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Vein patterning by tissue-specific auxin transport
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ABSTRACT

Unlike in animals, in plants, vein patterning does not rely on direct cell-
cell interaction and cell migration; instead, it depends on the transport
of the plant hormone auxin, which in turn depends on the activity of
the PIN-FORMED1 (PIN1) auxin transporter. The current hypotheses
of vein patterning by auxin transport propose that, in the epidermis of
the developing leaf, PIN1-mediated auxin transport converges to
peaks of auxin level. From those convergence points of epidermal
PIN1 polarity, auxin would be transported in the inner tissues where it
would give rise to major veins. Here, we have tested predictions of this
hypothesis and have found them unsupported: epidermal PIN1
expression is neither required nor sufficient for auxin transport-
dependent vein patterning, whereas inner-tissue PIN1 expression
turns out to be both required and sufficient for auxin transport-
dependent vein patterning. Our results refute all vein patterning
hypotheses based on auxin transport from the epidermis and suggest
alternatives for future tests.

KEY WORDS: Arabidopsis thaliana, Leaf development, Vascular
patterning, Auxin, PIN genes, Necessity and sufficiency

INTRODUCTION

Most multicellular organisms solve the problem of long-distance
transport of signals and nutrients by means of tissue networks such
as the vascular system of vertebrate embryos and the vein networks
of plant leaves; therefore, how vascular networks form is a key
question in biology. In vertebrates, the formation of the embryonic
vascular system relies on direct cell-cell interaction and at least in
part on cell migration (e.g. Noden, 1988; Xue et al., 1999). Both
direct cell-cell interaction and cell migration are precluded in plants
by a wall that keeps cells apart and in place; therefore, vascular
networks form differently in plant leaves.

How leaf vein networks form is unclear, but available evidence
suggests that polar transport of the plant hormone auxin is
non-redundantly required for vein patterning (Mattsson et al.,
1999; Sieburth, 1999). Such non-redundant functions of polar auxin
transport in vein patterning in turn depend on non-redundant
functions of the PIN-FORMEDI1 (PIN1) auxin transporter
(Galweiler et al., 1998; Petrasek et al., 2006; Sawchuk et al.,
2013; Zourelidou et al., 2014; Verna et al., 2019). In developing
leaves, PIN1 polar localization at the plasma membrane of
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epidermal cells is directed toward single cells along the marginal
epidermis (Benkova et al., 2003; Reinhardt et al., 2003; Heisler
et al., 2005; Hay et al., 2006; Scarpella et al., 2006; Wenzel et al.,
2007; Bayer et al., 2009). These convergence points of epidermal
PIN1 polarity are associated with broad domains of PIN1 expression
in the inner tissue of the developing leaf; over time, these broad
domains will become restricted to the narrow sites where midvein
and lateral veins will form.

Consistent with these observations, the prevailing hypotheses of
vein patterning propose that convergence points of epidermal PIN1
polarity contribute to the formation of local peaks of auxin level in the
epidermis, and that auxin is transported by PIN1 from the epidermal
convergence points into the inner tissue of the leaf, where it will lead
to vein formation (reviewed by Prusinkiewicz and Runions, 2012;
Bennett et al., 2014; Runions et al., 2014; Linh et al., 2018). Similar
hypotheses propose that convergence points of epidermal PIN1
polarity lead to the positioning, growth and differentiation of flower
primordia; the positioning of leaf primordia; the formation of
dissected leaves; and the formation of leaf serrations (Benkova et al.,
2003; Reinhardt et al., 2003; Heisler et al., 2005; Hay et al., 2006;
Barkoulas et al., 2008). All these hypotheses share the prediction that
epidermal PIN1 expression is required for the process controlled by
PIN1. Such a prediction is supported by experimental evidence for all
those processes except vein patterning, for which the prediction has
not been tested (Bilsborough et al., 2011; Kierzkowski et al., 2013,
2019; Li et al., 2019 preprint).

Here we have tested this prediction and have found it
unsupported: unlike other PINI-dependent processes, epidermal
PIN1 expression is neither required nor sufficient for auxin
transport-dependent vein patterning; instead, PIN1 expression in
the inner tissues turns out to be both required and sufficient for auxin
transport-dependent vein patterning. Our results point to a
mechanistic difference between vein patterning and other auxin
transport-dependent processes, refute all the current hypotheses of
vein formation that depend on auxin transport from the epidermis,
and suggest alternatives for future testing.

RESULTS AND DISCUSSION

PIN1 expression during Arabidopsis vein patterning

In Arabidopsis leaf development, the formation of the midvein
precedes the formation of the first loops of veins (‘first loops’),
which in turn precedes the formation of the second loops (Mattsson
et al., 1999; Sieburth, 1999; Kang and Dengler, 2004; Scarpella
et al., 2004; Sawchuk et al., 2007) (Fig. 1A-C). The formation of
second loops precedes the formation of third loops and that of minor
veins in the area delimited by the midvein and the first loops
(Fig. 1C,D). Loops and minor veins form first near the top of the leaf
and then progressively closer to its bottom, and minor veins form
after loops in the same area of the leaf (Fig. 1B-D).

Consistent with previous reports (Benkova et al., 2003; Reinhardt
et al., 2003; Heisler et al., 2005; Scarpella et al., 2006; Sawchuk
et al., 2007, 2013; Wenzel et al., 2007; Bayer et al., 2009; Marcos
and Berleth, 2014; Verna et al., 2019), a fusion of the
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Fig. 1. PIN1 expression during Arabidopsis vein patterning. (A-N) Top
right: leaf age in days after germination (DAG). Abaxial side to the left in A,F,J.
(A-D) Midvein, loops and minor veins form sequentially during leaf
development (Mattsson et al., 1999; Sieburth, 1999; Kang and Dengler, 2004;
Scarpella et al., 2004; Sawchuk et al., 2007); increasingly darker grays depict
progressively later stages of vein development. Box in D illustrates the position
of close-ups in N, and in Figs 2D,J and 4D,J. (E) Map of PIN1::gPIN1:FP
expression in developing leaves. For simplicity, changes in expression level
occurring during vein development have not been represented. Dashed line
illustrates the position of the transverse section shown in the dashed box. See
text for details. (F-N) Confocal laser scanning microscopy with (F-M) or without
(N) transmitted light. Bottom left: reproducibility index, i.e. number of leaves
with the displayed inner-tissue expression (number of leaves with the
displayed epidermal expression)/number of leaves analyzed. Lookup tables in
F-I (rampin F) and in J-M (ramp in J). These visualize expression levels. Green
arrowheads in J-M and yellow arrowhead in N indicate epidermal expression;
white arrowhead in N indicates a convergence point of PIN1 polarity. ep,
epidermis; hv, minor vein; 1, first loop; 12, second loop; I3, third loop; mv,
midvein. Scale bars: 10 pmin F,J,N; 20 ymin G,K; 50 pmin H,L; 100 pmin |,M.

PIN-FORMEDI (PINI) open reading frame to YFP driven by the
PIN1 promoter (PIN1::gPIN1:YFP) (Xu et al., 2006) was expressed
in all the cells of the leaf at early stages of tissue development; over
time, however, epidermal expression became restricted to the
basalmost cells, and inner-tissue expression became restricted to
developing veins (Fig. 1E-I).

We asked whether PIN1::gPIN1:YFP expression were
recapitulated by the activity of the PINI promoter. To address this
question, we imaged expression of a nuclear YFP driven by the
PINI promoter (PIN1::nYFP) in first leaves 2, 2.5, 3 and 4 days
after germination (DAG).

Just like PINI1::gPIN1:YFP (Fig. 1E-I), PIN1:nYFP was
expressed in all the inner cells of the leaf at early stages of tissue
development, and over time this inner-tissue expression became
restricted to developing veins (Fig. 1J-M). However, unlike PIN1::
gPIN1:YFP and PIN1::gPIN1:CFP (Gordon et al., 2007) (Fig. 1E-I,
N), PIN1::nYFP was expressed in very few epidermal cells at the tip
of 2-DAG primordia and at the margin of 2.5-DAG primordia, and
this epidermal expression was very rare (Fig. 1J,K). PIN1::nYFP
expression in epidermal cells at the leaf margin was more frequent at
3 and 4 DAG but was still limited to very few cells (Fig. 1L-N).
Moreover, these PIN1::nYFP-expressing epidermal cells were not
those that contributed to convergence points of epidermal PIN1
polarity (Fig. IN).

Because a fusion of the PINI coding sequence to GFP driven by
the PIN1 promoter (PIN1::cPIN1:GFP) was hardly expressed in leaf
epidermal cells (Fig. 2C,D,LJ), we conclude that the already limited
activity of the PINI promoter in the leaf epidermis is suppressed by
the PINI coding sequence and that the leaf epidermal expression
characteristic of PIN1 is encoded in the introns of the gene.

Tissue-specific PIN1 expression in PINT non-redundant
functions in vein patterning

During leaf development, PIN1 is expressed in all the tissues — the
epidermis, the vascular tissue and the nonvascular inner tissue
(Fig. 1). We asked what the function in PINI/-dependent vein
patterning was of PIN1 expression in these tissues. To address this
question, we expressed the following in the wild-type and pinl
mutant backgrounds: (1) PIN1::gPIN1:GFP, which, like PIN1::
gPIN1:YFP and PIN1::gPIN1:CFP (Fig. 1E-I,N), is expressed in all
the tissues of the developing leaf (Fig. 2A,G); (2) cPIN1:GFP driven
by the epidermis-specific ARABIDOPSIS THALIANA MERISTEM
LAYERI promoter (Sessions et al., 1999) (ATML1::cPIN1:GFP)
(Fig. 2B,H); (3) PIN1::cPIN1:GFP, which is expressed in the leaf
inner tissues (Fig. 2C,D,1,J); (4) cPIN1:GFP driven by the vascular-
tissue-specific SHORT-ROOT promoter (Gardiner et al., 2011)
(SHR::cPIN1:GFP) (Fig. 2E,K); and (5) cPIN1:GFP driven by the
SCARECROW-LIKE32 promoter, which is active in the nonvascular
inner tissue of the leaf (Gardiner et al., 2011) (SCL32::cPIN1:GFP)
(Fig. 2F,L). We then compared vein patterns of mature first leaves of
the resulting backgrounds.

Consistent with previous reports (Sawchuk et al., 2013; Verna
et al., 2019), the vein patterns of nearly 50% of pinl leaves were
abnormal (Fig. 2M-P). The vein patterns of PIN1::gPIN1:GFP,
ATMLI1::cPIN1:GFP, PINI1::.cPIN1:GFP, SHR::cPIN1:GFP and
SCL32::cPIN1:GFP were no different from the wild-type vein
pattern (Fig. 2M-P). PIN1::gPIN1:GFP and PIN1::cPIN1:GFP
normalized the phenotype spectrum of pin/ vein patterns (Fig. 2M-
P; Fig. SIA,C), and SHR::cPIN1:GFP shifted the phenotype
spectrum of pinl vein patterns toward the wild-type vein pattern
(Fig. 2M-P; Fig. S1D). By contrast, the vein pattern defects of
ATMLI1::cPIN1:GFP;pinl and SCL32::cPIN1:GFP;pinl were no
different from those of pin! (Fig. 2M-P; Fig. S1B,E). We observed a
similar effect of tissue-specific PIN1 expression in PIN/-dependent
cotyledon patterning (Fig. S2).

Consistent with interpretation of similar findings in other
organisms (e.g. Cherbas et al., 2003; Soloviev et al., 2011,
Topalidou and Miller, 2017; Wisidagama et al., 2019), we
conclude that PIN1 expression in the epidermis is neither required
nor sufficient for PINI-dependent vein patterning. By contrast,
PIN1 expression in the inner tissues of the leaf is both required and
sufficient for PINI-dependent vein patterning. Such function of
PIN1 expression seems to mainly depend on PIN1 expression in the
vascular tissue: only PIN1 expression in the vascular tissue, and not
PINI1 expression in the nonvascular inner tissues of the leaf, is
required for PINI-dependent vein patterning. Even though it is only
the combined expression of PIN1 in the vascular and nonvascular
inner tissues of the leaf that is sufficient for PIN/-dependent vein
patterning, the contributions to such sufficiency of PIN1 expression
in the vascular tissue and of PIN1 expression in the nonvascular
inner tissues of the leaf are unequal: PIN1 expression in the vascular
tissue is sufficient for most of the PINI functions in vein patterning,
but PIN1 expression in the nonvascular tissues of the leaf is
sufficient for none.

Unlike for PINI-dependent vein patterning, PIN1 expression by
the ATMLI promoter is required and sufficient for the positioning,
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Fig. 2. Tissue-specific PIN1
expression in PIN1-dependent vein
patterning. (A-L) Confocal laser
scanning microscopy with (D,J) or without
(A-C,E-I,K,L) transmitted light; first leaves
4 DAG. Green, GFP expression; red,
autofluorescence. Yellow arrowheads in
A,G indicate epidermal expression.
Bottom left: reproducibility index, i.e.
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growth and differentiation of flower primordia (Bilsborough et al.,
2011; Kierzkowski et al., 2013, 2019; Li et al., 2019 preprint). We
therefore asked whether our ATMLI1::cPIN1:GFP construct
normalized, as previously reported ATMLI1::gPIN1:GFP
constructs did (Bilsborough et al., 2011; Kierzkowski et al., 2013,
2019), the pin-shaped inflorescence phenotype of pinl. We found
that ATMLI1::cPIN1:GFP and PIN1::;gPIN1:GFP did but that
PIN1::cPIN1:GFP, SHR::.cPIN1:GFP and SCL32::cPIN1:GFP
failed to do so (Fig. S3). These findings exclude the possibility
that the inability of ATML1::cPIN1:GFP to rescue the vein pattern
defects of pinl is an experimental artifact and instead point to a
mechanistic difference between vein patterning and the positioning,
growth and differentiation of flower primordia.

Expression of PIN3, PIN4 and PIN7 during vein patterning

Collectively, PIN3, PIN4 and PIN7 act redundantly with PINI in
PINI-dependent vein patterning, and like PINI they are expressed
in both epidermis and inner tissues of young leaves (Verna et al.,
2019). In those leaves, however, the most reproducible features of
the Arabidopsis vein pattern can already be recognized (Donner
et al., 2009; Gardiner et al., 2010, 2011; Donner and Scarpella,
2013; Sawchuk et al., 2013; Verna et al., 2015; Amalraj et al., 2020;
Verna et al, 2019). Therefore, to test the possibility that
compensatory functions provided by PIN3, PIN4 and PIN7 might
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account for the observation that PIN1 expression in the epidermis is
dispensable and that PIN1 expression in the inner tissues of the leaf
is sufficient for PINI-dependent vein patterning, we first asked what
the expression of PIN3, PIN4 and PIN7 was during vein patterning.
To address this question, we imaged expression of PIN3::gPIN3:
YFP, PIN4::gPIN4:YFP and PIN7::gPIN7:YFP in first leaves 2,
2.5, 3 and 4 DAG. As shown in Fig. 3 and quantified in Table S1,
PIN3, PIN4 and PIN7 are collectively expressed in the epidermis, in
developing veins, and — more weakly — in the nonvascular inner
tissue of the leaf during vein patterning.

Tissue-specific PIN1 expression in PINT redundant functions
in vein patterning

Collectively, PIN3, PIN4 and PIN7 act redundantly with PIN/ in
PINI-dependent vein patterning (Verna et al., 2019), and they are
expressed in the leaf epidermis and inner tissues during
vein patterning (Fig. 3). Therefore, to test the possibility that
compensatory functions provided by PIN3, PIN4 and PIN7 may
account for the observation that PIN1 expression in the epidermis is
dispensable and that PIN1 expression in the inner tissues of the leafis
sufficient for PINI-dependent vein patterning, we next expressed the
following in the pin3;pin4;pin7 (pin3;4;7 hereafter) and pinl,3;4;7
mutant backgrounds: (1) PIN1::gPIN1:GFP, which is expressed in all
the tissues of the developing leaf (Fig. 4A,G); (2) ATMLI1::cPIN1:
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PIN3::gPIN3:YFP

Fig. 3. Expression of PIN3, PIN4 and PIN7 during vein patterning.

(A-L) Confocal laser scanning microscopy. Top right, leaf age in DAG; bottom
left, reproducibility index, i.e. number of leaves with the displayed expression/
number of leaves analyzed. Lookup table (ramp in 1) visualizes expression
levels. Abaxial side to the left in A,E,l. Scale bars: 30 um in A,B,E,F,1,J;

60 um in C,D,G,H,K,L.

GFP, which is only expressed in the epidermis (Fig. 4B,H); (3) PIN1::
cPIN1:GFP, which is expressed in the leaf inner tissues (Fig. 4C,D,LJ);
(4) SHR::cPIN1:GFP, which is only expressed in the vascular tissue
(Fig. 4E,K); and (5) SCL32::cPIN1:GFP, which is expressed in the
nonvascular inner tissue of the leaf (Fig. 4F,L). We then compared
vein patterns of mature first leaves of the resulting backgrounds.
As previously shown (Verna et al., 2019), the vein pattern of
pin3;4;7 was no different from that of wild type, and none of the
pinl,3;4;7 leaves had a wild-type vein pattern (Fig. 4M-P). The vein
patterns of PIN1::gPIN1:GFP;pin3;4;7, ATMLI1::cPIN1:GFP;
pin3;4;7, PIN1::cPIN1:GFP;pin3;4;7, SHR::cPIN1:GFP;pin3;4;7,
and SCL32::cPIN1:GFP;pin3;4;7 were no different from the wild-
type vein pattern (Fig. 4M-P). Both PIN1::gPIN1:GFP and PIN1::
cPIN1:GFP normalized the phenotype spectrum of pinl,3;4;7 vein
patterns (Fig. 4M-P; Fig. S4A,C), and SHR::cPIN1:GFP shifted the
phenotype spectrum of pinl,3;4;7 vein patterns toward the wild-type
vein pattern to match the phenotype spectrum of pin/ vein patterns
(Fig. 4M-P; Fig. S4D; compare with Fig. 2M-P). By contrast, the
vein pattern defects of ATMLI::cPIN1:GFP;pini,3;4;7 and
SCL32::cPIN1:GFP;pin3;4;7 were no different from those of
pinl,3;4;7 (Fig. 4M-P; Fig. S4B,E). We observed a similar effect
of tissue-specific PINI expression on the component of cotyledon
patterning that depends on PIN1, PIN3, PIN4 and PIN7 (Fig. S5).
Therefore, that PIN1 expression in the epidermis is dispensable and
that PIN1 expression in the inner tissues of the leaf is sufficient for
PINI-dependent vein patterning cannot be accounted for by
compensatory functions provided by PIN3, PIN4 and PIN7. Such
compensatory functions are also unlikely to be provided by the
remaining PIN proteins, by the ABCB1 and ABCB19 auxin efflux
carriers or by the AUX1/LAX auxin influx carriers because these

proteins either are not expressed in the epidermis or lack functions
in vein patterning, whether in normally grown wild-type or in
auxin-transport-inhibited leaves (Sawchuk et al., 2013; Verna
et al., 2015, 2019). As such, we conclude that auxin transport in
the epidermis is dispensable for vein patterning. This conclusion
is consistent with the observation that cup-shaped cotyledon2
mutants lack convergent points of epidermal PIN1 polarity and
yet have normal vein patterns (Bilsborough et al., 2011).

By contrast, PIN1 expression in inner tissues is required and
sufficient for auxin transport-dependent vein patterning. Such function
of PIN1 expression seems to mainly depend on PIN1 expression in the
vascular tissue. Indeed, only PIN1 expression in the vascular tissue,
and not PIN1 expression in the nonvascular inner tissues of the leaf, is
required for auxin transport-dependent vein patterning. Furthermore,
PIN1 expression in the vascular tissue is sufficient for most of the PIN
functions in vein patterning, but PIN1 expression in the nonvascular
tissues of the leaf is sufficient for none. Because PIN1 localization is
strongly polarized in vascular cells and only weakly polarized, or
altogether nonpolarized, in the inner nonvascular cells of the leaf
(Scarpella et al., 2006; Wenzel et al., 2007; Bayer et al., 2009; Marcos
and Berleth, 2014), our observations also suggest that auxin transport-
dependent vein patterning is sink driven. As such, our results are
consistent with the conceptual framework of the auxin canalization
hypothesis, which proposes formation of vascular strands through the
autocatalytic drainage from nonvascular cells of an auxin-dependent
inductive signal (Sachs, 1969).

In conclusion, vein patterning hypotheses based on auxin transport
from the epidermis (reviewed by Prusinkiewicz and Runions, 2012;
Bennett et al., 2014; Runions et al., 2014; Linh et al., 2018) are
unsupported by experimental evidence. Our results do not rule out an
influence of'the epidermis on vein patterning, e.g. through local auxin
production (e.g. Abley et al., 2016), but they do exclude the
possibility that such influence is brought about by polar auxin
transport. Alternatively, patterning of local epidermal features, such
as peaks of auxin production or response, and of the processes that
depend on those features may be mediated by auxin transport in
underlying tissues; there is evidence for such possibility (e.g. Deb
et al., 2015) and our results are consistent with that evidence. In the
future, it will be interesting to test these and other possibilities, but for
now our results refute all the vein patterning hypotheses that depend
on auxin transport from the epidermis.

MATERIALS AND METHODS

Notation

In agreement with Crittenden et al. (1996), linked genes [<2500 kb apart,
which in Arabidopsis thaliana on an average corresponds to ~10 ¢cM
(Lukowitz et al., 2000)] are separated by a comma; unlinked genes are
separated by a semicolon.

Plants

The origin and nature of lines, genotyping strategies and oligonucleotide
sequences are in Tables S2-S4. Seeds were sterilized and sown as described
previously (Sawchuk et al., 2008). Stratified seeds were germinated
and seedlings and plants were grown as described previously (Verna
etal., 2019). Plants were transformed and representative lines were selected
as described by Sawchuk et al. (2008).

Imaging

Developing leaves were mounted and YFP was imaged as described
previously (Sawchuk et al., 2013). CFP, YFP and autofluorescence were
imaged as described previously (Sawchuk et al., 2013). GFP and
autofluorescence were imaged as described previously (Amalraj et al.,
2020). Images were stacked, aligned with the Scale Invariant Feature
Transform algorithm (Lowe, 2004), and maximum-intensity projection
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Fig. 4. Tissue-specific PIN1 expression in PIN1/PIN3/PIN4/PIN7-dependent vein patterning. (A-L) Confocal laser scanning microscopy with (D,J) or without
(A-C,E-I,K,L) transmitted light; first leaves 4 DAG. Green, GFP expression; red, autofluorescence. Yellow arrowheads in A,G indicate epidermal expression.
Bottom left: reproducibility index, i.e. number of leaves with the displayed inner-tissue expression (number of leaves with the displayed epidermal expression/
number of leaves analyzed). (M-O) Dark-field illumination of mature first leaves illustrating phenotype classes (top right): class 1V, I-shaped midvein and thick veins
(M); class V, Y-shaped midvein and thick veins (N); class VI, fused leaves with thick veins (O). (P) Percentages of leaves in phenotype classes. Differences
between pin1,3;4;7 and wild type, between PIN1::gPIN1:GFP;pin1,3;4;7 and pin1,3;4;7, between PIN1::cPIN1:GFP;pin1,3;4;7 and pin1,3;4;7, between SHR::
cPIN1:GFP;pin1,3;4,7 and pin1,3;4;7, and between SHR::cPIN1:GFP;pin1,3;4,7 and pin1,3;4;7 were significant (***P<0.001 by Kruskal-Wallis and Mann-
Whitney test with Bonferroni correction). Sample population sizes: wild type 48; pin3;4;7, 45; pin1,3;4,7, 70; PIN1::gPIN1:GFP;pin3;4;7, 60; ATML1::cPIN1:GFP;
pin3;4;7, 37; PIN1::cPIN1:GFP;pin3;4,7, 28; SHR::cPIN1:GFP;pin3;4;7, 50; SCL32::cPIN1:GFP;pin3;4;7, 38; PIN1::gPIN1:GFP;pin1,3;4;7, 45; ATML1::cPIN1:
GFP;pin1,3;4;7, 57; PIN1::cPIN1:GFP;pin1,3,;4;7, 53; SHR::cPIN1:GFP;pin1,3;4,7, 62; SCL32::cPIN1:GFP;pin1,3;4,7, 69. e, epidermis. Scale bars: 60 pmin A-
C,E-I,K,L; 20 ym in D,J; 0.75 mm in M-O.

I

0

Blilou and Ben Scheres for pin3-3, pin4-2 and pin75"; Megan Sawchuk for PIN1::

was applied to aligned image stacks in the Fiji distribution (Schindelin
nYFP; and Jian Xu and Ben Scheres for PIN1::gPIN1:YFP and PIN1::gPIN1:GFP.

et al., 2012) of ImagelJ (Schneider et al., 2012; Schindelin et al., 2015;
Rueden et al., 2017). Mature leaves were fixed in ethanol:acetic acid
(6:1), rehydrated in 70% ethanol and water, and mounted in chloral
hydrate:glycerol:water (8:2:1). Mounted leaves were imaged as
described previously (Odat et al., 2014). Greyscaled RGB color
images were turned into 8-bit images, and image brightness and
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