and only got to know about it when 
it was announced on the ImageJ/FIJI forum. However, from our understanding, DenoiSeg is mainly 
of use when the size of the segmented training dataset is very small (below 38, for the n20 dataset, 
images according to the following link https://github.com/juglab/DenoiSeg/wiki/Quantitative-
segmentation- comparison-for-Flywing-dataset). In any case, DenoiSeg also does require a big dataset 
for the denoising part of the model but the latter is rather easy to obtain (as it simply consists of 
original images with noise added to them). For large segmented datasets, a classical Unet-3 model 
without any parallel denoising is clearly as good as DenoiSeg (see ‘Baseline’ in the previous link). 
Since our training datasets and most epithelial datasets are much larger than the 38 images limit, 
the benefits of DenoiSeg for epithelial segmentation appear limited to both new and very divergent 
epithelia that would be poorly segmented by other existing tools such as Cellpose and EPySeg. Also, 
looking at the DenoiSeg manuscript, the segmentation accuracy (SEG score, 3) for the wing epithelium 
is around 0.75 and this with or without the denoising module (see n20 in 
https://github.com/juglab/DenoiSeg/wiki/Quantitative-segmentation- comparison-for-Flywing-
dataset) which is not that high. To further test Denoiseg, we ran the Denoiseg n20 (noise 20) fly wing 
code on the DenoiSeg fly wing dataset using 5 segmented images (5GT; i.e. we simply ran the python 
code for fly wings provided by the DenoiSeg authors), we then ran Cellpose (with the auto- optimal 
cell size parameter) and EPySeg segmentation (with its default parameters) on the DenoiSeg n20 test 
set (see Figure below) to be able to directly compare the three tools. Importantly, Cellpose and 
EpySeg were not re-trained on the dataset. We then computed the average SEG and AP scores for 
the 42 test images of DenoiSeg n20 trained with 5 ground truth masks (5GT) (with a stringent IoU of 
0.7 for computing the AP score) for the three tools. The SEG score was as follows EPySeg=0,838 > 
Cellpose= 0,746 > DenoiSeg=0,512. For the AP score, we obtained EpySeg=0,966 > Cellpose=0,924 > 
DenoiSeg= 0,467. Importantly, we could not reach the values described in the DenoiSeg manuscript 
(AP=0.882 and SEG= 0.724), values were lower in our hands and scores varied highly from run to run 
when the Denoiseg model was trained with only 5 GT. We then ran Denoiseg with 76 GT masks, in 
order to be in optimal conditions, and computed the average score for the 42 denoiseg test images. 
This time we obtained the published scores for Denoiseg: AP=0.952 SEG=0.755; we note that Denoiseg 
now outperforms Cellpose but is below EPySeg both for AP and SEG scores (very largely for the latter). 
 
We have removed unpublished data provided for the referees in confidence. 
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Finally, we ran the GT76 (optimal) trained Denoiseg model on other epithelial samples, including fly 
wing epithelia. In all cases, we obtained rather poor segmentation with Denoiseg (see Figure below), 
suggesting that Denoiseg is a terribly efficient, yet very specialized model as compared to EPySeg 
and Cellpose. That is why we chose not to include Denoiseg in our comparison. 
Also to clarify why we only compare EPySeg to Cellpose, we added the following sentence to the 
main text ‘We compared our software to Cellpose, the only software available to date that can 

segment cells without the need for prior model training 1.’ 
 
 
We have removed unpublished data provided for the referees in confidence. 
 

- The authors suggest to use the trained EpySeg model as a “generalist neural network” (page 1). 
While in the context of segmentation this can indeed work ok, it is clear that this comes with strong 
limitations. New data that is different to the training data will not work well at all and this is also 
the reason why the comparison with Cellpose is so deeply flawed. 
 
The truncated sentence the reviewer refers to makes a clear mention that the tool is to be used on 
‘epithelial tissues’. However, for further clarification we removed the term ‘generalist’ from the 
sentence. We now show that our model performs well on data significantly different from the one 
used for training the model, such as plant samples with irregular cells and vertebrate heart cells 
stained with actin. We hope this reassures the reviewer on the robustness of our training. 
 
Also, regarding the fairness of the comparison with Cellpose, please note that we don’t use the 
default Cellpose parameters (that would perform much less well than what we show) but let it 
calculate the optimal cell size so that it can detect cells in optimal conditions. We also show that 
when specifically trained on our dataset Cellpose does not perform better, suggesting Cellpose 
training may already be optimal and it may be hard for it to better segment epithelial samples than 
it already does. Also, we clearly state that we compare the tool with respect to epithelia and mention 
in the Table that on divergent samples (such as cells in culture) Cellpose performs better. 
Furthermore, we added a sentence in the main text stating that EPySeg ‘is likely to be less efficient 
at segmenting non-cellular objects than Cellpose since it was not trained to accomplish such tasks.’, 
so altogether we think we are doing a fair comparison of the two tools. 
 

- The description of augmentation and training is insufficient. Whats the learning rate? Does it adapt 
during training? What was the optimizer, what’s the precise network architecture? How can IoU be 
the loss (IoU is non-differentiable, see also https://stackoverflow.com/questions/40475246/why-
does-one-not-use- iou-for-training). 
 
We used ‘Adam’ as the optimizer. 
 
We rewrote the ‘Convolutional neural network building and training’ method section, it now includes 
the optimizer, batch size and learning rate details. Our previous description was broad because the 
tool included several models, we are now more specific since we only include a single model in our 
tool. 
 
Our model has a Vgg16-Linknet architecture, the details are listed below. Of note, the architecture 
is displayed in the log window of the software (see a copy of the log below), so we don’t think it is 
useful to add this to the manuscript (also because it takes a lot of space and will not be of much use 
to the reader). Finally, to help the reader, we added the following sentence in the methods section 
(Convolutional neural network building and training): ‘Of note, the detailed model architecture is 
shown in the log window of the software upon loading.’ 
 
#Model architecture:  

 
Layer (type) 

 
Output Shape 

 
Param # 

 
Connected to 

 
input_1 (InputLayer) 

 
[(None, None, None, 
1)] 

 
0 
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block1_conv1 (Conv2D) (None, None, 

None, 64) 
640 input_1[0][0] 

block1_conv2 (Conv2D) (None, None, 
None, 64) 

36928 block1_conv1[0][0] 

block1_pool (MaxPooling2D) (None, None, 
None, 64) 

0 block1_conv2[0][0] 

block2_conv1 (Conv2D) (None, None, 
None, 128) 

73856 block1_pool[0][0] 

block2_conv2 (Conv2D) (None, None, 
None, 128) 

147584 block2_conv1[0][0] 

block2_pool (MaxPooling2D) (None, None, 
None, 128) 

0 block2_conv2[0][0] 

block3_conv1 (Conv2D) (None, None, 
None, 256) 

295168 block2_pool[0][0] 

block3_conv2 (Conv2D) (None, None, 
None, 256) 

590080 block3_conv1[0][0] 

block3_conv3 (Conv2D) (None, None, 
None, 256) 

590080 block3_conv2[0][0] 

block3_pool (MaxPooling2D) (None, None, 
None, 256) 

0 block3_conv3[0][0] 

block4_conv1 (Conv2D) (None, None, 
None, 512) 

1180160 block3_pool[0][0] 

block4_conv2 (Conv2D) (None, None, 
None, 512) 

2359808 block4_conv1[0][0] 

block4_conv3 (Conv2D) (None, None, 
None, 512) 

2359808 block4_conv2[0][0] 

block4_pool (MaxPooling2D) (None, None, 
None, 512) 

0 block4_conv3[0][0] 

block5_conv1 (Conv2D) (None, None, 
None, 512) 

2359808 block4_pool[0][0] 

block5_conv2 (Conv2D) (None, None, 
None, 512) 

2359808 block5_conv1[0][0] 

block5_conv3 (Conv2D) (None, None, 
None, 512) 

2359808 block5_conv2[0][0] 

block5_pool (MaxPooling2D) (None, None, 
None, 512) 

0 block5_conv3[0][0] 

center_block1_conv 
(Conv2D) 

(None, None, 
None, 512) 

2359296 block5_pool[0][0] 

center_block1_bn 
(BatchNormalization) 

(None, None, 
None, 512) 

2048 center_block1_conv[0][0] 

center_block1_relu 
(Activation) 

(None, None, 
None, 512) 

0 center_block1_bn[0][0] 

center_block2_conv 
(Conv2D) 

(None, None, 
None, 512) 

2359296 center_block1_relu[0][0] 
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center_block2_bn 
(BatchNormalization) 

(None, None, 
None, 512) 

2048 center_block2_conv[0][0] 

center_block2_relu 
(Activation) 

(None, None, 
None, 512) 

0 center_block2_bn[0][0] 

decoder_stage0a_conv 
(Conv2D) 

(None, None, 
None, 128) 

65536 center_block2_relu[0][0] 

decoder_stage0a_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage0a_conv[0][0] 

decoder_stage0a_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage0a_bn[0][0] 

decoder_stage0_upsamplin
g (UpSampling2D) 

(None, None, 
None, 128) 

0 decoder_stage0a_relu[0][0] 

decoder_stage0b_conv 
(Conv2D) 

(None, None, 
None, 128) 

147456 decoder_stage0_upsampling[0][0] 

decoder_stage0b_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage0b_conv[0][0] 

decoder_stage0b_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage0b_bn[0][0] 

decoder_stage0c_conv 
(Conv2D) 

(None, None, 
None, 512) 

65536 decoder_stage0b_relu[0][0] 

decoder_stage0c_bn 
(BatchNormalization) 

(None, None, 
None, 512) 

2048 decoder_stage0c_conv[0][0] 

decoder_stage0c_relu 
(Activation) 

(None, None, 
None, 512) 

0 decoder_stage0c_bn[0][0] 

decoder_stage0_add (Add) (None, None, 
None, 512) 

0 decoder_stage0c_relu[0][0] 

   block5_conv3[0][0] 

decoder_stage1a_conv 
(Conv2D) 

(None, None, 
None, 128) 

65536 decoder_stage0_add[0][0] 

decoder_stage1a_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage1a_conv[0][0] 

decoder_stage1a_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage1a_bn[0][0] 

decoder_stage1_upsamplin
g (UpSampling2D) 

(None, None, 
None, 128) 

0 decoder_stage1a_relu[0][0] 

decoder_stage1b_conv 
(Conv2D) 

(None, None, 
None, 128) 

147456 decoder_stage1_upsampling[0][0] 

decoder_stage1b_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage1b_conv[0][0] 

decoder_stage1b_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage1b_bn[0][0] 

decoder_stage1c_conv 
(Conv2D) 

(None, None, 
None, 512) 

65536 decoder_stage1b_relu[0][0] 
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decoder_stage1c_bn 
(BatchNormalization) 

(None, None, 
None, 512) 

2048 decoder_stage1c_conv[0][0] 

decoder_stage1c_relu 
(Activation) 

(None, None, 
None, 512) 

0 decoder_stage1c_bn[0][0] 

 
decoder_stage1_add (Add) (None, None, 

None, 512) 
0 decoder_stage1c_relu[0][0] 

   block4_conv3[0][0] 

decoder_stage2a_conv 
(Conv2D) 

(None, None, 
None, 128) 

65536 decoder_stage1_add[0][0] 

decoder_stage2a_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage2a_conv[0][0] 

decoder_stage2a_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage2a_bn[0][0] 

decoder_stage2_upsamplin
g (UpSampling2D) 

(None, None, 
None, 128) 

0 decoder_stage2a_relu[0][0] 

decoder_stage2b_conv 
(Conv2D) 

(None, None, 
None, 128) 

147456 decoder_stage2_upsampling[0][0] 

decoder_stage2b_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage2b_conv[0][0] 

decoder_stage2b_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage2b_bn[0][0] 

decoder_stage2c_conv 
(Conv2D) 

(None, None, 
None, 256) 

32768 decoder_stage2b_relu[0][0] 

decoder_stage2c_bn 
(BatchNormalization) 

(None, None, 
None, 256) 

1024 decoder_stage2c_conv[0][0] 

decoder_stage2c_relu 
(Activation) 

(None, None, 
None, 256) 

0 decoder_stage2c_bn[0][0] 

decoder_stage2_add (Add) (None, None, 
None, 256) 

0 decoder_stage2c_relu[0][0] 

   block3_conv3[0][0] 

decoder_stage3a_conv 
(Conv2D) 

(None, None, 
None, 64) 

16384 decoder_stage2_add[0][0] 

decoder_stage3a_bn 
(BatchNormalization) 

(None, None, 
None, 64) 

256 decoder_stage3a_conv[0][0] 

decoder_stage3a_relu 
(Activation) 

(None, None, 
None, 64) 

0 decoder_stage3a_bn[0][0] 

decoder_stage3_upsamplin
g (UpSampling2D) 

(None, None, 
None, 64) 

0 decoder_stage3a_relu[0][0] 

decoder_stage3b_conv 
(Conv2D) 

(None, None, 
None, 64) 

36864 decoder_stage3_upsampling[0][0] 

decoder_stage3b_bn 
(BatchNormalization) 

(None, None, 
None, 64) 

256 decoder_stage3b_conv[0][0] 

decoder_stage3b_relu 
(Activation) 

(None, None, 
None, 64) 

0 decoder_stage3b_bn[0][0] 
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decoder_stage3c_conv 
(Conv2D) 

(None, None, 
None, 128) 

8192 decoder_stage3b_relu[0][0] 

decoder_stage3c_bn 
(BatchNormalization) 

(None, None, 
None, 128) 

512 decoder_stage3c_conv[0][0] 

decoder_stage3c_relu 
(Activation) 

(None, None, 
None, 128) 

0 decoder_stage3c_bn[0][0] 

decoder_stage3_add (Add) (None, None, 
None, 128) 

0 decoder_stage3c_relu[0][0] 

   block2_conv2[0][0] 

decoder_stage4a_conv 
(Conv2D) 

(None, None, 
None, 32) 

4096 decoder_stage3_add[0][0] 

decoder_stage4a_bn 
(BatchNormalization) 

(None, None, 
None, 32) 

128 decoder_stage4a_conv[0][0] 

decoder_stage4a_relu 
(Activation) 

(None, None, 
None, 32) 

0 decoder_stage4a_bn[0][0] 

decoder_stage4_upsamplin
g (UpSampling2D) 

(None, None, 
None, 32) 

0 decoder_stage4a_relu[0][0] 

decoder_stage4b_conv 
(Conv2D) 

(None, None, 
None, 32) 

9216 decoder_stage4_upsampling[0][0] 

decoder_stage4b_bn 
(BatchNormalization) 

(None, None, 
None, 32) 

128 decoder_stage4b_conv[0][0] 

decoder_stage4b_relu 
(Activation) 

(None, None, 
None, 32) 

0 decoder_stage4b_bn[0][0] 

decoder_stage4c_conv 
(Conv2D) 

(None, None, 
None, 16) 

512 decoder_stage4b_relu[0][0] 

decoder_stage4c_bn 
(BatchNormalization) 

(None, None, 
None, 16) 

64 decoder_stage4c_conv[0][0] 

decoder_stage4c_relu 
(Activation) 

(None, None, 
None, 16) 

0 decoder_stage4c_bn[0][0] 

conv2d (Conv2D) (None, None, 
None, 7) 

1015 decoder_stage4c_relu[0][0] 

sigmoid (Activation) (None, None, 
None, 7) 

0 conv2d[0][0] 

 
Regarding the comment of the reviewer on the use of IoU as a loss, we would argue that the first 
answer in the Stackoverflow post already refers to an Arxiv paper using an IoU loss; in that case it is 
applied to bounding boxes. In our case, a more suited reference, could be, for example, the article 
by Rahman and Wang (https://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf) that describes an 
IoU loss applied to binary images and that shows how it outperforms the accuracy loss and optimizes 
semantic segmentation. There are also several implementations of IoU as a loss throughout the 
internet (e.g. 
https://github.com/qubvel/segmentation_models/blob/master/segmentation_models/losses.py, 
https://www.kaggle.com/c/data-science-bowl-2018/discussion/51553, …). 
 
 
 
 

http://www.cs.umanitoba.ca/~ywang/papers/isvc16.pdf)
http://www.kaggle.com/c/data-science-bowl-2018/discussion/51553
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All data is presented at each epoch, but does that mean all pixels are presented (since small tiles 
are fed)? 
 
Yes, pretty much all the data and all the pixels/cells are presented at each epoch because the images 
are fully split into tiles dynamically. However, in order to keep the total number of tiles/batches 
constant, we ensure that the images always have the same size after augmentation. In some cases, 
such as for the Zoom/magnification augmentation, images must be trimmed to the original image 
size and this inevitably causes some cell loss on the way. In contrast, some data augmentation, such 
as flip, do not change image size and then all cells are passed. Importantly, the full dataset is not 
stored in the memory as it is for some competing tools, this means the model can virtually be trained 
on an infinite number of datasets of any size. 
 
Are the same augmented versions shown over and over, or is the augmentation different between 
epochs? Which dataset was using which patch and batch size? Etc. etc. 
 
No, the augmentation is not static (generated once and used throughout training) as done for example 
for StarDist training, it is dynamically generated at every step and randomly performed within a given 
range (random rotation, x-y translation, flip, noise, …). Please see the ‘Convolutional neural network 
building and training’ section of the material and methods for patch and batch size. We note, 
however, that the latter two parameters were not of critical importance in our tests, whereas data 
augmentation was (not all augmentations have a positive impact on final segmentation, but we 
haven’t conducted a detailed study of this). 
 

- The 'segmentation quality' metric introduced is strange and it is really not needed to introduce 
such a metric (there is already too many around that even make sense). 
 
This comment is somehow overlapping with the next one, so we’ll answer later. 
 

- The metric is: (#correct - #overseg - #underseg)/#truecells. Now, each over or undersegmentation 
removes 1 from #correct, but causes another subtraction by 1 in the nominator. Hence, this metric 
will be 0 as soon as half the cells are over or undersegmentations. Weird! I suggest for example to 
use AP scores or any other established metric. 
 
We thank the reviewer for pointing to us the irrationality of our metric. In the revised manuscript, 
we now stick to the standard quantifications (SEG and AP scores) used in the field as mentioned 
previously. 
 
 
Other concerns: 
 
---------------- 

- All work only applies to 2D data and this might go into the title to not elicit false hopes. 
Given that 3D images are merely series of 2D images along the Z axis, nothing technically prevents 
the user from obtaining a 3D segmentation by splitting it into a series of 2D images (that would also 
be much less demanding memory-wise than using directly a 3D model). Also, we leave open the 
possibility to include 3D unets or alike in the software in the near future; so altogether, we prefer 
to remain open in the main text. Finally, 2D is specifically mentioned, in bold, in the first line of the 
software description page (https://github.com/baigouy/EPySeg), so we believe there is sufficient 
information for anybody willing to download the software to decide whether or not it can be useful 
for him/her and we believe no further action is required. 
 

- Several claims in the paper are not right or overly emphasized. 
 

- Page 1: "Training cannot be done directly in FIJI/ImageJ" - yes, it can! DenoiSeg comes with such 
an option (https://imagej.net/DenoiSeg). 
 
The author is right (now), DenoiSeg is ‘finally’ an example of a training directly done in FIJI, we 
added a reference to DenoiSeg in the main text. Of course, training in FIJI is still not that easy as it 
requires the system and FIJI to be properly set and to have a compatible graphic card, to rely on an 
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aging tensorflow driver that may never be updated. Also, we note that the FIJI DenoiSeg module does 
not output a segmentation mask directly, as one would expect, but simply the raw model output 
(consisting of 4 channels) and regarding the python code provided with Denoiseg, we still had to 
derive our own code to be able to easily get the DenoiSeg segmentation mask out of the trained 
model. So altogether, this would still prevent a significant number of users from easily using this 
tool. See also our detailed answer below regarding the ease of use of deep learning. 
 

- Page 1: I'm not sure if it is fair to say that the computer vision field got "revamped" at certainly 
the need for user correction is by far not "alleviated". Deep learning improved things, but 
segmentation remains a hard problem that is by far not automatically solvable. 
 
We have changed the text to: ’Over the past few years, deep learning, and more particularly 
convolutional neural networks (CNNs), has reshaped the computer vision field. In particular, deep 
learning approaches should be beneficial for image segmentation as they could, in theory, reduce or 
even eliminate the need for end-user correction of the segmentation output.’ 
 

- "the majority of scientific computers are not deep learning-ready", depending on what the authors 
mean, I might have to strongly disagree. Today it is hard to even buy a laptop that is not powerful 
enough for a number of useful deep learning (please exclude Mac computers here, but for very 
different reasons). Anyway, every single microscope workstation should be more then enough for 
EPySeg, Cellpose, et al. 
 
Deep learning is largely restricted to computers equipped with a recent NVIDIA graphic cards, which 
represents only a subset of the desktop and an even smaller portion of the laptop computers, in 
addition most professional working stations are by default equipped with deep learning 
incompatible/poorly suited graphic cards (e.g. cards from the NVIDIA Quadro family). Also, as 
mentioned, current and future Mac computers do and will not support deep learning training for 
tensorflow models through graphic cards (https://www.tensorflow.org/install). This is a big problem 
given the predominance of Apple computers among biologists. So altogether, we are indeed just left 
with a few recent workstations where the graphic card(s) were wisely chosen to use deep learning, 
this is in our mind represents a serious limitation for the end-user (especially given that training may 
require up to several days). So altogether, we believe our alternative solution is highly valuable 
especially when it comes to training CNNs. 
 

- I'm not sure about the validity of the hypothesis that EPySeg training is working better due to the 
non- human (but Watershed) origin of the training data. I would like to see such a claim backed up 
by adequate control experiments. It would, for example, be very interesting to see if a network 
trained on such data has the tendency to put the outline of cells at roughly constant intensity values 
(such as Watershedding does). Anyways, at all the crucial places the network is again trained on user 
annotations (curations) and the argument seems not to hold any longer. 
 
Removing human input will remove human bias that may impair learning; this is why we added this 
sentence. However, the reviewer is right and there is unfortunately no easy way to test this 
statement (since it’s virtually impossible to re-segment manually all of our training datasets), so we 
removed the sentence. 
 

- Authors say that EPySeg does not work on cells in culture. This is of course true, because it was not 
trained for this use-case. Still, could a version of EPySeg exist that was trained on this data? If so, 
why not do it and serve a much larger community. If not - why not? 
 
Indeed, our tool is specifically designed and optimized to segment epithelial cells so we haven’t tried 
to train a network to segment cells in culture nor nuclei. In addition, we think that given the difficulty 
of training a model, even besides having the equipment for it, it is of great interest for the community 
to have a series of pre-trained specialized and optimized models to accomplish specific segmentation 
tasks, especially when this segmentation is highly time-consuming, which is the case for epithelial 
segmentation. 
 

- The caption of Figure 2 does not write their own method name correctly...  
 

http://www.tensorflow.org/install)
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Indeed, we thank the reviewer for spotting this typo, we have changed the text. 
 

- A table to compare results would be important. The supplementary table comes without caption 
and must be enriched by other baselines to make sense. 
 
We have written a caption for the Table 
 

- One would wish for many more qualitative examples of inputs and results in the supplement. 
 
We have now added new data to the main text and supplement, we hope this addresses the reviewer 
comment. 
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Second decision letter 
 
MS ID#: DEVELOP/2020/194589 
 
MS TITLE: EPySeg: a coding-free solution for automated segmentation of epithelia using deep 
learning 
 
AUTHORS: Benoit Aigouy, Claudio Cortes, Shanda Liu, and Benjamin Prud'homme 
ARTICLE TYPE: Techniques and Resources Report 
 
I am happy to tell you that your manuscript has been accepted for publication in Development, 
pending our standard ethics checks.  
 
 
Reviewer 1 
 
Advance summary and potential significance to field 
 
This study provides a useful tool that should encourage more researchers to try AI approaches for 
data analysis, therefore I am happy to support publication in Development. 
 
Comments for the author 
 
The authors have made changes that addressed all my questions.  
 
 
Reviewer 2 
 
Advance summary and potential significance to field 
 
Aigouy et al. present a good revision of the initial submission. They present now a very concise 
presentation of the EpySeq tool aimed at the biology users and presented to the appropriate 
research community of Development. My requested revisions have been largely implemented. 
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Comments for the author 
 
We remain divided on whether this represents a significant advance in the field of computer vision. 
I do not agree with the authors dismissal of StarDist and CellPose as "using basic Unet models with 
varying number of model and output post-processing". Try to submit EpySeq to a computer vision 
conference and see what happens. Nevertheless this is a pointless academic dispute that has no 
bearing on the general usefulness of the EpySeq software for biologists. This is a nice and 
performant tool and I am sure it has a bright future.  
 
 
Reviewer 3 
 
Advance summary and potential significance to field 
 
The authors improved the manuscript to some degree. 
Unfortunately, this reviewer does not have the impression that the manuscript was changed 
sufficiently and feels that in many cases a path of lowest resistance was taken instead of striving 
for the best possible paper to submit. 
 
Comments for the author 
 
1. The main criterion for publication if a Research Article or Report in Development is that a paper 
should make a significant and novel contribution to our understanding of developmental 
mechanisms. Studies lacking such a contribution, no matter how meticulous, are not acceptable for 
publication. 
 
From a computational point of view the novelty is marginal and not at all described sufficiently (or 
well). 
If the editor decides that the existence of a tool for epithelia segmentation is novel enough, I will 
respect this decision.  
 
2. Development has a 'Techniques and Resources' section. Articles submitted to this section should 
be assessed according to the novelty and importance for the community of the technique or 
resource reported. 
 
See my comment to (1). Maybe the presented work can be seen as a breakthrough resource in the 
field of epithelia 2D segmentation, but I am not the right person to judge and it would draw a dim 
picture about the state of this field. 
 
3. Development is only able to accept around 30% of the papers it receives. Editorial decisions are 
reached based on input from two or more usually three referees. Should the editor receive 
conflicting reports, he/she may contact you for further advice after your report has been 
submitted. 
 
Unless the manuscript changes significantly in accordance to the very valuable feedback given by 
all 3 reviewers of round 1, I would appreciate to not have to spend more time reading endless 
comments and justifications by the authors (which, unfortunately, often miss the point of the 
original comment). 
 
4. Development operates a 'cross-referee commenting' system, giving reviewers the option to view 
and comment on each others' reports before the editor makes a decision on the paper. Once all 
reports have been returned, you will receive an email inviting you to provide further feedback. We 
appreciate your participation in this process, which we find very helpful in making well-informed 
decisions and clearer guidance to authors. 
 
Happy to contribute there once available. 
 
5. We expect reviewers to review papers in a respectful manner and not to write anything that 
could cause offense or be defamatory. Please take care to ensure that any statements are factually 
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supported, and that opinions stated are genuinely held and well-justified. On rare occasions where 
the editors of the journal are concerned that papers have not been reviewed according to these 
principles, we may contact the reviewer and request changes to the report before it is transmitted 
to the authors. 
 
I hope there will be no reason to contact me to reword my review. 
I, indeed, dislike the style of this paper quite profoundly, but I acknowledge that I am not a 
developmental biologist and might not see the urgency of such a tool existing. 
Still, a new method should be explained well, and the technical part of this paper is still not 
written well or complete. I see this paper being stuck somewhere between targeting users and 
being simple, but then at the same time going deep enough to make me miss a thorough description 
of the method. 
 
The most fundamental flaw, in my point of view, is the lack of better comparison to other existing 
methods.  
The authors obviously did follow up on my random suggestions, but still do not compare to results 
obtained with StarDist. But other state-of-the-art methods I did not mention last time were not 
considered at all (e.g. PatchPerPix, MaskRCNN, etc.). 
 
I am wondering to what degrees the authors are themselves to be considered experts in the field of 
deep-learning based instance segmentation. There are many places (not only in the manuscript, but 
also in the rebuttal) where wrong, misleading, or imprecise statements are made (Cellpose, for 
example, can easily segment non-convex objects. StarDist can easily segment the kind of cells that 
are 'encircled' by the membrane markers used in the manuscript, etc. etc. 
 
 


