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ABSTRACT

The formation of multi-nucleated muscle fibers from progenitors requires
the fine-tuned and coordinated regulation of proliferation, differentiation
and fusion, both during development and after injury in the adult. Although
some of the key factors that are involved in the different steps are well
known, how intracellular signals are coordinated and integrated is largely
unknown. Here, we investigated the role of the cell-growth regulator
mTOR by eliminating essential components of the mTOR complexes 1
(MTORC1) and 2 (mTORC2) in mouse muscle progenitors. \We show that
inactivation of MTORCA1, but not mTORC?2, in developing muscle causes
perinatal death. In the adult, mMTORC1 deficiency in muscle stem cells
greatly impinges on injury-induced muscle regeneration. These
phenotypes are because of defects in the proliferation and fusion
capacity of the targeted muscle progenitors. However, mMTORC1-deficient
muscle progenitors partially retain their myogenic function. Hence, our
results show thatmTORC1 and not mTORC2 is an important regulator of
embryonic and adult myogenesis, and they point to alternative pathways
that partially compensate for the loss of mMTORC1.

This article has an associated ‘The people behind the papers’ interview.
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INTRODUCTION
Myogenesis is a tightly controlled process that results in the formation
of skeletal muscle in several distinct myogenic waves. During
development, mesodermal progenitors that express the paired box
protein-3 and -7 (Pax3 and Pax7) give rise to myoblasts, which
successively express a set of myogenic regulatory factors [MRFs; such
as Myf5, MyoD (Myodl) or myogenin], fuse and differentiate into
post-mitotic ~ multi-nucleated muscle fibers (Deries and
Thorsteinsdottir, 2016). Whereas the embryonic wave gives rise to
primary myofibers, the fetal wave, starting at around embryonic day (E)
14.5 in mouse, generates secondary myofibers (Biressi et al., 2007).
Many of the mechanisms of embryonic myogenesis are recapitulated
during muscle regeneration upon injury in the adult. Adult myogenesis
relies on quiescent Pax7-positive muscle stem cells, called satellite
cells, that become activated and, through multiple differentiation and
fusion steps, ensure efficient muscle repair (Dumont et al., 2015).
The mammalian (or mechanistic) target of rapamycin (mTOR) is
a protein serine/threonine kinase that assembles into two structurally

Biozentrum, University of Basel, CH-4056 Basel, Switzerland.

*Present address: Toronto Recombinant Antibody Centre/The Donnelly Centre,
University of Toronto, Toronto, ON M5G 1L6, Canada. *Present address: Institute of
Biochemistry I, School of Medicine, Goethe University, 60598 Frankfurt am Main,
Germany.

SAuthor for correspondence (markus-a.ruegg@unibas.ch)

M.A.R., 0000-0002-4974-9384

Received 4 October 2018; Accepted 4 March 2019

and functionally distinct multi-protein complexes, mTOR complex
1 (mTORC1) and mTOR complex 2 (mTORC2), which contain the
essential components raptor and rictor, respectively (Saxton and
Sabatini, 2017). Whereas mTORC1 senses nutrients and growth
factors and functions as a central regulator of cell growth by
balancing protein synthesis and protein degradation, mTORC2
controls cytoskeletal remodeling, cell metabolism and survival
(Saxton and Sabatini, 2017). Although whole-body knockouts of
Mtor, Rptor or Rictor in mice are all embryonic lethal (Gangloff
et al., 2004; Guertin et al., 2006; Murakami et al., 2004), the
phenotypes that are caused by tissue-specific ablations of these
genes largely differ between tissues. In skeletal muscle, loss of
Rptor and Mtor causes very similar phenotypes that are dominated
by muscle atrophy and a severe myopathy that results in early death
of the mice (Bentzinger et al., 2008; Risson et al., 2009). In contrast,
skeletal muscle-specific Rictor knockout mice do not display any
overt phenotype, but their muscles show metabolic changes, such as
a greater reliance on lipids and an increased lipid content (Kleinert
et al., 2016).

In the past, mTOR signaling has frequently been investigated
using its name-giving inhibitor rapamycin. Rapamycin selectively
blocks TORCI in yeast, but also inhibits mMTORC2 activity in
mammalian cells upon prolonged exposure (Sarbassov et al., 2006).
Therefore, genetic modifications are better suited in teasing apart
differential functions of mTORCI1 and mTORC2. Short-term
application of rapamycin was shown to inhibit proliferation of
C2C12 myoblasts before differentiation (Conejo and Lorenzo,
2001). On the other hand, rapamycin treatment does not affect
satellite cell proliferation after freeze-injury in adult mice (Miyabara
et al., 2010). In addition, rapamycin has been reported to interfere
with fusion of cultured C2C12 myoblasts (Coolican et al., 1997,
Cuenda and Cohen, 1999; Pollard et al., 2014). This ‘rapamycin-
inhibited’ role of mTOR in early differentiation is independent of its
kinase domain and has been postulated to be based on mTOR-
dependent regulation of IGF2 expression (Erbay and Chen, 2001;
Erbay et al., 2003). However, fusion and maturation of myotubes
require the kinase activity of mTOR in vitro and in vivo (Ge et al.,
2009; Park and Chen, 2005). The lack of selectivity of rapamycin
makes it difficult to conclude that the reported effects are solely
based on mTORCI activity, especially as mTORC2 has also been
implicated in myoblast fusion in vitro but not in vivo (Ge et al.,
2011; Pollard et al., 2014; Hung et al., 2014). Hence, the
physiological roles of mMTORC1 and mTORC2 during embryonic
and adult myogenesis remain unclear.

Here, we developed mouse lines that separately delete Rptor and
Rictor in embryonic and adult muscle progenitors. We found that
inactivation of mTORCI1, but not of mTORC?2, affects muscle
development and results in perinatal lethality due to respiratory
failure. Similarly, selective inactivation of mTORC1 (by Rptor
deletion) in adult satellite cells results in a severe deficit in muscle
regeneration after cardiotoxin (ctx)-induced muscle injury. The
myogenic phenotypes that are caused by the loss of mTORCI1
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signaling are paralleled by defects of raptor-depleted myoblasts to
proliferate and differentiate in culture. Importantly, we also show
that raptor-depleted muscle precursors are still able to form
myofibers despite the impairment in myogenesis. Our data thus
demonstrate an important contribution of mTORC1 and not of
mTORC2 to embryonic and adult myogenesis, and they unveil the
existence of alternative pathways that can compensate for the loss of
mTORCI.

RESULTS

Depletion of raptor impairs muscle development

Recent evidence has indicated that mTORC1 becomes activated in
adult satellite cells upon injury (Rodgers et al.,, 2014). As the
activation state of mTORC1 during embryonic myogenesis is
unknown, we first stained cross-sections of mice at embryonic day
11.5 (E11.5) for the phosphorylated form of S6, which is indicative of
active mMTORC1 (Saxton and Sabatini, 2017). The different stages of
cell differentiation were distinguished with antibodies to Pax7
(muscle progenitors), MyoD (myoblasts), myogenin (myocytes)
and embryonic myosin heavy chain (embMHC, myotubes).
Although ~80% of the Pax7- and MyoD-positive cells were also
phospho-S6-positive, only a minority of the myogenin- and almost
none of the embMHC-positive cells showed phospho-S6 staining
(Fig. 1A-E). These results indicate that mTORCI activity is high
during the proliferative phase of embryonic myogenesis and low
during cell fusion and fiber maturation.

To understand the role of mTORCI1 and mTORC2 during
myogenesis, we generated mice that were deficient for Rpfor or
Rictor in skeletal muscle progenitors by crossing Myf5—Cre mice
(Tallquist et al., 2000) with mice that carried floxed alleles for Rptor
or Rictor (Bentzinger et al., 2008). The Myf5 gene starts to be
expressed in skeletal muscle progenitors at E§ (Ott et al., 1991).
Mice that express Cre and are homozygous for the floxed Rptor
allele (Myf5"/C"¢; Rptor™), herein called RAmyfKO (for raptor-
Myf5-knockout), were born at the expected Mendelian ratio but died
immediately after birth (Fig. 2A). In contrast, RImyfKO mice (for
rictor-Myf5-knockout; Myf5 /€, Rictor™") were viable and
showed a normal overall muscle histology at young age (Fig. 2B).
The cyanotic appearance of the dead RAmyfKO mice suggested a
failure to breathe. Indeed, lungs from mutant mice were not inflated
and their diaphragm muscle was thinner than in controls (Fig. S1A).
In addition, neuromuscular junctions did not form properly, with
motor axons overshooting the sites of high acetylcholine receptor
(AChR) density (Fig. S1B,C). Moreover, many AChR clusters not
in contact with motor nerves were visible in RAmyfKO embryos
(Fig. S1C), which is a common phenotype in mice with aberrant
neuromuscular junction formation (Tintignac et al., 2015). These
results suggested a role of mMTORC1 but not mMTORC2 in embryonic
myogenesis.

We next examined raptor mutant embryos at different stages. As
early as E13.5, body weight of RAmyfKO embryos was significantly
lower than that of controls (Fig. 2C). Embryos that were heterozygous
for the targeted Rptor allele (Myf5'<™; Rptor'”; termed Het-
RAmyfKO) showed no change in body weight and could not be
distinguished from controls (Fig. S2A). The weight reduction of
E18.5 RAmyfKO embryos was not accompanied by an overall
reduction in body size (Fig. S2B) or in the length of the long bones
(Fig. S2C) compared with control littermates. Only the rib cage was
obviously smaller in RAmyfKO embryos (Fig. S2B), which may be
caused by changes in the development of the myotome (Vinagre
et al., 2010). Although the different muscle groups had formed in
E18.5 RAmyfKO embryos, they were clearly smaller than in controls
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Fig. 1. Activation status of mTORC1 during embryonic myogenesis.
(A-D) Immunostaining against phospho-S6 Ser235/236, an indicator of
mTORC1 activity, and Pax7 (A), MyoD (B), myogenin (C) and embMHC (D) on
cross-sections of control (Ctrl) embryos at E11.5. (E) Percentage of phospho-
S6-positive cells in the population of muscle progenitors (Pax7™*), precursors
(MyoD™), myocytes (myogenin*) and myotubes (embMHC*) (n=3). Data are
meanzs.e.m. Scale bars: 50 pm.

(Fig. 2D,E). Moreover, RAmyfKO embryos showed a more
pronounced accumulation of fat droplets in muscle (Fig. 2F).
Interestingly, at E18.5, mRNA levels of all MRFs, except Myf5,
were similar in muscle tissues of RAmyfKO and control embryos
(Fig. 2G). Similarly, expression of skeletal muscle markers, such as
Myh3 (which encodes embryonic myosin heavy chain) and Des
(which encodes desmin), was unaltered in mutant embryos (Fig. 2G).
The 50% reduction in Myf5 expression in muscle from EI18.5
RAmyfKO embryos was most probably based on the inactivation
of one copy of the Myf5 gene, as its expression is also lower in
Het-RAmyfKO embryos (Fig. S2D). In contrast, the effect on muscle
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Fig. 2. Ablation of raptor severely impairs embryonic muscle development. (A) Photograph of control (Ctrl) (Myf5**; Rptor”™) and RAmyfKO (Myf5*/¢"e;
Rptor™™) pups at postnatal day (P) 0. (B) H&E coloration of TA muscle cross-sections of 2-month-old Ctrl (Myf5*'*; Rictor”") and RImyfKO (Myf5*/cre;
Rictor™™) mice. (C) Body weight of Ctrl and RAmyfKO embryos at the indicated ages (n=11/12/7 for Ctrl and 7/15/8 for RAmyfKO embryos at E13.5/15.5/18.5,
respectively). (D) H&E coloration of cross-sections of Ctrl and RAmyfKO embryos at E18.5. Magnification of boxed area is shown on the right. (E) Immunostaining
against embMHC (red) and desmin (green) of cross-sections of E18.5 Ctrl and RAmyfKO quadriceps muscles. Dotted lines delineate the quadriceps muscle.
(F) Oil Red O staining of hindlimb cross-sections of E18.5 Ctrl and RAmyfKO embryos. Fat droplet (red) accumulation is more pronounced in RAmyfKO
muscle. Magnification of boxed area is shown on the right. (G) Relative mRNA levels of Pax7, Myf5, Myod1, Myog, Myh3 and Des in hindlimbs from E18.5 Ctrl and
RAmyfKO embryos. Normalization to Actb levels (n=5). Data are meants.e.m. *P<0.05, **P<0.01, Student’s t-test. See also Figs S1 and S2. F, femur;

Q, quadriceps; T, tibia. Scale bars: 50 um in B,F; 200 ym in D; 100 pm in E.

size in the RAmyfKO mice was due to the depletion of raptor
from muscle precursors as skeletal muscle of Het-RAmyfKO and
Myf5+€¢ embryos was indistinguishable from their respective
controls (Fig. S2E.F). These results indicate that mTORCI
inactivation in RAmyfKO embryos impairs but does not abrogate
the development of skeletal muscle fibers. Of note, brown adipose
tissue, which also expresses Myf5 (Seale et al., 2008), was strongly
reduced in RAmyfKO embryos (Fig. S2G), indicating that raptor
depletion in brown adipocytes affects the development of the tissue.
Altogether, these data show that the depletion of raptor in muscle
progenitors strongly impinges on the development of skeletal muscle
fibers, but does not abolish their formation.

mTORC1 inactivation affects the first wave of myogenesis

To understand the muscle defects that were observed in E18.5
RAmyfKO embryos, we examined whether mTORC1 inactivation
affected the first wave of myogenesis. At E11.5, the area covered by
Pax7-positive progenitors was similar in control and mutant embryos
(Fig. 3A). However, there were fewer embMHC-positive myotubes
in RAmyfKO embryos than in controls (Fig. 3B). We confirmed that
Pax7-positive cells in E11.5 RAmyfKO embryos were negative for
phospho-S6 (Fig. S3A,B, compared with Fig. 1). Similarly, little
phospho-S6 was seen in MyoD-, myogenin- and embMHC-positive
cells of RAmyfKO embryos (Fig. S3B-E). Thus, the vast majority of
the muscle cells in E11.5 RAmyfKO embryos are depleted for raptor,
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Fig. 3. First wave of myogenesis is altered in the absence of raptor. (A,B) Imnmunostaining against Pax7 (red, A) orembMHC (red, B) and laminin (green) of
cross-sections of E11.5 or E13.5 control (Ctrl) and RAmyfKO embryos. Arrows point to muscle progenitors in the dermomyotome and hindlimbs. The
dotted line highlights the myotome, which is formed by primary myotubes. (C) Area of the myotome (embMHC-positive region) in cross-sections of E11.5 and
E13.5 Ctrl and RAmyfKO embryos (n=3; except for Ctrl E11.5, n=4). (D) Relative mRNA levels of Pax7, Myod1, Myog and Myh3in E11.5 and E13.5
Ctrl and RAmyfKO embryos. Normalization to Actb levels (n=5). (E) Immunostaining against Pax7 (red) and TUNEL (green) of cross-sections of E12.5 Ctrl and
RAmyfKO embryos. TUNEL-positive nuclei (arrowhead) detected in Ctrl and RAmyfKO embryos did not colocalize with Pax7-expressing progenitors.
Magnification of boxed area is shown on the right. Data are meanzts.e.m. *P<0.05, **P<0.01, ***P<0.001, Student’s t-test. See also Fig. S3. Scale bars: 100 um.

suggesting that such cells do contribute to muscle fibers. The trend
towards fewer myogenic cells in RAmyfKO embryos became more
pronounced at E13.5 and affected both Pax7- and embMHC-positive
cells (Fig. 3A,B). At this stage, the size of the myotome, measured by
the area of embMHC-positive primary myofibers, was significantly
smaller in RAmyfKO than in control embryos (Fig. 3C).
Consistently, at E11.5 and E13.5, mRNA levels of MRFs and
myogenic markers were significantly lower in RAmyfKO embryos
than in controls (Fig. 3D). Notably, E13.5 Het-RAmyfKO
embryos showed no difference in muscle formation and in the

levels of transcripts encoding MRFs when compared with controls
(Fig. S3F-I), indicating that Myf5 haploinsufficiency does not cause
defects in early muscle development. These results show that
mTORCI inactivation affects the first wave of myogenesis, but does
not completely prevent the formation of primary myofibers.
Importantly, the defects observed were not due to increased
apoptosis of raptor-depleted myogenic cells (Fig. 3E). This
result indicates that mTORC1-deficient myoblasts are viable and
capable of contributing to the muscle lineage, but with markedly
lower efficacy.
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RAmyfKO embryos contain myogenic cells that escape
Cre-mediated raptor depletion

To assess that raptor-depleted progenitors contributed to the
formation of secondary myofibers in E18.5 RAmyfKO embryos,
we used EGFP reporter mice, called mR26CSFSFP (Tchorz et al.,
2012). Whereas hindlimb muscle of control embryos (Myf5**;
Rptor™"; mR26CSFFT/*) did not express EGFP, all muscle fibers in
Het-RAmyfKO embryos (Myf5<¢*; Rptor™*; mR26CSEOIT/+)
were positive for EGFP (Fig. 4A). The intensity of the EGFP
staining varied between muscle fibers in Het-RAmyfKO muscle
(Fig. 4A). Interestingly, in hindlimb muscle of RAmyfKO embryos
(Myf5°7¢*; Rptor™"; mR26CSEOF'™), only around half of the fibers
expressed EGFP strongly (Fig. 4A). Notwithstanding, some fibers
were negative for EGFP, indicating that they had never expressed
the Cre recombinase and thus continue to express raptor. In control
embryos, high phospho-S6 immunoreactivity was seen in few
muscle fibers (Fig. 4B, arrowheads). In RAmyfKO embryos,
myofibers with strong EGFP staining (RAmyfKO EGFPhigh)
appeared to be negative for phospho-S6 staining (Fig. 4B;
asterisks), whereas muscle fibers with weak EGFP staining
(RAmyfKO EGFP'%) were often phospho-S6 positive (Fig. 4B;
arrowheads). Quantification showed that the difference in phospho-
S6 staining in RAmyfKO embryos was highly significant when
comparing EGFP"#h with EGFP™Y myofibers (Fig. 4C). To see
whether depletion of raptor and thus inactivation of mTORCI1
would alter mTORC?2 signaling, we also examined the activation
state of protein kinase Co., which is a bona fide mTORC2 target. As
shown in Fig. 4D and Table S1, both phosphorylation at Ser 657 and
the protein levels were unchanged in RAmyfKO muscle. Thus, as
has been previously shown for skeletal muscle fibers depleted of
raptor (Bentzinger et al., 2008), there is no compensatory increase in
mTORC2 activity. In summary, these results indicate that
RAmyfKO embryos contain myofibers depleted for raptor and
some that escaped Myf5-Cre-mediated recombination.

To separate recombined from non-recombined cells, we next
isolated myogenic cells from hind- and forelimbs of E18.5 embryos
and determined the proportion of EGFP-positive and -negative cells
(Fig. 4E). No recombination was observed in cells from control
Myf5** embryos as all cells were EGFP-negative (Fig. 4F).
In Cre-expressing control (Ctrl EGFP'; Myf5<*; Rptor™*;
mR26CSECTT") and Het-RAmyfKO embryos, ~80% of the
sorted cells expressed EGFP (Fig. 4E,F). In stark contrast, only
23% of the myogenic cells that were isolated from RAmyfKO
embryos were EGFP-positive (Fig. 4E,F). To test whether EGFP-
positive cells also recombined loxP sites at the Rpfor locus, freshly
sorted cells were genotyped using specific primers (see Fig. 4G). Asa
control (Ctrl EGFP™), we used genomic DNA from myogenic cells
that were heterozygous for the floxed Rptor allele but did not express
Cre. In EGFP-negative myoblasts from Het-RAmyfKO embryos,
only the floxed Rptor allele (Fig. 4H, PCR P1-P2) but no recombined
Rptor allele (Fig. 4H, PCR P1-P3) was detected as in genomic DNA
from controls. In contrast, EGFP-positive myoblasts from Het-
RAmyfKO and RAmyfKO embryos were negative for the floxed
Rptor allele but positive for the Rpror allele after recombination
(Fig. 4H, PCR P1-P3). The band that corresponds to the recombined
Rptor allele in RAmyfKO EGFP-negative myoblasts (Fig. 4H) is
probably because of contamination by some EGFP-positive cells.
Hence, the expression of EGFP in RAmyfKO embryos is a reliable
marker for successful recombination of the floxed Rpfor allele. The
increased proportion of non-recombined myoblasts in EI8.5
RAmyfKO embryos points to a competitive disadvantage of raptor-
depleted myogenic cells.

Loss of mTORC1 slows down, but does not abolish,
proliferation and differentiation of myoblasts

To determine the stages of myogenesis that require functional
mTORC1, EGFP-positive and -negative cell populations were
FACS-isolated, plated at the same density and cultured under
growth conditions for 2 days. As mTORCI is a key regulator of
translation initiation, we measured the rate of protein synthesis using
the surface sensing of translation (SUnSET) method, which uses the
incorporation of puromycin as a readout (Goodman and Hornberger,
2013). EGFP-positive myoblasts from Het-RAmyfKO embryos
incorporated puromycin to a similar extent as control cells (EGFP-
negative), whereas puromycin incorporation was significantly lower in
EGFP-positive myoblasts that were isolated from RAmyfKO embryos
(Fig. 5A,B). Moreover, after 48 h in culture, a pulse assay with 5-
bromo-2’-deoxyuridine (BrdU) revealed a more than 50% reduction in
proliferation of EGFP-positive RAmyfKO myoblasts, compared with
control cells (Fig. 5C,D). To examine the ability of raptor-depleted
cells to transit from proliferation to differentiation and then fuse,
myoblasts were switched from proliferation to differentiation medium.
Fourteen hours after this medium change, only ~4% of the cells were
still proliferating, irrespective of the genotype (Fig. SE). However,
after 72 h, fusion of EGFP-positive RAmyfKO myoblasts was limited
compared with control cells (Fig. 5F), which was reflected by their
significantly lower fusion index (Fig. 5G). In Het-RAmyfKO, EGFP-
positive cells did not show any difference in the fusion index
compared with controls (Fig. 5G), indicating that Myf5
haploinsufficiency does not affect the fusion of myoblasts.
Although differentiation of EGFP-positive RAmyfKO myoblasts
was impaired, some myotubes with a low number of nuclei still
formed (Fig. 5H). This phenotype was specific to mTORCI function,
as no deficits in proliferation and differentiation were observed in
rictor-depleted (i.e. mMTORC2-deficient) myoblasts isolated from 2- to
3-week-old RImyfKO mice (Fig. S4A-G, Table S2). These results
show that inactivation of mTORCI, but not of mMTORC?2, interferes
with, but does not completely prevent, myoblast proliferation and
differentiation. Based on the puromycin experiment, this defect is
likely because of limited protein synthesis, which is consistent with the
view that both processes require active protein synthesis (Pallafacchina
etal., 2013).

mTORC1 signaling in adult muscle stem cells

To determine whether mTORC1 deregulation also affects muscle
stem cell function in the adult, and thereby muscle regeneration,
we generated a new mouse model (Pax7<"ERT2/*: Rptor™,
mR26CSECFP/EGEP)  herein called RAscKO (for raptor satellite
cell knockout). In these animals, recombination of the floxed Rptor
alleles and the expression of EGFP reporter are induced in quiescent
satellite cells by tamoxifen (tmx) injections. Mice were analyzed 10
or 90 days after tmx treatment (Murphy et al., 2011) (Fig. 6A). No
EGFP staining (i.e. no recombination) was detected in mice without
tmx treatment or with no Cre expression (Fig. S5A). In contrast,
strong EGFP expression was observed 10 days after tmx treatment
in Pax7-positive satellite cells of RAscKO mice (Fig. 6B).
Quantification by FACS showed that ~86% of the isolated
myogenic cells expressed EGFP (Fig. S5B). As in RAmyfKO
myoblasts, PCR on genomic DNA that was isolated from EGFP-
positive satellite cells showed successful recombination of the
floxed Rptor alleles in RAscKO cells (Fig. S5C). Interestingly,
mTORCI inactivation did not significantly alter the number of
Pax7-positive satellite cells in tibialis anterior (TA) muscle from
RAscKO mice 10 or 90 days after tmx treatment (Fig. 6C,D). These
data indicate that mTORCI1 activity is dispensable for the
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maintenance of the satellite cell pool under homeostatic conditions
for up to 3 months.

To test the consequences of mTORCI inactivation on the
regenerative capacity of satellite cells, ctx was injected into the TA

and extensor digitorum longus (EDL) muscles of one leg of control
and RAscKO mice, seven days after the first tmx injection. One
group of mice was re-injured 24 days after the first injury. Muscles
were examined 15 or 21 days post-injury (see Fig. 6E). The mass
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Fig. 4. Myogenesis defect caused by mTORC1 inactivation in the Myf5-
lineage is partially compensated by non-recombined myoblasts.

(A) Immunostaining against laminin (red) and green fluorescent protein (EGFP,
green) of E18.5 hindlimb cross-sections. Arrows point to EGFP-negative
myofibers detected in RAmyfKO muscles. (B) Immunostaining against
phospho-S6 Ser235/236 (red), EGFP (green) and laminin (gray) on hindlimb
cross-sections of E18.5 embryos. Phospho-S6 immunoreactivity in muscle
fibers is indicated by arrowheads. In RAmyfKO mice, high phospho-S6 does
not colocalize with EGFP (asterisks) but is observed in EGFP-negative cells
(arrowheads). (C) Quantification of the percentage of phospho-S6-positive
muscle fibers [n=3 for control (Ctrl) and Het-RAmyfKO; n=4 for RAmyfKO
embryos]. (D) Western blot analysis of E18.5 Ctrl and RAmyfKO hindlimb
muscles using antibodies against the proteins indicated. RAmyfKO muscle
shows similar mTORC2 downstream signaling as in controls. a-Actinin was
used as loading control (n=6 Ctrl; n=5 and 6 RAmyfKO for PKCa and p-PKCa,
respectively). (E,F) Representative FACS blots of myogenic cells (integrin o.7*/
CD45-/CD11b~/Sca1~/CD31~) isolated from foreleg and hindlimb muscles of
E18.5 Het-RAmyfKO and RAmyfKO embryos and analyzed on their EGFP
expression (E). The percentage of EGFP-positive and EGFP-negative cells
(F) was normalized to the total number of integrin o.7-positive myoblasts (n=4;
except for Ctrl n=8). (G) Scheme of wild-type, floxed and recombined alleles of
Rptor. Primers used for PCR are indicated as P1, P2 and P3. (H) PCR analysis
of FACS-isolated myogenic cells using the indicated primer pairs. The size of
the expected products for the different Rptor alleles is indicated. Control cells
(Ctrl EGFP~) do not express Cre and are heterozygous for the floxed Rptor
allele (Myf5*'*; Rptor™*; mR26CSECFF*). EGFP-positive myogenic cells from
RAmyfKO mice are only positive for the recombined Rptor allele (n=3). Data
are meanzs.e.m. **P<0.01, ***P<0.001, one-way ANOVA with Tukey’s multiple
comparisons test or two-way ANOVA with Sidak’s multiple comparisons test.
See also Table S1. flox, floxed allele containing loxP sites; rec, Rptor alleles
after recombination by Cre; wt, wild-type allele of Rptor. Scale bars: 50 pmin A;
20 ymin B.

ratios between the muscles from the injured and the contralateral
non-injured leg were measured as a first readout. This ratio was
significantly reduced in RAscKO mice compared with controls
(Fig. 6F). Whereas histology of the contralateral muscle (CLM) was
similar in control and RAscKO mice (Fig. 6G), the difference was
striking in the injured muscles. Control muscle showed complete
regeneration, with large centronucleated myofibers 15 days post-
injury (Ix ctx, 15d). In contrast, only few small regenerating
myofibers were present 15 or 21 days post-injury in RAscKO mice
(Fig. 6G and Fig. S6A). Consistent with the poor regeneration,
RAscKO muscle showed accumulation of collagens (Sirius Red,
indicative of fibrosis) and lipids (Oil Red O) (Fig. 6H).
Notwithstanding, the presence of some centrally nucleated
myofibers in RAscKO mice suggested that raptor-depleted
satellite cells can still contribute to the formation of new muscle
fibers. Notably, although almost all myofibers in injured control
muscle were embMHC-negative 15 days post-injury, most fibers in
RAscKO muscle were embMHC- and EGFP-positive at 15 and
21 days after injury (Fig. 61). Moreover, many Pax7-positive cells
remained in the interstitial space in RAscKO muscle 21 days post-
injury as compared with controls (Fig. S6B,C). These data indicate
that, similar to embryonic muscle progenitors, raptor-depleted
satellite cells retain their myogenic function and can still form
myofibers, although with a greatly reduced efficacy. Strikingly,
after two consecutive rounds of degeneration and regeneration
(2xctx, 15d), RAscKO muscle was largely replaced by fat and
fibrotic tissues (Fig. S6D) and only few embMHC-positive fibers
could be detected (Fig. S6E). These results demonstrate that
mTORCI signaling in satellite cells is essential for proper
regeneration of muscle fibers. Importantly, in RImyfKO muscles,
which are deficient of mTORC2 signaling, regeneration was as
efficient as in controls (Fig. S6F,G, Table S3). Similarly, mice with
a deletion of one Myf3 allele (Myf5/<"¢) did not show any defects in

muscle regeneration after two consecutive rounds of ctx-induced
injuries (Fig. S6H). These results show that mTORCI1, and not
mTORC?2, is required for efficient muscle regeneration.

Interestingly, skeletal muscles of Het-RAmyfKO mice, although
the levels of phospho-S6 and phospho-4E-BP1 tended to be reduced
(Fig. S6I, Table S4), did not show any difference in muscle fiber
regeneration compared with controls (Fig. S6J,K). Moreover, the
number of satellite cells in the injured and non-injured muscles was
the same in Het-RAmyfKO and control mice (Fig. S6L,M). Thus,
lowering mTORCI1 activity to approximately half does not affect
muscle regeneration.

Raptor depletion delays activation of satellite cells

To examine further the myogenic potential of raptor-depleted
satellite cells, we next isolated and cultured single muscle fibers
from the EDL muscle of control and RAscKO mice, 90 days after
tmx treatment. In RAscKO mice, 98.07+0.50% of Pax7-positive
cells also expressed EGFP (n=5, 20-30 myofibers per animal). At
time zero (T0), the number of Pax7-positive cells per myofiber in
RAscKO mice was not significantly different from that in controls
(Fig. 7A). Moreover, at TO, Pax7-positive satellite cells from control
and RAscKO mice did not express MyoD (Fig. 7A, see
quantification in 7C) and showed very low S6 phosphorylation
(Fig. S7A). After 24 h in culture (T24 h), control satellite cells were
activated, as shown by the expression of MyoD (Fig. 7B,C). In
contrast, 20% of RAscKO satellite cells were Pax7-positive, but
remained MyoD-negative (Fig. 7C). All MyoD/Pax7-positive
RAscKO satellite cells were phospho-S6-negative, whereas
activated control cells turned strongly positive for phospho-S6
(Fig. S7B). At 72h (T72h), fibers from control mice were
populated by three different myogenic cells, i.e. cells (Pax7%;
MyoD™) that returned back to quiescence, activated satellite cells
(Pax7*; MyoD™") and committed myoblasts (Pax7~; MyoD"). In
contrast, most myogenic cells from RAscKO muscle remained
activated (Pax7"; MyoD"), with only a small proportion of
quiescent or committed cells (Fig. 7C,D). Importantly, the total
number of myogenic cells increased exponentially in fibers that
were isolated from control muscle, whereas it remained low in
fibers that were isolated from RAscKO mice (Fig. 7E).
Notwithstanding, colonies of cells that formed in RAscKO
culture after 96 h (T96 h) contained quiescent satellite cells and
committed myoblasts (Fig. S7C). These results show that
raptor-depleted satellite cells still commit to the myogenic
lineage but with a delay when compared with control cells. To
address whether this delay might be based on a reduction in protein
synthesis, we incubated freshly isolated myofibers (T0) and
myofibers after 6 h in culture (T6 h) with puromycin. Satellite
cells from control muscle fibers were negative for puromycin
incorporation at TO and became positive at T6 h (Fig. 7F). In
contrast, RAscKO satellite cells showed a significant reduction in
the rate of protein synthesis at T6 h compared with controls
(Fig. 7F). By using cultures of primary adult muscle progenitors,
we confirmed that the proliferation rate of raptor-depleted
myoblasts was strongly reduced compared with control cells
(Fig. S7D). Further, the fusion of RAscKO cells was limited
but not abrogated, which indicates that raptor-depleted
myoblasts are capable of forming multi-nucleated myotubes
(Fig. STE). Altogether, these data demonstrate that mTORCI
significantly regulates the activation, proliferation and
differentiation of adult muscle stem cells and that alternative
pathways do exist that can partially compensate for the loss of
mTORCI signaling.
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Fig. 5. mMTORC1 signaling is crucial for proliferation, differentiation and fusion of embryonic myoblasts in vitro. (A) FACS-isolated myogenic cells from
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puromycin only or in combination with cycloheximide (CHX) for 30 min. Puromycin incorporation, an indicator of the rate of protein synthesis, was

visualized by immunostaining against puromycin. (B) Mean intensity of puromycin staining normalized to control (Ctrl EGFP~) (n=4). (C) Immunostaining against
BrdU (red) and desmin (green) visualizes the myoblasts in the S-phase of the cell cycle during the 1 h BrdU pulse. (D,E) Percentage of BrdU*/desmin*
myoblasts after 48 h of proliferation (D; n=3 Ctrl and RAmyfKO EGFP~; n=4 Het-RAmyfKO and RAmyfKO EGFP™) or after 14 h of differentiation (E; n=5 Ctrl; n=4
Het-RAmyfKO and RAmyfKO EGFP*). (F) Immunostaining against embMHC (red) and desmin (green) on myotubes after 3 days of differentiation. (G,H) Fusion
index (G) and myotube distribution dependent on the number of myonuclei (H) after 3 days of differentiation (n=3). Data are meants.e.m. *P<0.05, **P<0.01,
***P<0.001, one-way ANOVA with Tukey’s multiple comparisons test. See also Fig. S4 and Table S2. Scale bars: 100 um.

DISCUSSION

Our study provides unequivocal evidence that mTORC1 but not
mTORC?2 is an important regulator of myogenesis. Whereas rictor-
deficient muscle progenitors did not show any overt phenotype, the
most striking difference between raptor-depleted and control muscle
progenitors was their slow proliferation. This became evident in the
low BrdU labeling of cultured raptor-deficient embryonic and adult
muscle precursor cells, and in the reduced number of myogenic cells

that are associated with RAscKO myofibers after 72 h in culture.
Such a proliferation deficit upon depletion of raptor is not
unprecedented and is the main contributor to the phenotype of
raptor-depleted neuronal precursors (Cloetta et al., 2013).
Furthermore, mTORC1-dependent changes in proliferation have
been reported in B-cells of the pancreas and in mouse embryonic
fibroblasts (Blandino-Rosano et al., 2017; Dowling et al., 2010). In
mouse embryonic fibroblasts, the change in proliferation by
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mTORCI inhibition is mainly due to constitutive inhibition of
protein translation by the eukaryotic translation initiation factor 4E-
binding proteins (4E-BPs; Dowling et al., 2010), which may
increase the time needed for cell cycle progression. mTORCI
remains highly active in the G2/M phase (Bonneau and Sonenberg,
1987), during which cyclin-dependent kinase 1 (CDKI)
phosphorylates raptor, which, in turn, promotes IRES-dependent
mRNA translation (Ramirez-Valle et al., 2010).

Another observation that suggests a delay in proliferation strongly
contributes to the phenotype of RAmyfKO embryos is the increased
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proportion of cells that are not targeted by Cre-mediated
recombination. This increase in the ratio of non-targeted to
targeted cells occurred between E11.5 and E18.5. In E11.5
RAmyfKO embryos, many EGFP-positive and phospho-S6-
negative cells were observed but only few EGFP-positive cells
were left at E18.5. There is evidence that myogenic precursors can
escape recombination in Myf5-Cre mice (Comai et al., 2014) and
that ablation of Myf5-expressing cells allows non-targeted cells to
expand and contribute to muscle formation during embryogenesis
(Gensch et al., 2008; Haldar et al., 2008). In addition, it has been
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Fig. 6. Raptor depletion strongly impairs regeneration following muscle
injury. (A) Experimental scheme for B-D. Three-month-old mice were injected
with tmx for 5 consecutive days and muscles were harvested 10 or 90 days
post-treatment. In long-term studies, tmx was injected twice every month.
(B,C) Immunostaining against Pax7 (red) and EGFP (green, B) or laminin
(green, C) on TA muscle cross-sections from 3-month-old control (Ctrl) and
RAscKO mice 10 days after tmx treatment. Arrowheads point to quiescent
Pax7-positive satellite cells lying underneath the basal lamina. (D) Relative
number of Pax7-positive cells per 100 myofibers in TA muscle. Counting was
performed 10 or 90 days after tmx treatment (n=3 per group for 10d; n=4 for Ctrl
and n=5 for RAscKO mice for 90d). (E) Experimental scheme for F-I. Ctx was
injected into TA and EDL muscles of 3-month-old mice at day 7. A subgroup of
mice were re-injured 24 days after the first ctx injection. Analysis was
performed 15 or 21 days post-injury. The non-injured CLM was used as
control. (F) Mass ratio of injured (ctx) and non-injured (CLM) muscles at day 15
or 21 post-injury (n=3; except RAscKO 1x ctx, 21d, n=4). (G) H&E coloration of
CLM and injured TA from Ctrl and RAscKO mice, 15 days after one (1x ctx,
15d) or two injuries (2% ctx, 15d). Centralized nuclei are characteristic of
regenerating fibers. Arrowheads point to regenerating myofibers found in
injured RAscKO muscle. (H) Sirius Red and Oil Red O colorations on
regenerating TA muscles from Ctrl and RAscKO mice, 15 days after injury.
Injured RAscKO muscle shows accumulations of fibrotic tissue and lipid
droplets. (I) Immunostaining against EGFP (green) or embMHC (red) and
laminin (gray) on regenerating TA muscle of Ctrl and RAscKO mice, 15 or

21 days post-injury. In regenerating Ctrl muscle only very few embMHC-
positive myofibers were detected. Most EGFP-positive myofibers in
regenerating RAscKO muscle were also positive for embMHC. Data are mean
t+s.e.m. **P<0.01, ***P<0.001, Student’s t-test. See also Figs S5 and S6 and
Tables S3 and S4. Scale bars: 10 umin B; 100 pmin C (10 pm in inset); 50 ypm
in G (50 pm in inset); 50 ym in H (50 ym in inset); 50 ym in | (10 ym in inset).

proposed that one population of Myf5-independent precursor cells
solely expresses Pax7 and MyoD during myogenesis (Gensch et al.,
2008; Haldar et al., 2008). Hence, the increased proportion of
EGFP-negative (i.e. non-targeted) myoblasts that is isolated from
E18.5 RAmyfKO compared with control embryos strongly supports
the notion that these escaper cells partially compensate for the slow
proliferation rate of raptor-depleted cells. It is, however, important
to note that raptor deficiency decreases protein synthesis in
RAmyfKO myoblasts by less than 50%. Possible compensatory
pathways include MAP kinase signaling via its regulatory role on
the Mnk1/Mnk2 kinases (Sonenberg and Hinnebusch, 2009).
Although the MAPK and mTOR pathways appear to have
complementary roles in the control of the overall initiation of
protein translation, it is not known whether the different pathways
control translation of specific subsets of mRNAs. Thus, loss of
mTORCI1 may affect translation of particular mRNAs that are
essential for efficient cell proliferation.

Raptor-depleted myoblasts are able to fuse and

form myofibers

Another important new insight of our work is that mTORCI1
depletion does not abolish the capability of myoblasts or satellite cells
to fuse and form myofibers. Although the overall efficacy of myofiber
formation was reduced, raptor-depleted myoblasts contributed to the
myogenic process in E11.5 and E13.5 RAmyfKO embryos. We also
detected EGFP-positive myofibers, which lacked S6 phosphorylation
and hence mTORCI activity, in E18.5 RAmyfKO muscles.
Similarly, injury-triggered muscle regeneration in adult RAscKO
mice still occurred. Finally, myoblasts that were isolated from
RAmyfKO embryos or RAscKO mice formed multi-nucleated
myotubes in vitro. Previous studies have investigated the role of
mTORCI1 in muscle differentiation by using the mTOR inhibitor
rapamycin or expressing mTOR mutants. In these experiments,
rapamycin reduced the differentiation capacity of rat and mouse
myoblasts in vitro and in vivo (Ge and Chen, 2012). Whereas this

fusion deficit in vitro was rescued by the expression of a kinase-dead
mutant of mTOR, late-stage differentiation and maturation required
the kinase activity of mTOR (Ge et al., 2009; Erbay and Chen, 2001).
Although these data predict high mTORCI activity during
differentiation, we found that mTORCI signaling was low or
absent in newly formed myofibers of E11.5 control embryos,
suggesting that mTORCI is not required after the fusion process
during the embryonic (first) wave of myogenesis. Interestingly, the
increase in muscle size during embryonic development is mainly
based on myonuclear accretion, whereas an increase in the
myonuclear domain is responsible for later perinatal muscle growth
(White et al., 2010). As we show that myofibers do form in the
absence of mMTORCI signaling, we hypothesize that the increase in
the myonuclear domain might be particularly impaired upon
mTORCI inactivation. In summary, our data provide evidence that
mTORCI signaling has a differential role during skeletal muscle
development. Early stages of myogenesis are affected by the delay in
proliferation upon mTORCT inactivation, whereas the late stages may
be mainly affected by the lack of sufficient muscle growth after
fusion. In contrast, n”TORC?2 signaling is dispensable for embryonic
muscle development.

The role of mTORC1 in quiescent satellite cells and during
regeneration

We also used Pax7-CreERT2 mice to eliminate raptor from
quiescent, adult satellite cells. Consistent with the observation that
quiescent satellite cells have low mTORCI activity (Rodgers et al.,
2014), abrogation of raptor for up to 3 months did not alter the size
of the stem cell pool under homeostatic conditions. This indicates
that the complete loss of mTORCI1 signaling does not provoke
apoptosis of quiescent satellite cells and that the low level of protein
synthesis required for maintaining the satellite cell pool is
independent of mTORCI signaling. This observation is in
agreement with the findings that rapamycin or genetic silencing
of mMTORC1 components resulted in the ‘rejuvenation’ of senescent
satellite cells (Garcia-Prat et al., 2016; Haller et al., 2017).
Interestingly, the initiation factor elF2o is phosphorylated in
quiescent satellite cells to inhibit general mRNA translation, and
removal of this phosphorylation site is sufficient to drive satellite
cells into activation (Zismanov et al., 2016). Thus, suppression of
mRNA translation appears to be an important feature to maintain
quiescence in satellite cells (Fujita and Crist, 2018). Inversely,
induction of protein synthesis is necessary to allow efficient muscle
regeneration (Rodgers et al., 2014; Zismanov et al., 2016).
Processes that require protein synthesis during regeneration are
the expression of Myf5 and MyoD (Zismanov et al., 2016; Crist
etal., 2012) and the efficient proliferation of activated satellite cells.
Consistent with mTORCI1 contributing to this increase in protein
synthesis during regeneration, activated satellite cells are marked by
high mTORCI1 activity and satellite cells that are in an alerted state
(Galery) by a non-muscle injury are more efficient in regenerating
skeletal muscle after ctx-induced injury (Rodgers et al., 2014).
Although those studies did not directly test the differential function
of mTORC1 and mTORC?2, we now report a strong deficit in muscle
regeneration in the absence of mTORCI, but not of mTORC2
signaling. The deficits are based on the delay in the transition from
quiescence into activation, as was seen by the increased proportion
of RAscKO satellite cells that lacked MyoD after 24 h in culture.
This delayed commitment of RAscKO satellite cells, together with
their slow proliferation, were likely responsible for the severe
impairment in muscle fiber regeneration after ctx-induced injury in
RAscKO mice. Interestingly, large areas were also infiltrated with
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or T6 h were incubated with puromycin alone
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for 30 min. Puromycin incorporation, an
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visualized by immunostaining against
puromycin. Mean fluorescence intensity of
puromycin staining was normalized to the
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collagens and lipids in injured RAscKO muscle, which suggests
that fibroblast and adipocyte differentiation further suppressed
the regeneration process. Fibroblasts and adipocytes that
infiltrate muscle that is undergoing chronic degeneration and
regeneration originate from fibro-adipogenic progenitors (FAPs),
the differentiation of which is repressed in healthy muscle by
the presence of restored myofibers (Mozzetta et al.,, 2013;
Uezumi et al., 2010).

Nevertheless, it is important to note that RAscKO satellite cells
still entered the activated state at later time points and also re-entered
quiescence after 96 h of culture. Thus, RAscKO satellite cells make
use of mMTORC1-independent pathways to induce MyoD expression

Ctrl Téh RAscKO Téh

and to renew the satellite pool after injury. Hence, we provide
evidence that loss of mMTORCI signaling in satellite cells does not
prevent their transition from quiescence into activation, but severely
impairs their capacity to regenerate skeletal muscle owing to defects
in proliferation.

A possible role of mMTORC1 signaling in neuromuscular
junction formation and maintenance

In skeletal muscle fibers, mTORC1 is a main determinant of
autophagy induction, which may account for the observed
myopathies in mice with altered mTORCI1 signaling (Bentzinger
etal., 2008; Castets et al., 2013; Risson et al., 2009). However, loss of
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autophagy by depleting Myf5-expressing cells of Atg7 does not
affect the viability of mice, as well as embryonic muscle development
(Martinez-Lopez et al., 2013). Therefore, possible alterations in the
autophagy pathway upon mTORCI inactivation in muscle
progenitors is not the main cause for the defects that are observed
in myogenesis of RAmyfKO embryos. Because they die of
respiratory failure, we also examined the neuromuscular junctions
(NMJ) and show significant defects in muscle innervation. Although
it remains unclear whether these NMJ changes are a consequence of
the incomplete formation of skeletal muscle fibers in RAmyfKO
embryos, a direct effect of mMTORC1 signaling on the NMJ is feasible.
For example, innervation defects in the diaphragm, which results in
the appearance of extrasynaptic AChR clusters, have been observed in
mice that were depleted for raptor in skeletal muscle fibers
(Bentzinger et al., 2008). Moreover, abrogation of autophagy in
skeletal muscle also destabilizes NMJs (Carnio et al., 2014).

In conclusion, our data demonstrate that coordinated mTORC1,
but not mTORC?2, signaling is crucial for the formation of skeletal
muscle during embryogenesis and regeneration of the adult tissue.
We provide evidence that mTORCI activity is tightly controlled
during the myogenic process and that loss of its signaling strongly
affects, but does not abolish, the myogenic function of muscle
progenitors. Deregulation of mTORCI signaling may therefore be a
major contributor in the alterations of the myogenic process in
muscle pathologies and skeletal muscle aging.

MATERIALS AND METHODS

Mice

RAmyfKO and RAscKO mice were generated by crossing Rptor-floxed
mice (Bentzinger et al., 2008) with M)f5-Cre mice that were obtained from
Jackson Laboratories (Tallquist et al., 2000) or mice that expressed Cre-
ERT?2 in the Pax7 locus (Murphy et al., 2011), respectively. In addition,
both mouse models were crossed with mR26CS-EGFP mice (Tchorz et al.,
2012). RImyfKO mice were generated by crossing Rictor-floxed mice
(Bentzinger et al., 2008) with Myf5-Cre mice (Tallquist et al., 2000).
Genotyping and recombination PCR for the conditional Rptor or Rictor
allele, Cre recombinase knock-in in the Myf5 or Pax7 locus and mR26CS-
EGFP transgene expression was performed as previously described (Tchorz
et al., 2012; Bentzinger et al., 2008; Murphy et al., 2011; Tallquist et al.,
2000). To induce raptor depletion in Pax7-expressing cells, tmx (2.5 mg/
day) diluted in corn oil was injected intraperitoneally in 2- to 3-month-old
mice for 5 consecutive days. For the analysis of adult mice, only male mice
were used. All mice were maintained in a licensed animal facility with a
fixed 12 h dark-light cycle and allowed food and water ad libitum. All
animal studies were performed under the guidelines and the law of the Swiss
authorities and regularly controlled and approved by the veterinary office
according to the Swiss Animal Protection Ordinance of 23 April 2008
(AniPO).

Skeleton staining

E18.5 embryos were skinned, macerated and stained with Alcian Blue
(cartilage, Sigma-Aldrich) and Alizarin Red (ossified bones, Sigma-Aldrich).
The detailed protocol was previously described (Schneider, 2013). The
stained skeleton was imaged using a Leica M60 stereomicroscope and a Leica
IC80 HD camera.

Cell culture

Isolation of primary muscle progenitors from embryos by FACS was
adapted from Pasut et al. (2012). Isolation of adult muscle stem cells from
hindlimb and foreleg muscles of 3-month-old mice by FACS was done
according to a protocol modified from Garcia-Prat et al. (2016). For further
details on FACS isolation procedures, see supplementary Materials and
Methods. RImyfKO primary myoblasts were obtained as previously
described (Rosenblatt et al., 1995). Primary myoblasts were maintained in
Glutamax Dulbecco’s modified Eagle’s medium (DMEM Glutamax,

ThermoFisher Scientific) supplemented with 10% horse serum (HS), 20%
fetal bovine serum, 1% chicken embryo extract (CEE), 1% penicillin-
streptomycin (pen/strep) and 0.5 ng/ml B-fibroblast growth factor on
Matrigel-coated cell culture dishes at 37°C with 5% CO,. To induce
differentiation, an equal number of cells was plated at high density and
incubated with DMEM Glutamax containing 4% HS, 1% CEE and 1% pen/
strep 1 day after FACS isolation. To test the proliferation capacity of
myoblasts, the same number of cells was incubated in proliferation medium
for 48 h or in differentiation medium for 12 or 14 h, and 7.67 pg/ml BrdU
was added for 1 h. To analyze the rates of protein synthesis, cells were
incubated with 1 uM puromycin with or without 100 pg/ml cycloheximide
for 30 min. Cells were fixed with 4% paraformaldehyde (PFA), washed with
PBS (pH 7.4) and 0.1 M glycine, and kept frozen for subsequent
immunostaining.

Ctx injury

Mice were anesthetized by intraperitoneal injection of ketamine (111 mg/
kg, Ketalar, Pfizer) and xylazine (22 mg/kg, Xylaxin Streuli, Streuli
Pharma). To induce complete muscle necrosis, TA and EDL muscles of one
leg were injected with 150 pl of 6.7 ug ctx to induce complete muscle
necrosis. The other leg was untreated and served as the contralateral control.
Mice were treated with 0.1 mg/kg buprenorphine, twice a day for at least
3 days. The second ctx-injury was induced 24 days after the first injection.
TA and EDL muscles were analyzed 15 or 21 days after injury.

Single myofiber culture

Single myofibers were isolated from EDL muscle of 3-month-old mice 10 or
90 days after tmx treatment as previously described (Rosenblatt et al., 1995).
Fibers analyzed at TO were immediately fixed with 4% PFA. Fibers kept in
culture for up to 96 h were transferred into DMEM Glutamax, 1% pen/strep,
10% HS, 1% CEE and fixed with 4% PFA at the time points indicated. Some
fibers were incubated with 10 uM puromycin with or without 100 pug/ml
cycloheximide in DMEM Glutamax at TO or in DMEM Glutamax
containing 1% pen/strep, 10% HS and 1% CEE at T6 h for 30 min and
then fixed with 4% PFA. Fibers were washed with PBS, permeabilized with
PBS containing 0.5% Triton-X100, washed again and incubated in blocking
solution (10% HS, 10% goat serum, 0.35% carrageenan, PBS) for 30 min.
Primary antibodies were added overnight at 4°C. Fibers were washed in PBS
containing 0.025% Tween-20 and incubated with the secondary antibodies
for 1.5 h. Following the washing steps, the fibers were collected with a
smoothened, horse serum-coated glass pipette and transferred on Non-
Superfrost glass slides (ThermoFisher Scientific) coated with 84% acetone,
16% (3-aminopropyl)triethoxysilane. The fibers were mounted with
Vectashield DAPI medium (VectorLabs). Primary antibodies used were:
anti-MyoD1 (clone c¢-20; #sc-304; Santa Cruz; 1:100), anti-Pax7
(supernatant; Developmental Studies Hybridoma Bank; 1:100), anti-
puromycin (clone 12D10; MABE343; Millipore; 1:1000), anti-phospho-
S6 ribosomal protein (Ser235/236; #4858S; Cell Signaling Technology;
1:200) and anti-GFP tag (#A10262; Thermo Fisher Scientific; 1:400). The
secondary antibodies used were: anti-mouse IgG1 Cy3, anti-rabbit A568
and anti-chicken A488 (Jackson ImmunoResearch; 1:300).

Histology

Mouse embryos were isolated at the embryonic stage of interest and
equilibrated in 30% sucrose/PBS overnight at 4°C. Embryos were
embedded and frozen in Tissue-Tek and serially cut into 12 um sections.
Only sections from embryos that were frozen and cut in the same orientation
were compared. Muscles from adult mice were dissected, frozen in liquid
nitrogen-cooled isopentane and cryosectioned at 8 um. Embryos or adult
muscles that expressed EGFP were fixed in 4% PFA overnight or in 2% PFA
for 2 h, respectively, and were incubated in 20% sucrose overnight before
freezing. Histology analysis was performed using Hematoxylin and Eosin
(H&E) staining followed by sequential dehydration with 70%, 90%, 100%
ethanol and 100% xylene. For Oil Red O staining, sections were fixed with
4% PFA for 1h, stained with Oil Red O (5 mg/ml in 60% triethyl-
phosphate) for 30 min, washed with running tap water and mounted in 10%
glycerol. Collagens were stained with a Picro-Sirius Red solution (1 mg/ml
in 1.3% aqueous solution of picric acid) for 1 h followed by washing in
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0.5% acidic water for 30 min. The slides were mounted following
dehydration in 100% ethanol and after clearing in xylene.

Immunostaining

Cross-sections or cells were fixed with 4% PFA, washed in PBS (pH 7.4),
0.1 M glycine and permeabilized with pre-cooled methanol. Antigen retrieval
was achieved by warming the sections in 0.01 M citric acid just below the
boiling point. The samples were blocked in 3% IgG-free bovine serum
albumin (BSA) supplemented with 0.05 mg/ml AffiniPure Mouse IgG, Fab
Fragment (Jackson ImmunoResearch). Primary antibodies were incubated
overnight at 4°C. The samples were washed with PBS, incubated with the
corresponding secondary antibodies for 1.5 h at room temperature, washed
again and mounted with Vectashield DAPI medium. Immunostaining against
EGFP and phospho-S6 ribosomal protein (Ser235/236) was performed
without methanol treatment and antigen retrieval; instead, 0.5% Triton X-100
was added to the blocking solution. Apoptotic nuclei were immunolabeled
using the In Situ Cell Death Detection Kit, Fluorescein (Sigma-Aldrich)
according to the manufacturer’s protocol. Primary antibodies used were: anti-
phospho-S6 ribosomal protein (Ser235/236; #4858S; Cell Signaling
Technology; 1:200), anti-Pax7 (supernatant; Developmental Studies
Hybridoma Bank; 1:50), anti-MyoD1 (clone 5.8A; #554130; BD
Biosciences; 1:500), anti-myogenin (supernatant; #{5d; Developmental
Studies Hybridoma Bank; 1:50), anti-myosin (embryonic; biosupe;
#F1.652; Developmental Studies Hybridoma Bank; 1:1200), anti-desmin
(#ab15200; Abcam; 1:300), anti-laminin (#ab11575; Abcam; 1:300), anti-
GFP tag (#A10262; Thermo Fisher Scientific; 1:400), anti-BrdU (BU1/75,
ICR1; #ab6326; Abcam; 1:500), anti-puromycin (clone 12D10; MABE343;
Millipore; 1:1000). The secondary antibodies used were: anti-mouse Biotin,
anti-mouse IgG1 Cy3, anti-rabbit AS568, anti-chicken A488, anti-rat A568
and streptavidin Cy3 (Jackson ImmunoResearch; 1:1000).

Whole mount immunostaining

Whole-mount immunostaining of diaphragms from E17.5 embryos was
performed by fixing the tissue with 1% PFA, 0.1 M sodium phosphate
(pH 7.3) at 4°C. The diaphragms were rinsed in PBS, incubated in 0.1 M
glycine (pH 7.3) and blocked in 2% BSA, 4% normal goat serum, 0.5%
Triton X-100, PBS. The primary antibody was incubated overnight in 2%
BSA, 4% normal goat serum, PBS. After washing for 1 h, the secondary
antibody was incubated overnight. The washing was repeated and the
samples sequentially post-fixed in 1% PFA, 100% methanol and mounted in
citifluor. Primary antibodies and the dilution factors used were: anti-
synaptophysin (A0010; Dako; 1:200), anti-neurofilament (N4142; Sigma-
Aldrich; 1:8000). The secondary antibody used was: anti-rabbit A488
(Jackson ImmunoResearch; 1:1000).

Immunoblotting

The hindlimbs from E18.5 embryos were frozen in liquid nitrogen.
Quadriceps and TA muscles from 3- and 5-month-old mice, respectively,
were frozen in liquid nitrogen and powdered on dry ice. Proliferating
primary myoblasts were collected after trypsinization, washed in cold PBS
and snap-frozen as pellets in liquid nitrogen. Samples were lysed in cold
RIPA buffer [S0 mM Tris-HCI (pH 8), 150 mM NaCl, 1% NP-40, 0.5%
sodium deoxycholate, 0.1% SDS, 1% Triton X-100, 10% glycerol, ddH,0]
supplemented with phosphatase and protease inhibitor cocktail tablets
(Roche), incubated on a rotating wheel for 2 h at 4°C and sonicated twice for
15 s. Afterwards, the lysate was centrifuged at 16,000 g for 30 min at 4°C.
The cleared lysates were used to determine total protein amount using the
Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) according to the
manufacturer’s protocol. Proteins were separated on 4-12% Bis-Tris Protein
Gels (NuPage Novex, Thermo Fisher Scientific) and transferred to
nitrocellulose membrane (Whatman). The membrane was blocked with
5% BSA, 0.1% Tween-20, TBS for 1 h at room temperature. The primary
antibody diluted in the blocking solution was incubated overnight at 4°C
with continuous shaking. The membranes were washed 3% for 15 min with
TBST (0.05% Tween-20, TBS) and incubated with secondary horseradish
peroxidase-conjugated antibody for 1.5h at room temperature. After
washing with TBST, proteins were visualized using chemiluminescence
(KPL). The following primary antibodies and dilution factors were used:

anti-Raptor (22808, Cell Signaling Technology, 1:1000), anti-phospho-S6
ribosomal protein (Ser235/236) (22118, Cell Signaling Technology,
1:1000), anti-S6 ribosomal protein (22178, Cell Signaling Technology,
1:1000), anti-phospho-4E-BP1 (Ser65) (94518, Cell Signaling Technology,
1:1000), anti-phospho-4E-BP1 (9452S, Cell Signaling Technology,
1:1000), anti-o-actinin (A7732, Sigma-Aldrich, 1:5000), anti-Rictor
(94768, Cell Signaling Technology, 1:1000), anti-PKCoa (2056S, Cell
Signaling Technology, 1:1000), anti-phospho-PKCo. (Ser657) (sc-12356,
Santa Cruz Biotechnology, 1:500), anti-Akt (9272S, Cell Signaling
Technology, 1:1000), anti-phospho-Akt (Serd73) (4058S, Cell Signaling
Technology, 1:1’000). The secondary antibodies used were: anti-rabbit HRP
and anti-mouse HRP (Jackson ImmunoResearch; 1:10000).

RNA extraction and qRT-PCR

Total RNA was extracted from whole E11.5 and E13.5 embryos or from
hindlimb and foreleg muscles of E18.5 embryos using the RNeasy Mini Kit
(Qiagen) according to the manufacturer’s protocol. RNA was transcribed
into cDNA using the iScript cDNA Synthesis Kit (Bio-Rad). Selected genes
were amplified and detected using the Power SYBR Green PCR Master Mix
(Applied Biosystems) and the relative gene expression was determined with
the Step One software (ThermoFisher Scientific) and normalized to Actb
expression. All qPCR primers are listed in Table S5.

Statistical analysis

All experiments were performed on a minimum of three independent
biological samples indicated by the n. In all graphs, data are presented as
meants.e.m. Statistical significance was determined using Student’s 7-test
when two groups were compared, or using one or two-way ANOVA with
Tukey’s or Sidak’s multiple comparisons test when more than two groups
were compared. P<0.05 was considered statistically significant.
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