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ABSTRACT
Neuronal replacement therapies rely on the in vitro differentiation of
specific cell types from embryonic or induced pluripotent stem cells,
or on the direct reprogramming of differentiated adult cells via the
expression of transcription factors or signalingmolecules. The factors
used to induce differentiation or reprogramming are often identified by
informed guesses based on differential gene expression or known
roles for these factors during development. Moreover, differentiation
protocols usually result in partly differentiated cells or the production
of a mix of cell types. In this Hypothesis article, we suggest that, to
overcome these inefficiencies and improve neuronal differentiation
protocols, we need to take into account the developmental history of
the desired cell types. Specifically, we present a strategy that uses
single-cell sequencing techniques combined with machine learning
as a principled method to select a sequence of programming factors
that are important not only in adult neurons but also during
differentiation.
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development, Neuronal differentiation protocols, Neuronal
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Introduction
The goal of neuronal replacement therapy is to provide
differentiated neurons to the brain. These are either the product of
in vitro directed differentiation of embryonic stem cells (ESCs) or
induced pluripotent stem cells (iPSCs), or result from the
reprogramming (transdifferentiation) of differentiated adult cells
into specific neuronal cell types. Establishing these protocols relies
on the expression of a few transcription factors or signaling
molecules (termed programming or reprogramming factors), or on
treatment with cytokines, growth factors or small molecules
(Kidder, 2014; Pfisterer et al., 2016; Huch et al., 2017). The
results are variable; not all cells acquire the desired fate and even
those that do vary in the extent of their differentiation. This has
direct negative consequences on any potential neuronal replacement
therapy.
Understanding how transcription factors and signaling molecules

are utilized in diverse cell types to orchestrate their specification and
differentiation is fundamental to achieve robust and efficient
protocols for regenerative medicine. Although the idea of defining
in vitro differentiation protocols that follow similar steps to
embryonic development is not new (Cohen and Melton, 2011),
we suggest here that, in light of recent advances in developmental
neurobiology, new approaches can be employed to enhance in vitro
differentiation and transdifferentiation efficiency. We discuss the

concept of ‘phenotypic convergence’ and the genetic and epigenetic
mechanisms that explain it, and we highlight how it is one of the
reasons for pitfalls in current approaches. We argue that it would be
beneficial to change the design of differentiation protocols, using
single-cell RNA sequencing approaches and machine-learning
algorithms, to transition from informed guesses of programming
and reprogramming factors to algorithmically chosen methods.

Current neuronal differentiation strategies
Neurons are characterized by a number of different features that
support their function: they express specific adhesion molecules that
ensure synaptic specificity; they acquire specific morphologies and
target different regions of the body; they form chemical or electric
synapses; they use a range of different neurotransmitters to deliver a
signal and express different neurotransmitter receptors to receive
and propagate signals; and they secrete different signaling proteins.
To acquire these features faithfully, neurons express transcription
factors that regulate their structural, molecular and physiological
characteristics and generate their impressive cell type diversity.
These transcription factors control different features at different
times during development and are thus expressed upon neuronal
specification and/or during differentiation (Fig. 1). Indeed, the
nature of these factors and the order in which they are expressed are
fundamental for a neuron to acquire its features.

Current neuronal differentiation protocols rely on the
synchronous or serial supply of a handful of transcription factors
and signaling molecules to ESCs or iPSCs (Fig. 1). Alternatively,
already differentiated cells (often non-neuronal) can be directly
reprogrammed into a neuronal cell type by expressing one or a few
reprogramming factors (Gascón et al., 2017). This conversion of
one cell type to another via the misexpression of specific
transcription factors was first performed in the 1980s (Davis
et al., 1987). However, research in programming and
reprogramming cells towards specific cell fates took off after the
discovery of the Yamanaka factors, Oct4 (Pou5f1), Sox2, Klf4 and
Myc, which were able to reprogrammouse or human fibroblasts into
iPSCs. To discover these factors, Takahashi and Yamanaka (2006)
screened different combinations of 24 selected factors known to be
important for ESC fate and tested them for their efficiency to
reprogram fibroblasts into iPSCs. This required a tremendous
amount of work, which was rewarded by the 2012 Nobel Prize in
Physiology or Medicine. Since then, multiple protocols have been
established to reprogram differentiated cells into iPSCs (Takahashi
and Yamanaka, 2016), and to differentiate iPSCs or ESCs into
specific cell types.

The development of these protocols usually involves two steps:
(1) identifying candidate genes that could have a decisive role in the
development of the desired cell type; and (2) testing these
candidates in different combinations for their efficiency in
generating the desired cell type. Together, these protocols have
allowed the generation of a variety of neuronal cell types using
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various starting points, including iPSCs (Hester et al., 2011; Ho
et al., 2016; Nehme et al., 2018), ESCs (Hester et al., 2011),
neuronal progenitors, fibroblasts (Pfisterer et al., 2016; Son et al.,
2011; Wapinski et al., 2013; Xu et al., 2016; Xiao et al., 2018),
astrocytes (Corti et al., 2012) or even T cells (Haag et al., 2018), and
using a multitude of different neurogenic transcription factors
[such as Neurog2, Ascl1, Lmx1a, Brn2 (Pou3f2) etc.]. Indeed, this
approach has been applied successfully to induce the production of
motor neurons, excitatory cortex neurons, GABAergic neurons,
dopaminergic neurons and serotonergic neurons (Caiazzo et al.,
2011; Hester et al., 2011; Ho et al., 2016; Xu et al., 2016).

Drawbacks and challenges in neuronal differentiation
Despite huge advances over the last 10 years in generating various
neuronal cell types, most of the factors used for directed
differentiation have been identified by informed guesses and
extensive ‘trial and error’ approaches. Moreover, they often
exhibit low (re)programming efficiency. Notably, three main
drawbacks have emerged. First, the efficiency of these protocols,
i.e. the percentage of cells that acquire the desired identity, varies
from low (<10%; Son et al., 2011) to moderate (∼60%; Hester et al.,
2011) and in very rare cases is high enough for clinical utilization.
Second, even if the efficiency of programming were to be 100%, the
cells generated do not belong to one specific cell type but rather
represent a broad collection of related cell types that are often not
completely differentiated. Recent single-cell analyses have
uncovered the amazing neuronal type diversity of the human
brain. Therefore, genetic protocols that are able to differentiate
ESCs and iPSCs into cholinergic, GABAergic or glutamatergic

neurons are destined to generate a variety of these cell types. Finally,
in vitro generated neurons often do not correspond accurately to any
cell type found to occur naturally within a primary tissue (LaManno
et al., 2016). The value of these protocols for in vivo programming
or reprogramming for neuronal replacement in the clinic therefore
remains questionable. The only approaches close to clinical
application are those that involve in vitro differentiation followed
by purification and transplantation, such as that of fetal progenitor
cells transformed into dopaminergic neurons to treat Parkinson’s
disease (Kefalopoulou et al., 2014; Barker et al., 2013) or of ESCs to
retinal pigment epithelium to treat age-related macular degeneration
(Schwartz et al., 2012; Schwartz et al., 2015). Nonetheless, these
protocols have proven to be useful for modeling diseases in vitro
and for studying these cell types in culture where the successfully
programmed cells can be selected based on marker gene expression.

Moving forward, these and other challenges need to be overcome
in order to achieve the goal of neuronal replacement therapy. As the
brain is composed of a huge number of different cell types, each of
which exhibits a unique developmental history and function, it is
necessary to know how exact neuronal cell types are specified
during development in order to recapitulate their development
in vitro. In addition, how the efficiency of a given protocol is
evaluated currently varies and needs to be addressed. Programming
efficiency has generally been measured by assessing the expression
of generic neuronal markers, such as Tuj1 (Tubb3), MAP2, NeuN
(Rbfox3), Syt1, Syn1, as well as specific markers for serotonergic,
dopaminergic or other neuronal types. But how the levels of these
translate into neuronal identity and function in vivo remains unclear.
Moreover, the functionality of a differentiated neuron is often
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Fig. 1. Neuronal differentiation in vivo and in vitro. During development (left), neuronal stem cells respond to extrinsic cues and express distinct transcription
factor combinations in a precise temporal order to generate specific neurons. In an effort to recapitulate this process, in vitro differentiation (center) and
transdifferentiation (right) protocols supply embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) and differentiated cells, respectively, with a
cocktail of signaling molecules and transcription factors that lead to the formation of a ‘mature’ neuron. These ‘mature’ neurons are in many respects reminiscent
of their wild-type counterparts, but they usually differ in many features, such as maturity, and even neuronal identity. The main reason behind these differences is
that the precise temporal pattern of differentiation during embryonic development remains unknown for most neuronal types. Moreover, in the case of
transdifferentiation, the cell may progress through intermediate states that could affect the ‘mature’ phenotype. Finally, the factors used in in vitro differentiation or
transdifferentiation come mostly from informed guesses.
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measured by its capacity to produce spike trains or form synapses
but, again, this does not necessarily mean that it is capable of
performing the exact function of its natural counterpart.

Phenotypic convergence and in vitro differentiation
It is striking that multiple very distinct protocols are capable of
programming stem cells or converting differentiated cells into a
given cell type. After the four Yamanaka factors were discovered, a
number of papers identified other combinations of pluripotency
factors that are capable of inducing reprogramming, including
members of the Sox, Klf and Myc families, along with Nanog,
Lin28, Glis1 and others (Yu et al., 2007; Nakagawa et al., 2008;
Abdelalim et al., 2014; Bourillot and Savatier, 2010; Maekawa
et al., 2011). The same is true for factors that promote the in vitro
differentiation of ESCs and iPSCs towards hepatocytes,
cardiomyocytes and neurons. In fact, a recent study (Tsunemoto
et al., 2018) evaluated 598 pairs of transcription factors (from a pool
of 59 transcription factors) for their capacity to reprogram
fibroblasts into neurons; 76 of the tested pairs (i.e. 13%) were
able to reprogram fibroblasts into neuronal cells that expressed the
expected neuronal markers, exhibited neuronal morphology,
produced spike trains, and formed synapses. This raises very
important questions: does this mean that there are many ways to
generate functional neurons? What types of neurons are produced
and are they all equivalent? Are they all candidates for neuronal
replacement therapies?
This finding also illustrates the notion that the generation of

specific neuronal features in a given cell type can be achieved by
different regulatory mechanisms and through different routes of
differentiation. This phenomenon is called phenotypic convergence
(Fig. 2): two cell types can achieve the same phenotype (e.g.
morphological, physiological or molecular characteristics)
following different developmental paths and using different
regulators (Konstantinides et al., 2018). The phenomenon of
phenotypic convergence is observed in several in vivo contexts.
For example, cholinergic neurons in Caenorhabditis elegans can be

generated in vivo in different ways, i.e. different transcription factors
are employed in different neuronal types to drive the expression of
the cholinergic gene battery. The same is true for C. elegans
GABAergic (Gendrel et al., 2016) and glutamatergic gene batteries.
Drosophila optic lobes also employ different transcription factors to
generate neurons with the same neurotransmitters (Fig. 2), and to
drive the expression of other broadly expressed genes
(Konstantinides et al., 2018). In extreme cases in C. elegans, the
exact same cell type can be generated through distinct
developmental paths (Mizeracka et al., 2019 preprint). Phenotypic
convergence is also likely to exist in vertebrate neurons, which
would explain why distinct differentiation cocktails can be used to
generate similarly looking neuronal types. But the question remains:
are the neurons generated by different cocktails the same cell type?
Furthermore, although they might exhibit shared expression of
particular markers, how much do these cell types differ?

The genetic and epigenetic landscape of neurons with
convergent characters
Although two cell types may converge on a number of specific
characters (e.g. having the same neurotransmitter), it should be
noted that these two cell types are by no means equivalent. They
will have followed alternative routes during their differentiation and
this will undoubtedly have had consequences on their regulatory
landscapes. Although these consequences may not be immediately
clear from the specific markers that are tested at the end of the
differentiation protocol, it is essential to understand them if these
cells are to be used as a therapeutic resource.

When two differentiation cocktails are used to direct iPSCs
towards neuronal identity (Fig. 2), the transcription factors that are
supplied in the two cocktails are different, but lead to the expression
of generic neuronal markers that direct the cell to acquire neuronal
features and activate the expression of the machinery needed to
generate action potentials. However, the two cocktails also activate
a number of non-overlapping genes that drive the differentiated
neurons to differ from each other. For example, although two
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Fig. 2. Phenotypic convergence. Neurons can use
distinct developmental pathways to achieve identical
phenotypic features; this phenomenon is referred to as
phenotypic convergence. Three examples are shown
here. In C. elegans, two different transcription factors,
encoded by ttx-3 and unc-3, are responsible for
generating cholinergic identity in different neuronal
types. However, although these neuronal types share
neurotransmitter identity, they are different in many
other respects: one of them is an interneuron, whereas
the other is a motor neuron, and they express different
neuropeptides and neuropeptide receptors. Similarly,
in the Drosophila optic lobes, glutamatergic identity is
regulated by Traffic jam and Fd59a in different neuronal
types. However, the same transcription factors
differentially regulate other aspects of neuronal identity,
such as neurotransmitter and cell adhesion molecule
(CAM) expression. Finally, both Ascl2 and Neurog2
can confer neuronal identity in vitro in embryonic stem
cells, but the resulting neurons are very different in
terms of their chromatin state, enhancer activity, and
neuronal effector expression. These cases of
phenotypic convergence highlight the importance of
the developmental pathway a neuron takes for its final
identity and emphasize that different programming
factors may have very different outcomes, despite
seemingly leading to the same neuronal type.
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different cocktails may both give rise to cholinergic neurons, the
neurons that are generated from each protocol may have differences
in the cell adhesion molecules or neurotransmitter receptors that
they express (Fig. 2). Therefore, depending on which cell type one
wants to generate in vitro, different transcription factor cocktails
must be used.
The different neurons generated by the 76 pairs of transcription

factors described above (Tsunemoto et al., 2018) share similarities
with regard to a number of neuronal characteristics. Interestingly,
several different transcription factor combinations are able to lead to
the same neurotransmitter phenotype, providing yet another
example of phenotypic convergence. However, the overall
transcriptomes of these cells differ significantly (Tsunemoto
et al., 2018), as they include different gene regulatory modules,
indicating that they correspond to different cell types. Furthermore,
when comparing these neurons to endogenous neuronal
populations, only limited similarities to any known specific
neurons are found. This highlights both the extent of phenotypic
convergence, as well as how difficult it is to use candidate
transcription factor approaches to identify in vitro differentiation
cocktails that can generate specific neuronal types precisely.
Aside from their effects on transcriptomes, transcription factor

cocktails have pronounced effects on chromatin marks in
differentiating neurons. For example, neuronal progenitors in
different parts of the mouse central nervous system have different
capacities for producing different neuronal types. This appears to be
mediated by the differential chromatin accessibility of their
genomes (Metzis et al., 2018), which is determined early on in
development depending on the spatial location of their progenitors.
The same is true forDrosophila ventral nerve cord neural stem cells,
in which spatial genes that are expressed early establish neuroblast-
specific chromatin landscapes for the later-acting temporal
transcription factors (Sen et al., 2019). It comes as no surprise
that different transcription factors that are used to generate neurons
(e.g. Ascl2 versus Neurog2) have very distinct effects on the
chromatin landscapes of the generated neurons, which in turn affects
the neuronal subtypes produced in protocols that use one gene or the
other. For instance, Brn2, Ebf2 and Onecut2 bind to different
genomic sites that are highly dependent on the chromatin landscape
set up by Ascl2 or by Neurog2 (Aydin et al., 2019), leading to the
production of different motor neurons.
Therefore, although two cell types may appear similar, they are

not necessarily functionally equivalent. The obvious question that
arises is how similar should the in vitro differentiated neuronal
population be to the natural one to be able to complement it
functionally in order to achieve clinical relevance? Looking in non-
neuronal systems, we can draw some interesting conclusions.
Chondrocytes, for instance, represent a strong example of
phenotypic convergence. Seemingly identical chondrocytes can
have ectodermal (neural crest, e.g. nasal chondrocytes) or
mesodermal (lateral plate mesoderm and paraxial mesoderm, e.g.
knee cartilage) origins (Taïhi et al., 2019). Interestingly,
transplantation of nasal chondrocytes can restore knee cartilage
defects (Taïhi et al., 2019). Although chondrocytes represent a fairly
simple cell type with only three different subtypes (Ji et al., 2019)
the main role of which (independent of its origin) is to secrete
cartilage, this gives us hope that even if cells are not completely
identical, they may still replace each other after transplantation.
Cardiomyocytes, by contrast, appear to be less able to replace each
other functionally. During development, these cells are generated by
both first and second heart field progenitors (Später et al., 2014).
The pluripotent stem cell-derived cardiomyocytes that are typically

used for transplantation are a mixture of ventricular, atrial and nodal
cardiomyocytes (Kadota and Shiba, 2019), making it difficult to
assess the contribution of each to the cardiac subtypes. However, it
has been demonstrated that atrial cells cannot replace ventricular
cells functionally when transplanted into the left ventricle, as they
retain their unique atrial phenotype (e.g. shorter calcium transient
duration) (Rubart et al., 2003). It is thus not yet clear how faithfully
in vitro differentiated cell types should recapitulate their natural
counterparts to be able to substitute them, and this is something that
needs to be studied in further detail.

Single-cell sequencing and machine learning as a means to
predict core regulatory transcription factors
Providing terminal transcription factors to stem cells in order to
program them largely ignores the developmental path of neurons,
and we believe that this is the main reason behind the low efficiency
of many programming protocols. However, the advent of single-cell
sequencing techniques (Zheng et al., 2017), the development of
trajectory inference (Trapnell et al., 2014; Cannoodt et al., 2016;
Haghverdi et al., 2016; Setty et al., 2016; Nowakowski et al., 2017;
Qiu et al., 2017; La Manno et al., 2018; Wolf et al., 2018; Saelens
et al., 2019), and the use of machine learning algorithms to analyze
large datasets now gives us the opportunity to identify
(re)programming factors in a more rigorous way and to improve
differentiation protocols. Based on these advances, we suggest six
steps (Fig. 3) to develop differentiation strategies that are designed
intelligently and can be used for neuronal replacement therapies: (1)
perform single-cell sequencing at different developmental stages,
from early embryogenesis all the way to a fully developed brain,
using developing brains if available or organoids representing
regions in which the specific neurons of interest are naturally
produced; (2) use these data to build trajectories from neural stem
cells to fully differentiated neuronal types of interest; (3) using
machine learning, identify the transcriptions factors involved in the
adult and developmental core regulatory complexes that are
necessary for a given cell type to develop and that define this cell
type; (4) use these transcription factors to develop new in vitro
differentiation protocols; (5) evaluate the induced neurons using
single-cell RNA sequencing and compare them with their natural
counterparts; (6) depending on the results, use the data from the
evaluation to adapt the protocol by improving the machine learning
algorithms and repeating steps 4-5.

Step 1: Single-cell sequencing throughout development
A number of different single-cell sequencing platforms, such as 10x
Genomics (Zheng et al., 2017) and Smart-Seq (Ramsköld et al.,
2012), can be used to generate transcriptomic information from
almost every neuronal type, even rare ones in the adult brain. The
Human Cell Atlas (Regev et al., 2017) has already set out to generate
such data for every adult tissue, and the Allen Institute for Brain
Science (Tasic et al., 2018) and the Brain Initiative Cell Census
consortium (Ecker et al., 2017) have shown that this is feasible in a
short time frame. However, it is clear that many neuronal features,
such as the acquisition of appropriate morphology, synaptic partner
selection and synapse formation, are established early during
development; thus, sequencing adult neuronal types is not sufficient
to capture these events. Obviously, obtaining such data from
different developmental stages requires a coordinated effort,
equivalent to that of the Human Cell Atlas, with the goal of
mapping all developmental lineage decisions. A main obstacle to
gaining transcriptomic information during development is acquiring
access to developing neurons in situ. Access to fetal brain tissue

4

HYPOTHESIS Development (2020) 147, dev193631. doi:10.1242/dev.193631

D
E
V
E
LO

P
M

E
N
T



coming from second trimester pregnancy terminations is possible
(Nowakowski et al., 2018; Mayer et al., 2019) but is unpredictable
as well as being legally and ethically regulated. A potential solution
to this involves the use of organoids as a surrogate for human brains.
Human brain organoids are three-dimensional structures derived
from ESCs or iPSCs. They self-organize and resemble a simplified
human brain (Huch et al., 2017). Their main advantage is that they
can be used to study human organ development and to recapitulate
human diseases, while at the same time being amenable to genetic
manipulation; they also hold promise for generating patient-specific
models. However, brain organoid technology (Hattori, 2014; Qian
et al., 2016; Di Lullo and Kriegstein, 2017; Pasça, 2018; Pollen
et al., 2019) is still in its infancy and faces a number of limitations,
mainly because organoids cannot recapitulate the sheer complexity
of the brain; they do not contain all of the different cell types, they
vary from one organoid to the next, and they mature slowly

(Di Lullo and Kriegstein, 2017). Moreover, it is not clear how well
organoids recapitulate normal development (Pollen et al., 2019).
Nonetheless, recent protocols to generate brain organoids are highly
reproducible (Velasco et al., 2019) and can recapitulate the main
aspects of cortical development (Pollen et al., 2019), allowing the
production of radial glial cells and neurons of all six different layers
in a temporal fashion (Kadoshima et al., 2013; Hattori, 2014; Pasça
et al., 2015; Qian et al., 2016; Di Lullo and Kriegstein, 2017; Huch
et al., 2017). Human brain organoids even form an outer
subventricular zone, a region that is missing in mice (Di Lullo
and Kriegstein, 2017). The protocols for generating brain organoids
are rapidly improving and hopefully with timewill provide access to
neuronal cell types at different stages of development in order to
assemble their developmental trajectories.

Step 2: Trajectory inference
Once single-cell sequencing has been performed, trajectory
inference algorithms (Trapnell et al., 2014; Cannoodt et al., 2016;
Haghverdi et al., 2016; Setty et al., 2016; Nowakowski et al.,
2017; Qiu et al., 2017; La Manno et al., 2018; Saelens et al., 2019;
Wolf et al., 2018) allow the ordering of cell states during
differentiation processes based on transcriptomic data. It is thus
possible to order single cells that belong to the same cell type
according to their age or level of maturity. These algorithms can
then, for example, define molecules that are differentially expressed
during differentiation, cluster genes according to similar expression
trends, identify new regulatory dynamics, and pinpoint key
differential events. A number of trajectory inference algorithms
have been published over the last 5 years (Cannoodt et al., 2016)
that allow the discovery of transcription factors (or other key
molecules) that are differentially expressed at various stages of
neuronal differentiation. The various trajectory inference algorithms
available differ in their performance, each of them offering distinct
advantages in terms of accuracy and stability of prediction, as well
as usability and scalability (Saelens et al., 2019). Although there is
no single algorithm that would work well in every dataset, methods
such as PAGA (Wolf et al., 2019) and Slingshot (Street et al., 2018)
appear to be accurate, reproducible and scalable to large datasets.
Using these algorithms, developmental trajectories of cell types of
interest in a human brain can be obtained.

Step 3: Identification of core regulatory factors that specify cell type
identity
Each cell type is characterized by the expression of a number of
transcription factors that can be used to distinguish it from other cell
types. Together, these transcription factors generate the cell type-
specific characteristics that are necessary for a given cell’s functions
and represent the core regulatory complex (CoRC) (Arendt et al.,
2016) of each cell type. To generate a specific cell type accurately, it
is necessary to identify its CoRC at each developmental stage and
define how these transcription factors are expressed during and
upon successful differentiation (Fig. 4).

But how is it possible to identify the CoRC of each differentiated
cell type? First, the transcription factors should be expressed in
developing or adult cells, as they are responsible for the generation
of differences in gene expression between cell types, e.g. the gene
module that is responsible for the generation and release of a
particular neurotransmitter at the synapse; these features will be
reflected in the transcriptome of the cells. Second, CoRC
transcription factors have to be differentially expressed in some
cell types compared with others. Such CoRC transcription factors
can be identified from single-cell sequencing data using machine
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Fig. 3. Intelligently designed in vitro neuronal differentiation protocols.
We propose a protocol that involves six steps. (1) Initially, single-cell
sequencing of different neuronal types throughout development has to be
performed to provide access to the transcriptomes of the developing neurons.
Ideally, the sequencing will be carried out in single cells coming from fetal brain
tissue of different ages. Alternatively, one could rely on cortical organoids.
(2) Trajectory inference algorithms, such asMonocle, can then be used to build
trajectories from neuronal progenitors to fully differentiated neuronal types.
(3) Machine learning algorithms, such as those implemented in CellNet,
Mogrify and Reprogram-Seq, can then be used to identify the transcription
factors that constitute each cell type’s developmental and adult core regulatory
complex. (4) These transcription factors can then be used to develop new in
vitro differentiation protocols. (5) These protocols can then be evaluated using
single-cell RNA sequencing and by comparing the resultant cells with their
natural counterparts. (6) Steps 4 and 5 can be iterated depending on the
evaluation to improve the protocols (not shown).
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learning algorithms. These algorithms build mathematical models
using training data that allow them tomake predictions beyond these
data. Different types of mathematical models exist, the simplest
being linear regression; other types include decision trees, random
forests and support vector machines. These models can be used to
infer relationships such as covariance between genes. Covariance
between transcription factors and terminal effector genes can be
used to infer regulatory interactions between them, which can then
be tested genetically. Specifically, one can use the single-cell
sequencing data that were generated in step 1 to identify
transcription factors and neuronal effector genes that are
expressed in different neuronal types. Machine learning
algorithms can then identify transcription factors that co-vary with
neuronal effector genes and expression of which could predict the
identity of the neuronal type (Konstantinides et al., 2018). These
would reduce the hundreds of transcription factors that are expressed
in each neuronal type to a handful (10-15) that control the
acquisition and implementation of neuronal type identity.
A number of such predictive algorithms that were generated to

accelerate high-throughput screenings of potential differentiation
factors have used expression data from adult differentiated cells to
identify cell type-specific differentiation cocktails (Cahan et al.,
2014; Rackham et al., 2016; Duan et al., 2019) that perform better
than those generated by trial and error. For instance, CellNet (Cahan
et al., 2014; Morris et al., 2014) initially relied on 3419 published
gene expression profiles of diverse cell types and tissues, such as
ESCs, neurons, glia, muscle, fibroblasts, endothelial cells and
hematopoietic stem cells, to identify gene regulatory networks that
are expressed in specific cell types and are necessary for endowing
cells with their correct identity. It was then used to compare the
directed differentiation of stem cells to the direct conversion
(transdifferentiation) of one cell type to another, and to improve
protocols of in vitro transdifferentiation of B cells into macrophages
(Morris et al., 2014). Mogrify (Rackham et al., 2016) similarly uses
gene expression data and gene regulatory information to predict
transcription factors required for different cell type conversions
(Rackham et al., 2016), allowing the generation of new protocols for

the transdifferentiation of human fibroblasts into keratinocytes and
of human keratinocytes into microvascular endothelial cells.
Reprogram-Seq (Duan et al., 2019) incorporates the use of single-
cell mRNA sequencing and perturbation analysis to more accurately
predict and evaluate transcription factor cocktails that can reprogram
specific cell types, allowing, for instance, the identification of a new
combination of transcription factors that can convert embryonic
fibroblasts into epicardial cells.

As a second step, using the developmental trajectories emanating
from steps 1 and 2 and machine learning algorithms, we can then
identify the crucial transcription factors that are expressed during
development to supplement the adult CoRC. The ability of the
identified developmental and adult CoRC to define a cell type can
then be tested by using these transcription factors to direct the
programming of neural stem cells towards specific cell types in
vitro. This will test both the effectiveness of the CoRC and will be a
practical tool.

Steps 4-6: Develop new programming protocols and evaluate using
single-cell RNA sequencing
Identifying the developmental and adult CoRC of a specific cell
type will allow the development of neuronal differentiation
protocols using these transcription factors as programming
factors. Although it is not an easy endeavor to co-express
numerous factors, a number of techniques, including traditional
cDNA overexpression but also more elaborate CRISPR-based
multiplexed genome engineering techniques (Campa et al., 2019)
that allow for controlled expression or silencing of multiple genes in
the same cell, could be used to supply these transcription factors in a
synchronous or serial manner. Single-cell sequencing can then be
used to evaluate the programming efficiency of any protocol and
assess the extent of potential heterogeneities that may emerge during
differentiation. It can also be applied at different stages of the in
vitro differentiation process to construct trajectories of different cell
types that can then be compared with the developmental trajectories
that occur during embryonic development. More importantly,
techniques such as ‘CellTagging’ (Biddy et al., 2018), which
relies on the sequential delivery of heritable barcodes during in vitro
differentiation, can be used for the simultaneous capture of lineage
and cell identity. This can be particularly insightful in cases of lower
programming efficiency and can provide an understanding of how
undesired cell types arise during the differentiation process. This
understanding, in turn, could be used to modify the differentiation
protocol to tilt the balance towards the desired cell type, thus
increasing the programming efficiency and decreasing nonspecific
byproducts.

Other considerations when designing differentiation
strategies
Direct reprogramming
Although we have focused here on directed differentiation (i.e. from
ESCs or iPSCs), direct reprogramming can also be used to generate
specific neuronal cell types (Gascón et al., 2017). This process
bypasses the pluripotency step and instead converts one cell type
into another through transdifferentiation. However, it is less
efficient, because evidence of the initial differentiation of the cell,
which is prominently written into its chromatin, is difficult to erase.
As such, the cells generated via direct reprogramming are often
incompletely converted (i.e. they are hybrid cells) and may remain
developmentally immature. The efficiency of direct conversion
also, therefore, depends on the starting cell type and its relationship
to the target cell type. For instance, direct conversions are not

Developmental cues

Core regulatory complex

Effector transcription factors

Terminal effectors
(neurotransmitter genes, 
CAMs, ion channels, etc.)

Si
ng

le
-c

el
l s

eq
ue

nc
in

g 
of

de
ve

lo
pm

en
ta

l t
ra

je
ct

or
y

Fig. 4. Identifying the CoRC. The core regulatory complex of transcription
factors (CoRC) of a particular cell type interprets developmental cues (in the
form of spatiotemporal factors and signaling molecules each cell receives) and
establishes cell identity. It then activates the genes that endoweach cell with its
character: in the case of neurons, these terminal effector genes can be
neurotransmitter genes, cell adhesion molecules, receptors, channels, etc.
CoRC transcription factors can activate terminal effectors directly or indirectly
through effector transcription factors. Molecules at different levels of this
differentiation process are expressed with different timings. The temporal
progression of differentiation from a specified progenitor to a fully differentiated
cell can be studied using single-cell sequencing at different stages of
development and reconstructing the developmental trajectory of each cell type.
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efficient in crossing germ layer boundaries (Sieweke, 2015; An
et al., 2018), although they are not impossible (Vierbuchen et al.,
2010; Karow et al., 2012). By contrast, the conversion of astrocytes
or other glial cells to neurons is efficient (Berninger et al., 2007;
Masserdotti et al., 2016). This highlights that the genetic regulatory
context in which the transcription factors are expressed can enhance
or repress reprogramming efficiency (Aydin and Mazzoni, 2019);
therefore, in an already differentiated cell, the chromatin marks that
are specific to the cell of origin must be erased, and the specific
transcription factors of the target cell must then be expressed. This
dependency of transcription factors on the state of chromatin has
been clearly shown in C. elegans, where RNAi against a chromatin-
regulating factor (lin-53) and overexpression of a terminal selector
(che-1) are together sufficient to allow the conversion of a germ cell
into a specific neuronal type (Tursun et al., 2011; Kolundzic et al.,
2018). The best option for direct conversion is thus to select a cell
type of origin for which the genomic landscape resembles that of the
target cell type.

Beyond transcription factors and transcriptomes
It is clear that, although there are constantly expanding ways to
overexpress transcription factors or downregulate genes of interest in
a spatially and temporally controlled way, it is not so trivial to ‘write’
and ‘erase’ chromatin marks that might affect the reprogramming
process. However, single-cell chromatin accessibility assays
(Buenrostro et al., 2015; Cusanovich et al., 2015, 2018; Cao et al.,
2018; Pliner et al., 2018) can now be performed to profile the
landscape of different neuronal types and select the best candidate
chromatin modifiers. In addition, single-cell epigenomic assays
could offer complementary information to the transcriptome. For
example, some transcription factors may operate in different ways
depending on chromatin accessibility (Velasco et al., 2017).
Moreover, some transcription factors, being expressed at low
levels, may not be unambiguously recovered with single-cell
sequencing, but their effects on chromatin might be more profound.
This is in agreement with recent studies showing that single-cell
transcriptomes are insufficient to separate progenitor cells that will
generate distinct cell lineages (Weinreb et al., 2020). This means
that there are some hidden layers of progenitor diversity (e.g.
differences in chromatin landscapes and/or transcription factors
expressed at low levels) that may affect their capacity to generate
different cells and that might not be recovered using single-cell
sequencing approaches.
Although the role of transcriptional regulation has been very well

studied, post-transcriptional processes also affect cell fate, most
notably microRNAs, which participate in different levels of
reprogramming (Beh-Pajooh et al., 2018). For example, miR-145
regulates the expression of three of the four Yamanaka factors and is
involved in a double-negative loop that controls pluripotency in iPSCs
(Xu et al., 2009). SImilarly, a combination of microRNAs – miR-1,
-133, -208 and -499a – is able to convert mouse cardiac fibroblasts to
functional cardiomyocytes (Jayawardena et al., 2012, 2014). Different
single-cell sequencing techniques are available that can detect
microRNAs alone (mime-Seq; Alberti et al., 2018) or in conjunction
with mRNA (single-cell microRNA-mRNA co-sequencing; Wang
et al., 2019). Using these techniques, one can identify miRNAs that
may be incorporated into the CoRC of transcription factors to better
define and generate a particular neuronal identity.

Conclusions and perspectives
We have presented here a strategy to combine single-cell sequencing
with machine learning to identify crucial programming factors that

could allow us to recapitulate developmental routes and, ultimately,
faithfully program in vitro neuronal cell types from stem cells. This
strategy, however, only addresses the identification of molecules that
are necessary to program a cell efficiently. A number of other
considerations should also be taken into account to define improved
differentiation protocols. For example, how does one ensure the
expression of the necessary differentiation molecules at the
appropriate timing and physiological levels? How can one control
the environment in which a cell grows (i.e. the cell-cell signaling),
which is profoundly different in a dish compared with its tissue of
origin? Although this falls beyond the scope of this article, CRISPR-
based methods that are constantly being developed can address many
of these considerations (Cheng et al., 2013; Maeder et al., 2013;
Perez-Pinera et al., 2013; Qi et al., 2013; Dahlman et al., 2015; Kiani
et al., 2015; Boettcher et al., 2018). For example, Cas12a has recently
been used for constitutive, conditional, inducible and orthogonal
gene editing, whereby dozens of different genes can be independently
manipulated (upregulated or downregulated) in a controllable, i.e.
conditional and inducible, way (Campa et al., 2019).

Sydney Brenner once said ‘I will ask you to mark again that rather
typical feature of the development of our subject; how so much
progress depends on the interplay of techniques, discoveries and new
ideas, probably in that order of decreasing importance’ (Brenner,
2002). As we have highlighted here, the development of exciting new
techniques over the last few years clearly has the potential to lead to
important discoveries and trigger new ideas. The interplay of these
will hopefully lead to novel applications that can have a lasting impact
and provide means for therapeutic interventions, such as regenerative
medicine and neuronal replacement therapy.
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