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Perturbation analysis of a multi-morphogen Turing
reaction-diffusion stripe patterning system reveals key
regulatory interactions
Andrew D. Economou1,*,‡, Nicholas A. M. Monk2 and Jeremy B. A. Green1,‡

ABSTRACT
Periodic patterning is widespread in development and can be modelled
by reaction-diffusion (RD) processes.However,minimal two-component
RD descriptions are vastly simpler than the multi-molecular events that
actually occur and are often hard to relate to real interactions measured
experimentally. Addressing these issues, we investigated the periodic
striped patterning of the rugae (transverse ridges) in themammalian oral
palate, focusing on multiple previously implicated pathways: FGF, Hh,
Wnt and BMP. For each, we experimentally identified spatial patterns of
activity and distinct responses of the system to inhibition. Through
numerical and analytical approaches, we were able to constrain
substantially the number of network structures consistent with the
data. Determination of the dynamics of pattern appearance further
revealed its initiation by ‘activators’ FGF and Wnt, and ‘inhibitor’ Hh,
whereas BMP and mesenchyme-specific-FGF signalling were
incorporated once stripes were formed. This further limited the number
of possible networks. Experimental constraint thus limited the number of
possibleminimal networks to 154, just 0.004%of the number of possible
diffusion-driven instability networks. Together, these studies articulate
the principles of multi-morphogen RD patterning and demonstrate the
utility of perturbation analysis for constraining RD systems.

This article has an associated ‘The people behind the papers’ interview.
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INTRODUCTION
The generation of anatomy by self-organisation remains one of the
most important subjects in the study of biology. It has acquired new
importance as a guiding feature of regenerative medicine and the
modelling of disease processes by the creation of self-organising
organoids from stem cells (Werner et al., 2017). Setting aside
mechanical self-organisation, a central idea of how self-organisation

occurs chemically is that of reaction-diffusion (RD). In Turing’s
initial formulation, an initially stable system of two or more
interacting morphogens can be destabilised (i.e. generate non-
uniform distributions) into a periodic pattern through diffusion
(Turing, 1952). This is referred to as a diffusion-driven instability
(DDI). Gierer and Meinhardt later refined Turing’s ideas and, among
several refinements, introduced the formulation of the RD system as a
system consisting of a slow-diffusing activator and fast-diffusing
inhibitor (Meinhardt, 2012). Since the 1970s, numerous examples of
RD behaviour have been described and analysed, and more recently
the methods of molecular biology and biochemistry have identified a
number of morphogen pairs, which are generally protein growth
factors or growth-factor-binding proteins, that fit Turing’s and
Meinhardt’s minimal description (e.g. Economou et al., 2012; Jung
et al., 1998; Michon et al., 2008; Mou et al., 2006; Sick et al., 2006).

One aspect of self-organisation that has been set aside hitherto is
that, as we now know, large proportions of the genome and
proteome are devoted to regulation. Consequently, minimal systems
must be expanded if they are to capture this complexity where it is
functionally relevant. The extension of RD systems to include
multiple morphogens and even non-diffusible components (Celliere
et al., 2012; Klika et al., 2012; Marcon et al., 2016; Raspopovic
et al., 2014) opens up a Pandora’s box of possible descriptions
of self-patterning systems. It raises the issue of what level
of description is usefully interpretable and, importantly,
experimentally tractable, such that empirical data and theory can
be compared. We suggest that conceptually and pharmacologically,
a usefully intelligible and accessible level of description is the
signalling pathway: typically, this puts a family of protein growth
factor ligands (e.g. the FGFs) together with their common receptors,
transducers and target genes into a single unit. This provides a
potentially happy balance between, on the one hand, the abstraction
of a pure two-component morphogen system, the ‘morphogens’ of
which bear little relationship to the single specific diffusible
chemical species envisaged by Turing or even specific growth
factors, and, on the other hand, the overwhelming complexity of an
‘omic molecular network, the intelligibility of which would
inevitably require dimensional reduction in any case.

Taking this level as our motivating principle [while
acknowledging that it is a first approximation (see Discussion)],
we contemplate how far one can get in defining a model (i.e. a
network topology) of key interactions that can capture the behaviour
of the system, when considering multiple signalling pathways. We
analyse the periodic pattern that generates the transverse ridges on
the roof of the mouse palate, the rugae, a striped pattern that we
previously showed to exhibit RD system behaviour (Economou
et al., 2012). Using chemical inhibitors and pathway target
expression analysis together with analytical and numerical
simulation strategies, we were able to identify topological motifs

Handling Editor: Paul François
Received 12 March 2020; Accepted 11 September 2020

1Department of Craniofacial Development & Stem Cell Biology, King’s College
London, London, SE1 9RT, UK. 2School of Mathematics and Statistics, University of
Sheffield, Sheffield, S3 7RH, UK.
*Present address: Developmental Signalling Laboratory, The Francis Crick Institute,
1 Midland Rd, Somers Town, London NW1 1AT, UK.

‡Authors for correspondence ( jeremy.green@kcl.ac.uk;
andrew.economou@crick.ac.uk)

A.D.E., 0000-0002-5193-0748; N.A.M.M., 0000-0002-5465-4857; J.B.A.G.,
0000-0002-6102-2620

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is properly attributed.

1

© 2020. Published by The Company of Biologists Ltd | Development (2020) 147, dev190553. doi:10.1242/dev.190553

D
E
V
E
LO

P
M

E
N
T

https://doi.org/dev197293
https://dev.biologists.org/content/editor-bios/#francois
mailto:jeremy.green@kcl.ac.uk
mailto:andrew.economou@crick.ac.uk
http://orcid.org/0000-0002-5193-0748
http://orcid.org/0000-0002-5465-4857
http://orcid.org/0000-0002-6102-2620


that are predictive of the behaviour of the system, regardless of the
number of components considered in the network. Through further
consideration of the dynamics of pattern formation, we have
constrained the model possibilities to a small number of consistent
topologies. In doing so, we identify a useful theory-experiment
dialogue that generates specific hypotheses amenable to practical
progress in understanding the dynamic behaviours of this example
of a self-organising RD system.

RESULTS
Chemical inhibitors implicate FGF, hedgehog, Wnt and BMP
pathways in periodic ruga patterning
We previously showed that the periodic stripes of expression of the
sonic hedgehog (Shh) gene in the mouse mid-gestation palate
depend on the Hh pathway itself as an ‘inhibitor’ and the FGF
pathway as an ‘activator’ (Economou et al., 2012). We were
deliberately agnostic about the specific FGF ligand-receptor pair
that was crucial because multiple FGFs and FGF receptors are
expressed in the palate (Porntaveetus et al., 2010). Both FGF and
SHH are, by a number of experimental criteria, secreted diffusible
morphogens (Bökel and Brand, 2013; Dessaud et al., 2007). As we
acknowledged, there were already published data implicating Wnt
and potentially BMP as additional morphogens (Lin et al., 2011;
Welsh and O’Brien, 2009). To go beyond the simple two-
component description of the patterning network, we sought first

to determine the requirement for each of these four morphogen
pathways using an established explant system, as before. We
exposed embryonic (E) day 13.5 palatal explants for 24 h to
cyclopamine (a hedgehog pathway inhibitor), SU-5402 (a FGF
pathway inhibitor), IWP-2 (a Wnt pathway inhibitor) and
dorsomorphin (a BMP pathway inhibitor), and tested the effect of
these pathway-specific inhibitors on the pattern. Efficacy of these
treatments was confirmed by probing for expression of direct
transcriptional targets of each pathway: Spry1, Ptch1, Lef1 and Id1,
respectively (Economou et al., 2012; Fig. S1).

We used the stripes of Shh expression as our readout of the pattern
(although in principle, any of the components could be used as a
readout). Fig. 1A shows that inhibition of each of the four pathways
has an effect on the Shh expression stripes. Through careful
quantification (Figs S2, S3), we could demonstrate that although
some inhibitors changed the number of Shh stripes, none of the
inhibitors changed the position of the stripes (and therefore the
wavelength of the pattern) relative to controls (Fig. S3A,B,E).
Rather, inhibition changed the width and Shh staining intensity of
stripes (Fig. S3C-E). Specifically, dorsomorphin intensified and
broadened the stripes similar to what we previously reported for
cyclopamine, whereas IWP-2 narrowed and weakened them. FGF
inhibition by SU-5402 also weakened the stripes, as previously
reported (Economou et al., 2012), but careful inspection over a
number of trials also revealed consistent broadening as well as

Fig. 1. Target expression and responses to inhibitors reveal
involvement of Hh, FGF, Wnt and BMP pathways in periodic
rugae patterning. (A) Shh in situ hybridisations on E13.5 palatal
shelf explants cultured for 24 h in the specified small molecule
inhibitor contralateral shelves as vehicle controls. Anterior to the
right, medial up. (B) In situ hybridisation of sagittal sections of
E13.5 palatal shelf for specified genes. Dotted lines illustrate the
extent of the palatal epithelium and the underlying mesenchyme
used for quantifications. Anterior to the right. The intensity profile
averaged across the palatal shelf shown for each specimen from
which the illustrated in situ is taken for the gene of interest (coloured
trace) and Shh (grey trace) for the epithelium and mesenchyme.
Shaded areas represent 1 s.d. around the gene of interest (for
clarity of presentation the variation around Shh trace is not shown).
For each marker, the number of specimens showing the observed
pattern (essentially the number of specimens from which the
kymographs in Fig. 6 were made) are: Shh, 114;Gli1, 42; Pea3, 41;
Lef1, 41; and Id1, 34. a.u., arbitrary units. Scale bars: 200 µm.
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weakening (Fig. 1A, Fig. S4). In some cases, posterior and anterior
stripes differed in the magnitude of their response. On cyclopamine
or SU-5402 treatment, posterior rugae appeared to widen more than
anterior rugae, in some cases to the point of fusing with their
neighbours (Fig. S3B,C), whereas on IWP-2 treatment, anterior
rugae decrease in staining intensity more than posterior rugae, and
in some cases to below the detection threshold leading to the
apparent loss of stripes (Fig. S3B,D). However, although the
magnitude of response could vary along the palate, the direction of
response was the same across all Shh stripes (Fig. S3E). These
results confirm that all four pathways contribute to the formation of
the ruga pattern, and their inhibition changes the width and intensity
of stripes but not the wavelength of the pattern.
We focused our attention on the anterior stripes (black points in

Fig. S3C,D), which were already established before the addition of
the inhibitor (as opposed to the posterior stripes, which were in a
region of new stripe formation) and which we previously
demonstrated were maintained by an RD mechanism through their
ability to bifurcate on the removal of a neighbouring stripe
(Economou et al., 2012). Although these stripes showed a weaker
response to the inhibition of Hh and FGF signalling, and a stronger
response to the inhibition of Wnt signalling than the posterior
stripes, we speculate that all stripes involve the same RDmechanism
and that these differences in magnitude relate to the difference
between perturbing an already established steady-state pattern
versus perturbing a non-steady-state region in which an unpatterned
state is undergoing destabilisation.

Transcriptional pathway targets are expressed periodically
and in different spatial phases
Although each of the pathway ligands are casually referred to in the
literature as a morphogen, in the RD sense any of these could in fact
be a uniform permissive component of the system rather than part of
the periodicity-generating network. To be an RD-type patterning
morphogen, the activity of its pathway must also be periodic. To
determine where each of these pathways is active, we analysed well-
established direct transcriptional targets of their respective
transduction pathways (Fig. 1B, Fig. S5). Using pathway targets
as the operational measure of pathway activity avoids the
complications of multiple ligands, receptors and transduction
components as discussed above. We found that each of the
pathways had periodic outputs. Where available, additional target
markers were tested and gave the same periodic pattern (Fig. S6). As
expected, Hh target expression was in the same spatial phase as Shh
in both epithelium and mesenchyme. Surprisingly, FGF signalling
was in-phase with the Shh stripes in the mesenchyme but out-of-
phase in the epithelium. This reconciles our previous description of
FGF activity as being in-phase with the Shh stripes (Economou
et al., 2012) with a previous report describing it as out-of-phase
(Porntaveetus et al., 2010). It also means that FGF signalling must
be functioning as effectively two different pathways (defining a
pathway as its transcriptional end-point). We refer to these pathways
as mesenchymal FGF (mFGF) and epithelial FGF (eFGF). Based on
expression patterns, these are most likely to be FGF10/FGFR1 and
FGF3/FGFR2 ligand/receptor pairs, respectively (Porntaveetus
et al., 2010). Wnt target expression was in-phase in the
epithelium and undetectable in the mesenchyme, whereas BMP
signalling was out-of-phase in both layers (Fig. 1B). In summary,
Hh, mFGF and Wnt (pathways) are in-phase with the rugae, and
eFGF and BMP (pathways) are out-of-phase. The above findings
show that each of the pathways is periodic and are therefore, by
definition, part of a periodic pattern-generating network.

Multiple two-component RD networks are consistent with
the phase and perturbation data
We then investigated how four or potentially five components can
be wired together in a regulatory network that can generate the
observed spatial pattern. One potentially simplifying approach is to
consider whether the topology of this system (i.e. the network,
technically a directed graph, in which chemical components are
linked by activation or inhibition arrows) could effectively be
described as a classical two-component RD system, which would
consist of two ‘master morphogens’, with the other components
serving as intermediates [so-called ‘mediators’ (Cho et al., 2011)]
between them. This would be the case if the exact topology of a two-
component system between two master morphogens was preserved
in a larger system. Effectively, interactions between master
morphogens in the two-component system would be expanded by
passing through a series of mediators in which the net sign of the
interactions is the same (Fig. S7A). Any pair of morphogens could
potentially support a two-component system [if ‘in-phase’ by a
classical activator-inhibitor (AI), or if ‘out-of-phase’ by a substrate-
depletion (SD) configuration].

We therefore turned to perturbation analysis as a way of
constraining possible network topologies. Using simple linear
equations, we modelled the effects of perturbing either component
in both classical two-component AI and SD systems.We investigated
how a series of waves, generated by a two-component RD network
from noisy initial conditions, would respond to the inhibition of each
component. Preliminary investigations (Fig. S8) indicated that
although the pattern of waves could be lost under strong inhibition,
the series of waves could be preserved (including thewave number) if
inhibition strength was reduced (Fig. S8D,E). However, upon
inhibition, either the amplitude or the absolute level of the waves
was shifted up or down. It should be noted that in some instances, the
waves appeared bounded. For example, if a wave shifted up, only the
troughs of the wave moved up, whereas the peaks did not move
noticeably, and vice versa if the wave shifted down. (This appeared to
be the case for the auto-activating component of a two-component
RD system, where to form a stable series ofwaves the upper and lower
production rates were bounded.) In these bounded cases in particular,
the upward or downward shift in wave position was associated with
a stripe widening or narrowing, respectively (Fig. S8F,G). The
maintenance of wave number along with changes in width and
intensity was reminiscent of the changes in Shh stripes seen in our
inhibitor-treated explant cultures.

As the behaviour of the waves upon inhibition could be described
as upward or downward shifts, we could capture it as shifts in the
mean level of each component. Therefore, we generated 1000
random parameter sets consistent with the conditions for DDI for
both AI and SD networks, and only considering parameter sets that
could produce a stable series of waves, we determined the change in
the mean component level upon inhibition (Fig. 2A, Fig. S9),
ensuring that wave number was maintained after inhibition
(Table S1). We confirmed that, for almost all parameter sets, the
change inmean component level appeared to be the result of a shift in
wave amplitude or absolute level, as illustrated in Fig. S8F,G (see
also Table S1). We then compared the results with the effects on
established spatial patterns of experimentally inhibiting Wnt, BMP
or Hh itself, considering first all four possible two-component
systems containing the Hh pathway (our readout) and excluding FGF
[where two nodes are inhibited simultaneously requiring a different
analysis (see below)]. We found that for both Wnt-Hh and BMP-Hh
systems, one of the two possible two-component models was
consistent with the data (Fig. 2B). However, there exists no three-
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component Wnt-BMP-Hh network which can be interpreted as both
a master Wnt-Hh AI topology with BMP mediating a single
interaction, and a master BMP-Hh SD topology with Wnt mediating
a single interaction (Fig. 2, Fig. S7B,C). This showed that our system
(probably like most real systems) cannot be accurately described as
falling into either one of the two classical AI or SD classes.

Analysis and numerical modelling identifies well-connected
network topologies capable of non-oscillating diffusion-
driven instability
The above results showed that modelling this system requires
consideration of higher order (i.e. greater than two-component)
networks. Therefore, we next investigated whether any three-
component networks could be found that were consistent with the
spatial pattern and perturbation data. There are 39=19,683 possible
three-component network topologies, as each component can
interact with the two others and itself (nine types of interaction)
and each interaction can be positive, negative or zero (Fig. S10).
Considering that all components have some degradation rate, and
therefore have some level of negative self-interaction, we only
considered the distinction between topologies with positive self-
interactions and those without them. This reduces the total number
of possible topologies to 23×36=5832. [These different topologies
incidentally place different constraints on diffusion, as discussed by
Marcon et al. (2016).]
To go further, we resorted to numerical methods because, unlike

for the two-component system, there is not a well-established
relationship between network topology and spatial patterning for
three-component networks (Scholes et al., 2019). Three-component
RD systems were considered by White and Gilligan in the context of
hosts, parasites and hyperparasites (White and Gilligan, 1998), in

which they described criteria that determine which such systems
generate DDI, as well as criteria to distinguish temporally stable from
oscillating systems. More recently, related analyses, including graph-
based approaches, have been applied to developmental periodic
patterning (Marcon et al., 2016) and general RD systems (Diego et al.,
2018; Scholes et al., 2019). We systematically screened parameter
ranges around known values published for biological RD systems
(Nakamasu et al., 2009) and applied the White and Gilligan (1998)
criteria for DDI in a three-component model. Out of 242,121,642
parameter sets (9 interactions×7 values for each×6 different choices
for which morphogens have high or low diffusion values) searched
we found a subset of 653,574 parameter sets that gave DDI. The signs
of the parameters define specific topologies. As the rugae form as
stable stripes of gene expression and tissue thickening (Economou
et al., 2013, 2012), our first observational constraint was that the
stripes we see are non-oscillating. We recovered 1492 topologies
giving non-oscillatingDDI (seeMaterials andMethods for details). A
second constraint was that inhibition of any of the components would
perturb the pattern. This implied that every node (morphogen) in the
network outputs as well as inputs, making the network ‘strongly
connected’ (Marcon et al., 2016). We recovered 1396 strongly
connected network topologies. Among these, the four possible phase
relationships (all-in-phase or each one of the three out-of-phase with
the other two) could each be generated by 498 different topologies
(with some topologies capable of generating more than one possible
phase relationship depending on parameter values).

To investigate the 498 topologies in a given phase group, we
generated ‘stalactite’ plots according to Cotterell and Sharpe (2010).
In this representation, each topology is shown as a point linked to all
other topologies that differ from it by the gain/loss of one edge, with
each row corresponding to the total number of edges. Topologies at

Fig. 2. Numerical simulation of RD patterning inhibition for two-component systems. (A) Violin plots showing percentage change in the mean level of
components U and V in illustrated AI and SD RD networks upon inhibition of the response to morphogens U and V in RD simulations (plots for inhibition of
production are shown in Fig. S9). (B) Networks showing the two possible configurations of Wnt-Hh AI systems and BMP-Hh SD systems, with components
coloured according to the equivalent component in A. Associated with each network is a schematic of the response of Hh upon inhibition of each component in the
network, based on the predominant response in the simulations. Solid lines indicate levels after inhibition, with dashed lines representing uninhibited
states. Horizontal dotted lines represent an arbitrary detection threshold. The two topologies that have responses to inhibition that replicate the experimental
observations (see Fig. 1A) are highlighted with a red box. B, BMP; H, Hh; W, Wnt.
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the base of each stalactite, of which there were 45 for each phase
group, represent those that are distinct (non-overlapping) and
possess only non-redundant interactions (Fig. 3A). It should be
noted that these topologies are slightly different to the minimal
topologies defined by Diego et al. (2018) as we assume that all
biological components have some degradation rate, and therefore do
not include these interactions.

Spatial phase and perturbation outcomes further constrain
the number of possible real networks
We could now begin to consider real morphogens as nodes in the
identified topologies, to investigate which topologies could
correspond, first, to the observed spatial phase relationships and,
second, to likely diffusivities. We considered three-node networks
consisting of Hh, Wnt and BMP. We knew the phase relationship of
these from direct observation of the targets shown in Fig. 1: Hh and
Wnt activities are in-phasewith the rugae and BMP activity is out-of-
phase. This constraint identified a specific phase group of 45
topologies as relevant to our system. As for diffusivities, to simplify
the analysis we first set Hh as the fast-diffusing pathway compared
with the other two, consistent with its role in our two-component

analyses (Fig. 2B). (We show below that this provisional assumption
is ultimately not required for the selection of networks consistent
with the experiment.) These phase and diffusivity constraints reduced
the number of working topologies down to just 18 (Fig. 3A,B).

With these 18 topologies, we now compared their predicted
behaviour under perturbation with the experimental results using
numerical simulations similar to those described above (see
Materials and Methods for details). Inhibiting each component for
1000 randomly chosen DDI parameterisations of each topology
revealed three groups of characteristic responses to inhibitions
(Fig. 3C, Fig. S11, Table S2). Ten out of the 18 networks showed
Hh pathway responses consistent with the experimentally observed
changes in Shh expression (boxed in Fig. 3C).

Identification of feedback loop signs enables prediction of
network behaviour under perturbation
From several thousand conceivable networks, the above analytical,
numerical and experimental methods identified just ten three-
component minimally connected topologies that captured the
experimentally observed periodicity, phase and perturbation
responses of three of the five components identified as active in

Fig. 3. ‘Stalactite plot’ and numerical
simulation identifying subsets of
three-component RD systems and
their behaviours under inhibition.
(A) Topology atlas for the phase group of
the three-component network identified in
the parameter search, which is consistent
with the spatial pattern of Wnt, BMP and
Hh. Topologies that can be recovered with
fast-diffusing Hh and slow-diffusing Wnt
and BMPare in blue. Out of the 45 strongly
connected topologies that are found at
the bottom of the stalactites, the 18 that
are also consistent with the diffusion
constraints are outlined in black. For
completeness, not strongly-connected
topologies are shown in grey along with
their relationship to the strongly connected
topologies. (B) Graphs showing the 18
Wnt-BMP-Hh networks divided into
four-interaction and five-interaction
networks. Within each group, networks
are numbered according to their position
from left to right in A. (C) Heat map
showing the percentage of parameter sets
in which the level of Hh increases in
response to the inhibition of each
component in the network in RD
simulations. Topologies are grouped
according to hierarchical clustering (see
Fig. S10). The ten topologies that have a
response that is consistent with the
experimental data are highlighted with a
red box, as are the network diagrams in B.
B, BMP; H, Hh; W, Wnt.
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this system. We will refer to these as ‘valid’ networks. How might
this help us discover what networks would be valid that include all
five components, and potentially ‘n’ additional components? It has
been suggested that general rules for biological circuit behaviour
can be inferred from analysis of the signs of the embedded feedback
loops (Tyson and Novak, 2010). We therefore examined whether
this approach might be applied to our RD networks. We observed
that our valid three-component networks contained the same
feedback loops as the two perturbation-consistent two-component
networks (Fig. 2B). In the four-interaction networks, Wnt and BMP
are in positive feedback loops by mutual inhibition, whereas Hh is
always only in a negative feedback loop (Wnt and BMP can also be
found in the negative feedback loop), and in the five-interaction
networks, Wnt and BMP are still in a positive feedback loop through
(direct or indirect) mutual inhibition, whereas the exact interactions,
and therefore the feedback loops of either two-component system,
are embedded in the network (Fig. 3B, Fig. S12 indicate the loops).
In other words, the behaviour of the network, including under
perturbation, is embedded in the product of the signs of the ‘arrows’,
i.e. the signs of the reaction term coefficients. Indeed, Marcon et al.
(2016) and Diego et al. (2018) recently demonstrated that the
formation of patterns in RD systems is dependent on these
destabilising positive feedback and stabilising negative feedback

loops. To investigate whether the response to perturbation is also
determined by these loops, we analysed the relationship between
reaction terms (i.e. the RD equations without the diffusion terms)
and the behaviour of components in response to perturbation. We
showed that this has a consistent mathematical form (asymptotic
curves), which enables the sign of the perturbation response (as
opposed to its precise magnitude) to be predicted as a relatively
simple set of conditions fulfilling or not fulfilling certain
inequalities (see Appendix S1, section 2.1). Through comparison
with simulations of the full RD system (see Appendix S1, section
2.2) we found that for all but very small perturbations (in which
diffusion can dominate) or very large perturbations (in which RD
breaks down altogether), that it is indeed possible to predict the
behaviour of an RD-competent network from its reaction terms
alone. Analytical considerations reinforce this conclusion (see
Appendix S1, section 2.2).

To further explore the relationship between the network topology
and the response to perturbation, we expressed the terms in the
inequalities as functions of the combination of signs of the reaction
terms (i.e. feedback loops) in n-component systems, thus predicting
the effects on perturbation of any given RD system component,
depending on its participation in positive and/or negative feedback
loops (see Appendix S1, section 3). We were able to use this

Fig. 4. Identification of feedback loops and resulting behaviours under inhibition for three-component RD systems. (A) Illustrative two- and three-
component networks showing minimal feedback requirements for RD of one or more components forming a single positive feedback loop (highlighted in
magenta), with a negative feedback loop being formed through at least one additional component (highlighted in cyan). (B) Summary constraint table showing the
response of components in such a minimal network to the inhibition of a component found in either the positive feedback loop alone (magenta ‘plus’ sign),
negative feedback loop alone (cyan ‘minus’ sign) or both (‘plus’ and ‘minus’), depending on which loop they are in and the phase relative to the inhibited
component (‘in-phase’ or ‘out-of-phase’). For the response of a component to its own inhibition (‘self’), the inhibition of response (‘res.’) and production (‘pro.’)
are shown. Upward pointing arrows indicate an increase in the level of a component, whereas downward arrows indicate a decrease. Two arrows of equal size
show when the system is unconstrained. Where opposing large and small arrows are shown, the system behaves according to the large arrows, apart from under
certain topologies (see Appendix S1, section 4) in which the reverse is seen for certain components. Although components are not constrained, different
components showing the unconstrained response are coupled to one another. (C) Illustrative examples showing how additional components can be integrated
into a minimal RD system outside of the ‘core’ RD network by forming external loops. External components and interactions are shown in grey, either
forming positive or negative feedback loops with the core positive feedback loop (highlighted in magenta and cyan, respectively). Core RD network outlined with
dashes. (D) Summary constraint table showing the response of components in such a network to the inhibition of a component that provides either additional
positive feedback (magenta ‘plus’ sign) or additional negative feedback (cyan ‘minus’ sign) to the core positive feedback loop. The table shows how this
depends on which loop in the core network they are in [response (Res.); production (Pro.); +, ± or −] and the phase relative to the inhibited component.
Symbols as in B. For a subset of topologies in which a component is in both loops see Appendix S1, section 4. B, BMP; H, Hh; W, Wnt.
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approach to analyse how the response of components to inhibition
in the system changes upon stepwise addition of new nodes
(components) (see Appendix S1, section 4). In brief, and consistent
with the results of an analysis into the topological requirements for
RD by Diego et al. (2018), an RD system requires that for an n-node
system, there needs to be a positive feedback loop through a
maximum of n – m nodes and a negative feedback loop through the
remaining m nodes (provided n>m≥1), and at least one node must
be in both loops. Examples of loops in two-node (classical RD) and
three-node systems are shown in Fig. 4A. With these conditions in
mind, one can predict outcomes of perturbations of each type of
node included in these loops (Fig. 4B). However, the above
conditions allow for networks in which these loops go through only
a subset of nodes. The predictions of outcomes of perturbations in
Fig. 4B therefore need not apply. Further analysis (described in
Appendix S1, section 4) generated predictions of what happens to
components represented by nodes outside these RD-defining ‘core’
loops (Fig. 4C,D). We found the effects of inhibition of these ‘non-
core’ components to be mostly similar, but not identical, to those
of inhibition of core components. [This means that sometimes
alternative ‘cores’ in a given network will produce different
perturbation responses (see Discussion below).]
Incidentally, this feedback loop decomposition can also help

explain the seemingly counterintuitive nature of pattern formation in
some topologies. For example, topology iv in Fig. 3B can produce a
periodic pattern despite only consisting of negative interactions. In
this topology, positive feedback loop of the RD is produced by the
mutual inhibition between Wnt and BMP, whereas the negative
feedback loop comes from the cycle of three inhibitory interactions
between Wnt, BMP and Hh.
We applied these rules for perturbation responses and effects of

node addition to the 45Wnt-BMP-Hh networks discussed above that
fulfilled the requirements of diffusion-driven instability and the
observed phase relationships. Systematically identifying all possible
loop combinations (Fig. S13) enabled the prediction of the responses
of each component to any inhibition using the constraint tables in
Fig. 4. This showed that the observed perturbation responses
corresponded to the same ten topologies as in Fig. 3 but in this
case without the prior assumption that Hh was the fast-diffusing
component.
The effect of inhibition of FGF can now be reconsidered. As the

effect on Shh expressionwas neither net increase nor net decrease, we
considered topologies in which eFGF and mFGF acted in opposition.
Simulation with a parameterisation of the very simple network of this
kind depicted in Fig. 5A showed that a blended increase and decrease
leading to a flatter waveformwas indeed obtained (Fig. 5B). Thus, an
RD system with two FGFs, each having opposite effects on Shh, can
account for our experimental observations.
We considered all possible five-component topologies with loops

required for DDI with the sign of links constrained by their phase
relationship (see Appendix S1, section 4). Specifically, we first
identified all possible sets of core topologies (i.e. all subnetworks of
two to five components that have the minimal number of
interactions sufficient for RD). For each core, all possible
combinations for wiring-in the remaining components were
recovered (see Materials and Methods for details). This yielded
39,755 unique minimal topologies. Prediction of their responses to
inhibition revealed that, of these, 3945 were consistent with our
experimental perturbation results. Fig. 5C,D depicts these
topologies in terms of the interactions (arrows) between the five
components. Although some interactions are different in different
topologies, some are the same or absent for all topologies [e.g. the

input of mFGF to eFGF indicated in the column second from the
right are inhibitory (cyan) or absent (white) in all topologies].

Developmental dynamics of stripe appearance reveal an
eFGF-Wnt-Hh ‘core’ network with mFGF/BMP incorporation
after stripe establishment
What further experimental data could constrain potential network
topologies? We turned to temporal behaviour of the rugal system.
We conducted a large number of in situ hybridisations on adjacent
sections from a long time-series of specimens, spatially registering
multiple specimens to the stripes of Shh expression. Because the
pattern arises through monotonic linear growth (Economou et al.,
2012), we could temporally order and space our specimens (see
Fig. S14 and Materials and Methods for details on converting
palatal lengths to time). This allowed us to determine the kinetics of
the onset of stripe formation for each of the pathwaymarkers relative
to Shh expression onset (Fig. 6A-E). Moreover, as tissue growth
occurs immediately anterior to ruga 8, it follows that older tissue lies
more anterior in the palate. Therefore, by using anteroposterior (AP)
position as a proxy for time and correlating the different
transcriptional target genes with Shh at increasing anterior
positions, we could follow the sequence of signalling events in
ruga formation by determining where (and therefore when) the
different transcriptional targets come into (or out-of ) phasewith Shh
(Fig. S15).

The loss of FGF target Pea3 (also known as Etv4) in the
epithelium and expression of the Wnt target Lef1 are the first
instances of markers establishing their spatial patterns, and are
simultaneous with the onset of Shh transcription (Fig. 6C-E). On the
other hand, the increase of Hh target Gli1, downregulation of BMP
target Id1 and the increase of FGF target Pea3 in the mesenchyme
lag the onset of Shh expression. However, the correlation analysis
also shows that the onset of Shh expression (and therefore the
downregulation of Pea3 and the upregulation of Lef1) is
concomitant with a transient negative correlation and, therefore,
reduced expression of Gli1. This transient period of reduced Hh
signalling at the onset of stripe formation in a region of tissue growth
is consistent with a role for Hh in providing negative feedback.

What do the dynamic data mean for our networks? As eFGF and
Wnt responses are the first movers and move simultaneously, they
must form a core positive feedback loop together with Hh providing
the negative feedback loop necessary for RD. As BMP and mFGF
responses trail Hh, they cannot be part of the core positive feedback
loop that destabilises the system. Applying these constraints to the
3945 topologies that were consistent with the experimentally
observed phase relations and responses to perturbation gave 154
topologies consistent with the observed dynamics (Fig. 7A,B). This
number constitutes 0.004% of the total 39,755 DDI minimal
topologies. All of these are subsets of the same set of regulatory
interactions (Fig. 7C), comprising one of four possible Wnt-eFGF-
Hh cores, with BMP and mFGF providing additional interactions.

DISCUSSION
We have shown that five classical morphogen pathways periodically
pattern the rugae and have identified a relatively small number of
potential RD network topologies, and an even smaller number of
consistent regulatory interactions between nodes within such
networks. The modelling, combined with the experimentation
thus far, suggests, although of course does not prove, potentially
direct molecular interactions between specific pathway-induced
transcription factors and target enhancer sites in the genes encoding
the other morphogens.
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This study highlights more generally the ways in which
experimental data can be used to challenge RD models in a
mammalian tissue context. In particular, we have shown that the
effects of relatively small acute perturbations to spatial patterns that
have already formed are highly constraining on plausible network
topologies. This suggests that similar inhibitor studies can be a
useful complement to ‘knockout’ genetics in understanding these
dynamical systems. We also gained constraining information from
the dynamic (temporal) evolution of the system during embryonic
development. This was facilitated by the sequential appearance of

the stripes, which is a peculiarity of this rugal palate system. In many
periodic patterns, such as, for example, the appearance of cartilage
ring-patterning stripes in the developing trachea (Sala et al., 2011),
stripes appear simultaneously and so identifying leading and
lagging genes would require more quantitative measurements.

It is striking that increasing component number (even at an
arbitrarily chosen level) reduces constraint very rapidly. Notably, at
the three-component level there is a small part of parameter space for
which networks give behaviours that do not conform to the minimal
topologies fromwhich they are derived. How this grows andwhether

Fig. 5. Integration of two out-of-phase FGF morphogens explains FGF-inhibition effects and allows the prediction of behaviours under inhibition of
five-component RD systems. (A) Example of a network where the inhibition of epithelial FGF (eF) and mesenchymal FGF (mF) would be predicted
to have opposing effects on the levels of Hh (H) according to analysis of reaction terms, alongside an illustration of how this is determined through the constraints
imposed by the different feedback loops in the system [positive feedback loop alone (magenta ‘plus’ sign), negative feedback loop alone (cyan ‘minus’ sign) or
both (‘plus’ and ‘minus’), depending on which loop they are in and the phase relative to the inhibited component (‘in-phase’ or ‘out-of-phase’)]. Positive and
negative feedback loops are shown inmagenta and cyan, respectively. (B) Simulation of single and combined inhibition of the two FGF components (dashed lines
indicate uninhibited state). Simulations carried out as detailed in Materials andMethods. u1 is mF, u2 is eF and u3 is H, with a12=−0.019, a13=−0.034, a21=−0.019,
a32=−0.022, b1=0.064, b2=0.037, b3=0.068, c1=0.004, c2=0.011, c3=0.039, fmax1=0.008, fmax2=0.022, fmax3=0.072, D1=1.03, D2=1.71 and D3=7.63.
Where not specified aij=0. Initial conditions drawn from a random distribution, as described in Materials and Methods. (C) Map showing all possible responses of
Hh to inhibition of each of the five components for all 39,755 predicted minimal topologies (red, increase in Hh; blue, decrease in Hh). Topologies arranged
into 31 different groups of responses, outlined in black. Two sets of responses that constitute 3945 topologies showing the observed responses (Wnt down, BMP
up, Hh up, and mFGF and eFGF opposing responses) highlighted in the green box. (D) Map showing the interactions making up the 3945 topologies identified by
perturbation analysis (positive interactions in magenta, negative in cyan, no interaction in white). Horizontal black line separates topologies giving different
patterns of responses of Hh in response to mFGF and eFGF inhibition (upper group of topologies correspond to the upper group of highlighted topologies in C).
B, BMP; H, Hh; W, Wnt.
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it could be important at higher orders is not clear. However, the
‘black boxing’ of whole pathways into single nodes provides a way
of rationally reducing the system complexity in a way that makes
biological sense. It remains an open question as to how to integrate
this way of thinking with omic datasets. There is a significant body
of work on analysis and simplification of complex regulatory
networks and some thought has been given to RD processes within
these (Mincheva and Roussel, 2012). However, practical application
of these methods with experimental input is still in its infancy.
Meanwhile, caution must be applied. For example, in the limb,
modelling and experiments have shown that BMP2 and its
transduction, manifested as phosphorylated Smad proteins, are
spatially out-of-phase (Raspopovic et al., 2014). This highlights the
fact that defining the activity of a pathway as expression of its direct
transcriptional targets is a choice rather than a necessity.
Apart from the computational aspects of our work, this study

raises biological questions.Why, for example, does the patterning of

the palate use five pathways when, in principle, twowould do?More
specifically in our system, why is the rugal pattern initiated with
three morphogens but then incorporate an additional two? One
possibility is that this provides a particular type of robustness to
perturbations: yes, there are many targets whose mutation can affect
the pattern, but there is also significant redundancy such that the
modifications to the pattern are mostly relatively subtle. Another
possibility is that each pathway provides an additional tuning of the
pattern or setting up of signalling for downstream events such as
differentiation. A completely opposite explanation is that all of the
regulatory interactions exist in cells and are used elsewhere for
multiple other purposes (for RD or not, and in pairs or not), and that
the apparent ‘overkill’ in terms of numbers of pathways involved is
merely because there is no evolutionary pressure to eliminate or
suppress their role in the palate. More detailed analysis of the
robustness properties of these networks and of the conservation of
the regulatory interactions is needed to address these questions.

Fig. 6. Periodic gene expression kymographs
reveal an early Wnt-eFGF-Hh initiating ‘core’
system with mFGF and BMP integrated later.
(A) Kymograph showing the pattern of expression of
Shh through time. White arrowheads indicate the
approximate onset of Shh expression for each ruga.
(B) Plot of mean normalised intensity of Shh staining
for each AP position relative to ruga 8. The magenta
bar denotes the period of onset of Shh expression,
bounded by the minimum in staining intensity and the
position at which the staining intensity plateaus
(vertical dashed lines). Horizontal dashed line shows
level at whichShh intensity plateaus (as determined by
the mean intensity of the anterior third of the palate).
Shaded area represents 1 s.d. (C) Kymographs
showing the pattern of expression of indicated target
genes through time (magenta) and their expression
relative to Shh (green) for rugae 3, 4 and 5. White
arrowheads as in A, and orange arrowheads indicate
approximate positions of the change in the expression
pattern of each target gene associated with each ruga.
Mesenchymal Gli1 and Id1 expression resemble the
epithelial patterns (see Fig. S16) (horizontal dark
bands in the red channel are stages for which too few
specimens were obtained to allow interpolation).
(D) Plot of the Spearman’s rank correlation coefficient
for the intensity of Shh staining and the marked target
gene across all time points for each position relative to
ruga 8, indicating when, relative to the onset of Shh
expression, the spatial pattern for each target gene
emerges. Horizontal dashed lines represent maximal
correlation coefficient, calculated over the anterior
third of the palate (Fig. S15D) and half this value.
Vertical dashed lines represent AP position where this
level is first reached. Lower dashed lines for Gli1 show
where the half maximal level is reached for the
opposite correlation (i.e. out-of-phase rather than in-
phase). Shaded area represents 95% confidence
interval from bootstrapping (see Materials and
Methods). The magenta bar represents the period of
onset of Shh expression, as determined in B. (E)
Sequence whereby different targets come into
(upward pointing arrowheads) or out-of (downward
pointing arrowheads) phase with Shh relative to the
distance from ruga 8, based on the correlation analysis
in D. The magenta bar represents the period of onset
of Shh expression, as determined in B. a.u., arbitrary
units.
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MATERIALS AND METHODS
Generation of embryos and explants
Wild-type CD1 mice (Mus musculus) were obtained and used according to
protocols approved by the Institutional Animal Ethics Committee under UK
Home Office Project and Personal Animal Licences. Embryos were
harvested, staged, fixed and stained for whole-mount in situ hybridization
using established methods. Palate explants from E13.5 embryos were made
using 0.1 mm tungsten needles and cultured at 37°C in 5% CO2 atmosphere
for 24 h using the Trowell technique (Alfaqeeh and Tucker, 2013) in serum-
free advanced Dulbecco’s modified eagle media/F12 (GibcoBRL), 20 U/ml
penicillin-streptomycin (GibcoBRL), 50 mM transferrin (Sigma-Aldrich)
and 150 µg/ml ascorbic acid (Sigma-Aldrich). Chemical inhibitors were
added at the beginning of the 24 h culture period at the following final
concentrations: SU-5402 (Calbiochem) at 40 µM; cyclopamine (Sigma-
Aldrich) at 20 µM; IWP-2 (Cambridge Bioscience/Cell Guidance Systems)
at 50 µM; and dorsomorphin (Cayman Chemical) at 50 µM. Control palates
were contralateral explants from the same embryo incubated with vehicle
only. Experiments were repeated at least four times for each condition.

In situ hybridization
For sectioned in situ hybridization, fixed specimens were embedded in wax
and serially sectioned (7 µm), with successive sections mounted on four
different slides to allow different probes to be used on nearby/adjacent
sections. Whole-mount and sectioned in situ hybridisations were conducted
according to standard methods (Economou et al., 2012). Probes were gifts
from colleagues obtained initially from authors of published references as
follows: Shh (Echelard et al., 1993); Lef1 (Gat et al., 1998); Id1 (Rice et al.,
2000); Spry2 (Tefft et al., 1999); Ptch1 (Goodrich et al., 1999); Gli1 (Hui
et al., 1994); Etv4 (Pea3); Etv5 (Erm1) (Chotteau-Leliev̀re et al., 1997); and
Axin2 (Lustig et al., 2002). Whole-stained explants, placed in a minimum
volume of PBS in wells cut into 1% agarose, were digitally imaged using a
stereo dissecting microscope.

Identifying rugae in explant culture
To determine the number of rugal stripes of Shh expression, as well as their
position, width and staining intensity, a 150 µm wide strip was drawn along

the AP length of the palate through the region of the rugae. The mean
greyscale level along the mediolateral axis at each AP position was
determined, with rugae appearing as peaks in Shh intensity (note that as
stronger intensity staining has a lower greyscale value, peaks in the array fall
at greyscale minima). The AP boundaries of each ruga were taken at half the
height from a rugal peak to the adjacent troughs. In some instances, rugae
were closely spaced, leading to the fusion of rugal Shh peaks (as identified
by the intensity of a trough being greater than one third the height of the peak
to the next trough). For such fused blocks of rugae, boundaries were
determined by interpolating between the outer well-identified boundaries
and thresholding relative to this line. The bounds of ruga 1 were not
calculated as the edge of the palate made necessary intensity measurements
at the anterior unreliable. The position of each ruga was determined as the
midpoint between the AP boundaries (apart from ruga 1 and 8, which were
manually identified on each image), and ruga width as the difference
between these boundaries. Ruga intensity was measured as the minimum
greyscale value within the bounds of a ruga.

Quantifying the effect of inhibition
Rugae in inhibitor-treated explants were aligned to their contralateral
controls by minimising the sum of the squared differences between the
positions of ruga 1 and ruga 8. AP position was measured relative to
the control ruga 8, and each ruga was paired with the closest ruga in the
contralateral shelf. In some cases, a ruga could not be paired; for example, if
the closest ruga in the control lay closer to another ruga in the treated. In such
cases, if the position of the ruga aligned to an interrugal region in the
contralateral, it was determined that the ruga had been lost upon inhibitor
treatment (or the equivalent ruga was not inserted in the contralateral). In
these cases the width was recorded as 0 µm and the intensity measured at the
equivalent position in the interrugal region. Alternatively, if multiple rugae
in the control aligned with the same ruga in an inhibitor-treated specimen, it
was determined that multiple rugae had fused. In these cases, the width of
the fused-region ruga was divided in proportion with the control rugae, and
the intensity was taken within the bounds of these regions. To identify any
differences associated with the addition of new rugae, posterior rugae were
identified as ruga 8 and the next anterior ruga.

Fig. 7. Possible feedback loops and network topologies
constrained by the experiment. (A) Map showing feedback
loop structure of 3945 topologies by perturbation analysis (see
Fig. 5C,D). Components involved in positive feedback are in
magenta and those involved in negative feedback are in cyan, with
components external to the core in dark. Horizontal white line
separates topologies giving different patterns of responses of Hh in
response to mFGF and eFGF inhibition (upper group of
topologies correspond to upper group of highlighted topologies in
Fig. 5C,D). Groups of topologies showing different patterns of
feedback loops are outlined in black. A set of 154 topologies
showing constraints on topology as determined by kinetic analysis
(Wnt and eFGF as only core positive feedback components and
Hh as core negative feedback component) boxed in red. (B) Map
showing the interactions making up the 154 topologies identified
by feedback loop analysis (positive interactions in magenta,
negative in cyan, and no interaction in white). Horizontal black lines
separate four groups of topologies with different interactions
between the three core components Wnt, eFGF and Hh. (C) The
154 topologies identified in A and shown in B, all show the same
signs of interactions where present. Summary network diagram
showing the signs of the interactions found among these
topologies. B, BMP; H, Hh; W, Wnt.
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To determine how distributions of these different measurements
shifted upon inhibitor treatment, the variation in the absence of inhibitor
was determined. Position, width and intensity were measured for
contralateral pairs of untreated explant, and the absolute displacement
from having equal values between the two was calculated. The
proportion of rugae that fell above or below one median displacement
from equality was calculated for each measurement under each
treatment.

Construction of target gene expression profiles
The mouse embryonic head was sectioned at 7 µm intervals in the sagittal
aspect. For a given marker, in situ hybridization was performed on every
fourth or fifth section, for the entire mediolateral extent of the rugae.
Sections were imaged using a Zeiss Axioskop upright microscope with a
20× objective under both brightfield and phase contrast. To record the
variation of relative expression along the AP axis of the palatal epithelium
and underlying mesenchyme, the apical and basal extents of the epithelium
were first manually traced on the phase contrast images (upon which
unstained epithelium could be clearly seen) using ImageJ. Wewrote a macro
in ImageJ (see under profiles and kymographs at www.gitlab.com/
adeconomou/ruga-patterning-quantifications-and-simulations) to return
the relative staining intensity (as recorded in the bright-field images
converted to 8-bit greyscale) within the traces along the epithelium
(averaged across its thickness) and in the underlying 25 µm of mesenchyme.
The basal-to-apical thickness of the epithelium was also captured. The
position of ruga 3 within the tracewas recordedmanually. For a given palatal
shelf, intensity profiles were made for all sections stained for a particular
marker (sections damaged during the sectioning and staining process were
excluded). Because the rugae were approximately parallel, it was sufficient
to align the intensity profiles to the position of ruga 3 to obtain an average
intensity profile along the AP axis of a palatal shelf (Fig. S5). Average
intensity profiles were normalised, with the maximal signal intensity
(darkest pixel value) taken as 1, and the minimal signal intensity (lightest
pixel value) taken as 0.

Construction of kymographs
As the palatal epithelium extends along its AP axis through localised growth
immediately anterior to ruga 8, the AP palatal distance between ruga 3 and
ruga 8 was used to measure embryonic age (i.e. time). Embryo weights were
recorded (in 25 mg bins) and first a high-resolution calibration curve was
constructed relating embryonic weights to time-of-harvest for 412 embryos
across 38 litters, as described by Peterka et al. (2002). Weights and rugae
3-to-8 distances of in situ-hybridised embryos could then be related to
embryonic age through a second calibration curve (Fig. S14). Processing
to make the kymographs was carried out using R Core Team (2013)
(see code at www.gitlab.com/adeconomou/ruga-patterning-quantifications-
and-simulations.git) as follows. To produce a smooth kymograph,
normalised intensity profiles were positioned by time and aligned in the
AP direction at ruga 3. A moving average (using a 0.2 day window)
was calculated to smooth the intensity plot in the time axis. Where
there were fewer than two traces in the window, no value was plotted.
Finally, the kymograph was replotted as distance relative to ruga 8
(see sample dataset at www.gitlab.com/adeconomou/ruga-patterning-
quantifications-and-simulations). For correlation analysis, Spearman’s
rank correlation coefficient was calculated between the normalised
intensity of Shh and each target across 600 evenly spaced time points
from E12.5 to E14.0, for all AP positions. The onset of periodic
expression was taken as the position at which the correlation coefficient
reached half of its final level (measured across the anterior one third of
the palate). For all AP positions, 95% confidence intervals were
calculated from 1000 bootstrap replicates.

Numerical simulations
RD systems were simulated in R using a piecewise linear model. (A detailed
description of relevant code is given in Appendix S1 and the code
itself is freely available from GitLab at www.gitlab.com/adeconomou/
ruga-patterning-quantifications-and-simulations.git.)

The model was of the form:

@ui
@t

¼ fiðu1; u2; . . . ; uN Þ � ciui þ Di
@2ui
@x2

; i ¼ 1; . . . ;N

fiðu1; u2; . . . ; uN Þ ¼ F
XN
j¼1

aijuj þ bi; fmaxi

 !

with

Fðz; fmaxÞ ¼ 0 for z , 0

Fðz; fmaxÞ ¼ z for 0 � z � fmax

Fðz; fmaxÞ ¼ fmax for z . fmax:

The N variables ui(x, t), i=1,…,N, represent the concentrations of each
component of the RD system as functions of time and a single spatial
variable x (distance along the AP axis of the palate). The non-negative
parameters ci andDi represent the degradation rate and diffusion coefficients
of the components, respectively.

The function fi(u1,…,uN), i=1,…,N, specifies the production rate of
component i, which takes a non-negative value between 0 and fmaxi. We
take this to be a piecewise linear function Φ of the weighted sum of all
regulatory inputs, where the parameter aij represents the weight of the direct
regulatory input from component j to component i (i.e. the sensitivity of the
production rate of i to changes in the concentration of component j).

The qualitative form (topology) of an RD system is specified by the nature
of the interactions between its components (positive, negative or no
interaction). For any given topology, interaction parameters (aij where i≠j )
were either set to 0 (i.e. no interaction) or assigned a value at random from a
uniform distribution between −1 and 1, with the sign determined by the
nature (positive or negative) of the interaction. For self-interactions (aij
where i=j ), the composite parameter aii−ci was drawn from this uniform
distribution, taking a negative weighting when there is no autoregulation
(aii=0). When a component auto-activates, the parameter takes a positive
value, with the weight of −ci also being drawn from the distribution.
Diffusion coefficients (Di) were drawn as the reciprocal of values from a
uniform distribution between 1 and 10,000, meaning that at the lower
end of the distribution, small differences would have a large effect on the
diffusion range.

To assess whether a particular parameterization of the RD system would
support the formation of spatial patterns through DDI, and what phase-type
of pattern the parameterization could produce, the parameters were
compared with the criteria for a DDI generating stable spatially periodic
non-oscillating patterns described initially by White and Gilligan (1998)
with some additional elaboration described in Appendix S1, section 1.

To ensure that spatially periodic solutions of the model do not take
negative values, they must form around a positive spatially-uniform steady
state (all ui>0); to ensure this, appropriate production constants bi are
required (Raspopovic et al., 2014). Therefore, for parameter sets that support
DDI, constant regulatory input terms (bi) were calculated so that for each
component, the spatially-uniform steady state concentrationwas fixed at 1. In
order for the amplitude of patterns generated from linear RD to remain
bounded, the production functions fi(u1,…,uN) must be bounded (Shoji et al.,
2003). We set the lower bound to be zero (production cannot be negative)
and the upper bounds to be fmaxi. To ensure that the maximum production
rates fmaxi were greater than the production rate at steady state (so that the
production rates at steady state are linear functions of their inputs), the fmaxi
were set randomly between 1.5× and 3× the magnitude of ci.

RD simulations were run using a finite difference scheme with zero flux
boundary conditions on a discrete one-dimensional grid of 100 positions.
Parameter sets were scaled to ensure non-discretised spatially periodic
solutions would be formed on the spatial domain used by comparing the
wavelength and growth rate (as detailed in Appendix S1, section 1) with
values known to fit within the simulation space and time to generate a
scaling factor, and then using that factor to run an initial simulation from
which spatial patterns could be measured and the parameters scaled more
precisely.
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Perturbation analysis
Scaled parameter sets were simulated as described above, with all grid
positions initially drawn at random from a uniform distribution between
−0.01 and 0.01 around the equilibrium point of the reaction termmatrix of the
RD system. For parameterisations in which a stable spatial pattern of 2 to 4.5
complete waves (to avoid discretisation) was established in the RD system,
components were inhibited in one of two different ways. Inhibition of the
receptor of a given morphogen (as seen for the inhibitors cyclopamine, SU-
5402 and dorsomorphin, for example) was implemented as an equal
proportional reduction of all interaction coefficients representing the
response to that morphogen [so if the response to component uj was
inhibited, the values of aij were reduced by a factor (1–α) for all values of i].
Inhibition of the production of a component (e.g. IWP-2) was achieved by
proportionately reducing the production term of that component by a factor
(1–α) (see Appendix S1, section 2 for details). For all parameter sets, by
successively reducing the strength of the inhibition parameter α by a factor of
0.25 from complete inhibition (α=1), we determined empirically for each
pathway the maximum perturbation αmax that still allowed patterning but did
not perturb the number of whole wavelengths or fail to achieve a stable
amplitude. The test statistic for perturbation effects was the mean level for
each component relative to an unperturbed run. To confirm that this readout
accurately reflected an upward or downward shift in the wave, as was seen in
the experimental system, the shift in the troughs and peaks of the waves,
respectively, were also recorded: if an increase inmeanwas associated with an
increase in the position of thewave troughs, or a decrease in the position of the
wave peaks, it was determined that the wave had shifted upwards or
downwards, respectively (Fig. S8F,G).

Topology search
For the three-component RD system, parameter space was systematically
sampled to identify parameter sets and topologies capable of giving DDI.
Each of the nine reaction parameters aij were varied linearly through seven
values spread evenly around 0 to give a total of 40,353,607 parameter sets.
Diffusion parameters were initially set as two fast and one slow or vice versa,
although this requirement [based on the longstanding but recently
overturned idea (Marcon et al., 2016) that this difference is essential]
turned out not to be essential (see Results). DDI criteria for stable periodic
non-oscillating patterns, as mentioned above and described in detail in
Appendix S1, section 2, were applied.
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