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Can laboratory model systems instruct human limb regeneration?
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ABSTRACT

Regeneration has fascinated scientists since well before the 20th
century revolutions in genetics and molecular biology. The field of
regenerative biology has grown steadily over the past decade,
incorporating advances in imaging, genomics and genome editing to
identify key cell types and molecules involved across many model
organisms. Yet for many or most tissues, it can be difficult to predict
when and how findings from these studies will advance regenerative
medicine. Establishing technologies to stimulate regrowth of a lost or
amputated limb with a patterned replicate, as salamanders do
routinely, is one of the most challenging directives of tissue
regeneration research. Here, we speculate upon what research
avenues the field must explore to move closer to this capstone
achievement.

Limb regeneration starts with a blastema

Traditional laboratory model systems and atypical models alike
have informed key concepts and mechanisms of limb regeneration.
Human limb regeneration remains a dream of medical science,
but it is a pressing and growing need — it has been estimated that
1.6 million people in the USA alone are living with limb loss, with
the potential of that number to more than double by the mid-century
point (Ziegler-Graham et al., 2008). In considering the possibility of
human limb regeneration, we choose to focus our speculative piece
on vertebrate models that have regeneration-competent major
appendages (e.g. limbs, fins), as well as vertebrates with scant
regenerative capacity resembling that of humans. The former can be
interrogated for information on the molecular underpinnings of
successful innate events, while the latter represent a canvas upon
which manipulations, often informed by studies of the former, can
push the limits of regenerative capacity and open doors to medical
applications. We will primarily consider regeneration of hindlimbs,
forelimbs and their equivalents. A striking example of mammalian
appendage regeneration, deer antler renewal, does not restore a
replicate of the original appendage and responds to hormone levels
rather than to injury, and is reviewed elsewhere (Kierdorf et al.,
2007). Regeneration of internal tissues such as liver and intestinal
lining, and attempts to augment regeneration in poorly regenerative
tissues other than limbs, have been well summarized in other
reviews (lismaa et al., 2018; Tzahor and Poss, 2017).

Teleost fish like zebrafish and urodele salamanders such as
newts and axolotls (Box 1) are capable of complete regeneration after
fin or limb amputation. Vertebrate appendages are complex structures
composed of interdependent tissues. Thus, faithful regeneration
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involves not only replenishing the mass of large structures such as
bone and skin, but also precise vascularization and innervation to
achieve proper metabolism and function. Adult Xenopus limb
amputation partially restores limb mass in the form of a
cartilaginous spike, but fails to reconstitute morphology and
function (Dent, 1962). These failures elevate the virtues of models
like teleosts and newts, the impressive regenerative capabilities of
which depend on a structure called a blastema: a transient mass of
proliferative cells that forms at the site of injury and provides the
source material for eventual regeneration of lost structures. The
blastema has been referred to as the link between healing, a universal
response to damage, and morphogenesis of a new appendage, which
is the exclusive domain of a subset of species with elevated
regenerative abilities (Seifert and Muneoka, 2018).

A wound epidermis forms after injury and acts as a signaling
hub for blastema formation; without these signals, mesenchymal
cells at the injury site fail to assemble the blastema (Tassava and
Garling, 1979; Thornton, 1957). The structure and composition of
the wound epidermis are particularly important for successful
regeneration, as apico-basal polarization of wound epidermal cells
is essential for proper expression and delivery of regenerative
signaling factors (Chablais and Jazwinska, 2010; Chen et al., 2015;
Shibata et al., 2016; Stoick-Cooper et al., 2007). Molecules
distinguishing an activated regeneration epidermis have been
identified through diverse experimental methods, including yeast
two-hybrid assay screens, forward genetic screens and candidate
gene approaches. These approaches have identified factors ranging
from signaling pathway members such as Fgf20a to extracellular
matrix components and regulators such as laminin fla and newt
anterior gradient protein (Chen et al., 2015; Kumar et al., 2007,
Shibata et al., 2016; Whitehead et al., 2005). Yet we are far from
fully comprehending the breadth, dynamics and relative importance
of regeneration factors. Moving forward, recent technologies
such as single cell transcriptome sequencing will help refine the
genetic makeup of the wound epidermis and elaborate its crucial
role as a structural and signaling center for the blastema (Aztekin
et al., 2019).

Advocating developmental biology

This article is part of Development’s advocacy collection — a series of
review articles that make compelling arguments for the field’s
importance. The series is split into two: one set of articles, including
this one, addresses the question ‘What are the big open questions in the
field?” We would argue that there has never been a more exciting time to
getinvolved in developmental biology: incredible new tools mean making
fundamental problems are increasingly within reach. A complementary
set of articles will ask ‘What has developmental biology ever done for
us?’ Together, the articles will provide a collection of case studies looking
backwards to the field’s achievements and forwards to its potential, and a
resource for students, educators, advocates and researchers alike. To
see the full collection as it grows, go to http://dev.biologists.org/content/
advocating-developmental-biology.
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Understanding the origins and fates of blastemal progenitor cells is
a key step toward achieving limb regeneration. No vertebrate has yet
been shown to engage a true pluripotent stem cell during regeneration;
rather, fate-mapping experiments indicate that appendage blastemas
are composed of restricted progenitor cell populations, each
responsible for one or a small number of cell types (Ando et al.,
2017; Feietal., 2017; Gerber et al., 2018; Kragl et al., 2009; Lehoczky
et al., 2011; Rinkevich et al., 2011; Shibata et al., 2018; Tu and
Johnson, 2011). Notably, recent studies also indicate that when one
progenitor population is experimentally eliminated, other progenitors
can be recruited or repurposed as an ancillary source. For example,
bone-forming osteoblasts normally dedifferentiate — that is, reduce
their characteristic functional properties — and divide to contribute new
osteoblasts in zebrafish fins, but if osteoblasts are ablated, joint-
associated progenitors ramp up osteoblast production (Ando et al.,
2017; Singh et al,, 2012). Like osteoblasts, cardiomyocytes of
zebrafish can and do re-enter the cell cycle to serve as progenitors
(Knopf et al., 2011; Singh et al., 2012; Sousa et al., 2011). This
strategy is also found among salamanders: satellite cells serve as
progenitors in axolotl blastemas, whereas myofibers dedifferentiate
and fragment in adult newt limb stumps to facilitate muscle
regeneration (Sandoval-Guzman et al., 2014; Tanaka et al., 2016).
In summary, appendage regeneration does not employ a pluripotent
stem cell, but system plasticity can enable multiple origins for mature
tissues — a concept relevant to human limb regeneration.

Understanding how individual blastema cells behave in concert to
create population-level morphogenetic changes is a technically
challenging obligation of the field. Recent studies have improved the
spatiotemporal resolution of regeneration by combining longitudinal
imaging platforms with techniques to permanently label cells,
before or during blastema formation. For example, genetic cell
labeling has been used to detail the recruitment of connective tissue
cells to form the blastema, as well as the extent to which these cells
build different proximodistal skeletal elements (Currie et al., 2016).
Real-time live imaging is being extended to follow differentiated
cell populations and catalog cell shape changes, proliferation
dynamics and cell death rates. Improvements in platforms that
maintain animal health and stability for long periods during
imaging, as well as longitudinal studies using permanent lineage
tracing, have enabled capture of novel biology during appendage
regeneration in fish and axolotls (Cox et al., 2018; Currie et al.,
2016; Tornini et al., 2016; Xu et al., 2015). Community initiatives
will be key to efficiently generate knock-in fluorescent fusion
proteins, thereby allowing visualization of endogenous activity of
molecular regulators. Mapping spatiotemporal changes in cell
behavior in tandem with assessment of dynamic gene expression
can illuminate the blueprints for appendage regeneration.

Induction of a mammalian limb blastema is a major challenge to
consider at present, requiring methods to activate latent progenitor
populations (if they exist) to stimulate dedifferentiation of cells in
spared tissue to increase proliferative capacity or modify fate, and/or
to deliver exogenous progenitor cells that will colonize the limb
stump and form a functional structure. There is evidence that
transplantation of embryonic limb cells enhances regeneration from
adult Xenopus laevis limb stumps; thus, it is conceivable that
transplantation of induced pluripotent stem cell-derived limb
progenitors could facilitate limb regeneration (Lin et al., 2013).
Alternatively, one can envisage clinical regeneration initiated
by removing skin from the limb stump and targeting delivery of
factors unique to a functional regeneration epidermis (Dawson et al.,
2017; Seyedhassantehrani et al., 2017). Blastema formation could
be motivated in turn by delivery of additional factors that might

induce dedifferentiation and proliferation in the remaining tissue,
and/or by transplantation of the proper distribution of patient-
derived cells representing the precursors of all necessary cell types
(Fig. 1). Given that it is possible for a blastema to form in certain
mammalian contexts like mouse digit tips (discussed in the
following section), the prospect of inducing blastema formation in
other weakly or non-regenerative mammalian tissues seems not so
far-fetched.

Instructing regeneration with pro-regenerative factors
Salamander blastemas contain all of the positional information
necessary to pattern new limbs; i.e. a shoulder blastema transplanted
to a limb will generate a full limb, and a transplanted wrist blastema
will form distal components (Maden, 1980; Pescitelli and Stocum,
1980; Roensch et al.,, 2013). It is possible that a perfected
therapeutic blastema will self-pattern, although it seems more
likely that this striking feature would have to be replicated through
additional manipulations. For example, salamander limb
regeneration depends on re-innervation of axons severed during
amputation; without nerves, the stump generates a blastema with
reduced proliferation and differentiation capacities (Mescher and
Tassava, 1975; Singer and Craven, 1948). Molecular genetic
experiments have identified molecular factors accounting for the
nerve dependence of regeneration in salamanders and Xenopus;
hyperinnervation has been shown to have small positive effects on
regeneration in adult Xenopus (Kumar et al., 2007; Zhang et al.,
2018). Additionally, an ectopic blastema — and eventual limb — can
be induced to sprout from an unamputated limb by creating a
small skin wound, deviating a nerve to the site and applying a
skin graft to provide positional information (Endo et al., 2004;
Seyedhassantehrani et al., 2017). This accessory limb model has
been used to model how factors encode positional information or
substitute for innervation (Makanae et al., 2014; Nacu et al., 2016;
Vieira et al., 2019). It has also highlighted the role of extracellular
factors such as heparan sulfate in patterning (Phan et al., 2015).
These discoveries offer proof of concept for the hypothesis that the
environment necessary for regeneration can be recreated by
manipulation of sources of signaling molecules.

Many classic developmental signaling pathways are known to play
roles in patterning regenerating appendages (Currie et al., 2016;
Dawson et al., 2017; Grotek et al., 2013; Kujawski et al., 2014;
Whitehead et al., 2005). Broad similarities between ontogenetic and
regenerative development led to the initial compilation of molecular
factors that influence regeneration. The more recent generation of
experiments has incorporated unbiased surveys of regenerating adult
tissues or proxies for these tissues. Lineage tracing and single cell
sequencing studies have highlighted that it is an oversimplification to
assume that adult tissue regeneration merely recapitulates a genetic
program of earlier development (Gerber et al., 2018; Tsai et al.,
2019). These surveys have broadened the scope of factor discovery,
e.g. implicating melanocortin 4 receptor (Mc4r) signaling, which is
classically studied in energy metabolism, as a factor that can augment
limb regeneration in Xenopus during stages in which it is typically
defective (Zhang et al., 2018). Transcriptomic analysis of entire
tissues and single cells has been employed in appendage regeneration
in a variety of species to reveal candidates based on gene expression
dynamics (Leigh et al., 2018; Nachtrab et al., 2013). Libraries of
transcripts can in many cases be functionally assayed in cell culture;
e.g. successive subfractionation of pooled cDNAs capable of
inducing cell cycle entry in cultured salamander cells recently
identified MARCKS-like protein as a factor with in vivo mitogenic
properties in limb tissues (Sugiura et al., 2016).
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Fig. 1. From highly regenerative model systems to regenerative therapies. A possible pipeline for how discovery in lab model systems can influence

applications for regenerative therapies of complex structures like limbs.

Contrasting the effects of factors on poorly versus effectively
regenerating tissues or species can yield insights into how genetic
responses to injury may differ among vertebrates. For example, cell
culture experiments have demonstrated that regeneration-competent
myotubes from newts increase ERK signaling and re-enter the cell
cycle upon serum stimulation, whereas mouse myotubes are unable
to sustain ERK signaling or cell cycle entry, even when harboring
mutations that constitutively activate the ERK pathway (Yun et al.,
2014). These contrasting responses imply that there is complex
genetic and epigenetic regulation of regeneration genes, which we
discuss in the next section; as a result, individual molecules may be
potent, but not sufficient to induce complete regeneration. Relief of
cell cycle inhibition is also closely tied to regeneration competence:
pS3 activity is dampened in the salamander blastema (Yun et al.,
2013). Likewise, the mouse Acomys cahirinus is able to regenerate
hole punches in ear tissue, and cell cycle re-entry correlates with a
lack of nuclear localization of the cell cycle inhibitors p21 and p27
in the ear hole blastema. By contrast, common mice (Mus musculus)
maintain each of these inhibitors in muscle nuclei, and studies in
cultured mouse myoblasts have found that knockdown of cell cycle
regulators can modulate proliferation and indicators of regenerative
capacity (Gawriluk et al., 2016; Pajcini et al., 2010; Wang et al.,
2015). Thus, it is not just the presence and activity of pro-
regenerative factors that determine regenerative competence, but
also the attenuation of inhibitory factors. Correspondingly, a
balance of triggers and breaks, produced by drug or gene therapy
cocktails, is likely to be needed for consideration of human limb
regeneration therapies.

The capacity of mouse limb structures to regenerate upon
amputation is limited to the digits, specifically the distal half of the
third phalangeal element (P3), which consists of bone surrounded
by connective tissue and a nail (Seifert and Muneoka, 2018).
Human fingertips also have some regenerative capacity, especially
in children, so the mouse digit tip model could aid in identifying
methods for augmenting limited human regeneration (Dolan et al.,
2018; lllingworth, 1974). Immediately anterior to P3 in the mouse is
the second phalangeal element (P2), which does not regenerate but
instead truncates bone and heals skin upon amputation. Treatment
with bone morphogenetic protein (Bmp) family members has been
shown to induce regeneration of the P2 bone to its original length
after amputation, but the regenerated region lacked hair follicles and
articular cartilage, and did not initiate regeneration of the distal P3
segment (Dawson et al., 2017). Furthermore, P2 digits that were
amputated and failed to regenerate could be induced to undergo
modest regeneration by re-amputation and Bmp pathway activation.
Similarly, while Acomys species are able to regenerate small full-
thickness skin wounds, including hair follicles, common mice
normally fail to regenerate hair follicles after this injury but can be
induced to do so by Hedgehog signaling activation (Seifert et al.,
2012). Thus, a limited number of molecules can potentially
initiate an otherwise failed regenerative response, and the
regeneration window can be reopened through a second injury
and properly timed application of regeneration factors. The latter is
an important practical consideration, as it might not be feasible to
perform a clinical limb regeneration procedure immediately upon

injury.
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Box 1. The salamander limb: the right model at the right
time - a personal case study by Maximina Yun

While finishing my graduate studies at Cambridge University, | was
invited to teach undergraduates in cell and developmental biology. This
somewhat serendipitous turn took me on a journey of discoveries in the
field of regeneration, and exposed me for the first time to salamanders,
the vertebrates evolutionarily closest to us that are able to regenerate full
limbs as adults. Ever since then | have shared with many of my scientific
muses, from Thomas H. Morgan to Victor C. Twitty, a fascination for this
animal and the will to uncover the molecular and cellular basis of
regeneration. The latter became my primary scientific aim, driving my
subsequent studies and career moves — something that, at the time,
some considered a commendable yet daunting prospect. As it was
bluntly put to me by a well-respected scientist during my first interview for
a group leader position, ‘salamanders have been used in regeneration
studies for many decades; however, significant translational progress
based on this model is yet to be seen’.

Perhaps he was right then, given the ingeniously crafted yet limited
tools available in the system. But a mere 5 years later, and the tide has
turned. Transgenic techniques have become established, allowing
crucial functional studies; advanced imaging approaches are being
used for in vivo analysis of progenitor behaviors; and the giant genomes
for two experimental salamander models, the axolotl and the Spanish
ribbed newt, have recently become available, with all the wealth of
experimental and theoretical approaches this implies (Elewa et al., 2017;
Nowoshilow et al., 2018). Thus, the salamanders are finally catching up
with more conventional research models such as zebrafish. And while
they do so, they bring a great deal of interesting biology — besides
regeneration — to the table.

And now, every day | spend in my lab | marvel at how these techniques
are revolutionizing salamander studies and speeding up our
understanding of the choreography of molecular and cellular events
that result in the regeneration of a complex structure such as a limb. In
particular, they are enabling our investigations into important issues such
as the nature of the mechanisms controlling cellular plasticity in
regeneration, the role of the immune-senescent cell interplay in this
process and the basis for interspecies differences in regenerative
capacity (Czarkwiani and Yun, 2018; Yun et al., 2015). Thus, | believe we
are at an inflexion point in regeneration research, as technical advances
have finally emerged to allow us to unlock the mysteries of the extreme
regenerative abilities found in these captivating animals.

Recent innovative approaches combining molecular factors
with bioengineering methodology have improved Xenopus limb
regeneration beyond a cartilaginous spike. Slack and colleagues
regenerated a forelimb containing multiple digits with partial
mineralization by application of a fibrin patch containing larval limb
progenitor cells and supplemented with additional growth factors
(Lin et al., 2013). Levin and colleagues developed a wearable
bioreactor that delivered progesterone in the 24 h after amputation:
this induced regeneration of an appendage that lacked bone
and digits but was thicker, contained more nerve bundles and
vasculature than controls, and had an improved range of motion
(Herrera-Rincon et al., 2018). Other engineering methods of drug
and factor delivery, including the use of hydrogels, present
interesting possibilities, as their protean composition could allow
the creation of microenvironments for multiple cell types, thereby
reproducing the different conditions amenable to formation of
cartilage, bone and other tissue types over the course of regeneration
(Moreira Teixeira et al.,, 2014). Hydrogels made from either
naturally occurring molecules or synthetic polymers engineered
for breakdown by naturally occurring enzymes could possibly be
supplemented with regeneration-promoting factors and seeded with
cells to mimic a regeneration blastema (Fig. 1). Furthermore, the
immune system is a target of many current studies in tissue

regeneration research, and it has become clear that there is important
interplay between cells like macrophages and regulatory T cells with
the regeneration machinery, ostensibly via both phagocytitic and
paracrine mechanisms (Godwin et al., 2013; Hui et al., 2017;
Mescher, 2017; Simkin et al., 2017). Immunomodulatory and
immunoengineering approaches are thus of significant interest for
the field of appendage regeneration, as they are for other fields.

Engineering and manipulation of pro-regenerative factors have
been shown to significantly stimulate regeneration in multiple
contexts, and CRISPR/Cas9 will likely accelerate the discovery of
new pro-regenerative factors. However, the appendages regenerated
in these studies typically fall short of the originals in form and
function. Although a perfect replicate of a lost limb is the gold
standard for regenerative therapy, this will not be achieved in the
earliest cases of clinical limb regeneration. Thus, as an aside, there
are likely to be many years during which patients balance the
tradeoffs of mini-limbs or missing digits with prosthetics, or during
which hybrid alternatives may be favored.

Regeneration is an epigenomic phenomenon
A two-step formula for creating a blastema and instructing its pattern
underestimates the complexity of the epigenetic landscape for
regeneration. The central questions might be: is the regenerative
capacity of a tissue like the limb hard-wired, and have hundreds
of millions of years of evolution permanently turned off or removed
the machinery in mammals? Or, is the machinery there to be
awakened? Recent work indicates that regeneration contexts are
associated with large-scale changes in the expression of broad
regulators of DNA and histone methylation, as well as histone
acetylation (Hirose et al., 2013; Pfefferli et al., 2014; Takayama
et al., 2014). These chromatin-level changes are the cause and/or
consequence of changes in the expression levels of many hundreds
of genes that have been cataloged in various models of appendage
regeneration (Bryant et al., 2017; Johnston et al., 2016; Leigh et al.,
2018; Rabinowitz et al., 2017). Disrupting the expression dynamics
of individual or combinations of genes to find a cocktail capable of
inducing regeneration would be a gargantuan undertaking.
Alternatively, hacking into the epigenetic regulation to reboot the
choreography of gene expression and interactions might represent
an efficient shortcut to regeneration, with a large potential payout.
Epigenetic profiling has led to discovery of short DNA elements
capable of regulating one or more genes in response to injury and/or
regeneration. Studies in amputated zebrafish fins and hearts, fractured
mouse bones, and injured Drosophila wing discs have identified
sequences that preferentially direct gene expression upon injury and
during regeneration, in some cases maintaining activated expression
until regeneration is completed (Goldman et al., 2017; Guenther et al.,
2015; Harris et al., 2016; Kang et al., 2016). Interestingly, a DNA
region near the Drosophila wingless (wg) gene contains a silencing
element that increases methylation with development and decreases
induction of wg/wnt, supporting a hypothesis that regenerative
capacity can be controlled through changes at gene regulatory
regions (Harris et al., 2016). Developmental stage-related changes in
regeneration competence have been linked to changes in epigenetic
regulation of signaling factors in other contexts, such as Shh signaling
in Xenopus limb regeneration (Yakushiji et al., 2007). Discovering
how these elements are regulated by injury, and how their regulation
changes upon recovery of regenerated structures, can ultimately reveal
master upstream control mechanisms for tissue regeneration events.
For example, a recent study of the acoel worm HofStenia miamia
identified regeneration-responsive chromatin regions that are enriched
with binding sites for the early growth response (Egr) gene,

4
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implicating Egr as a pioneer factor that regulates gene expression
during head or tail regeneration (Gehrke et al., 2019). Advances in
genome assembly have paralleled epigenetic profiling and have
highlighted features in the genomes of regenerative amphibians
that may account for their enhanced capacity, e.g. expansion of
transposable elements and genes encoding microRNAs (Elewa et al.,
2017; Nowoshilow et al., 2018). These findings emphasize the
importance of non-coding elements, some of them likely to be unique
to highly regenerative animals, in the orchestration of large-scale
changes in gene expression during regeneration.

Understanding the epigenetic control of regeneration may also
reveal applications that reduce off-target effects of gene delivery
mechanisms to induce regeneration. Gene therapy using non-
integrating, non-replicative vectors like adeno-associated viruses
has received recent attention as a means to deliver wild-type gene
products in models or actual cases of human genetic disease (Amoasii
et al., 2018; Mendell et al., 2017). This is effective in particular
when the system can tolerate variable doses and tissue location
of the therapeutic factor. Gene therapy for a broad application
like regeneration is conceivable, although in this case potent
developmental factors would be employed to reprogram tissue to a
regenerative state. A major concern is therefore restricting the
intended effect to the desired tissue for the appropriate length of time.
This issue also exists when considering the idea of drugging limb
regeneration: it is hard to imagine how one could target regenerative
growth and avoid large-scale havoc wreaked by systemic application
of potent developmentally interventional compounds.

Regulatory regions that activate exclusively during regeneration
suggest methods to resolve this issue. For example, the activity of an
enhancer linked to the zebrafish leptin b gene tracks closely with
regeneration, with little or no transcriptional activation during
animal development or in uninjured adult tissue, but sustained
activation of gene expression in regenerating hearts or fins (Kang
et al., 2016). This genetic element was used in proof of principle
experiments to boost growth factor expression and local tissue
regeneration in zebrafish. Conceivably, injury- and regeneration-
specific enhancers could be used in adeno-associated viruses to
target expression of therapeutic factors to the correct tissues and
contexts when attempting to induce regeneration (Fig. 1).

Concluding remarks

Regenerating a human limb is a monumental challenge. The path to
this endpoint will be dogged, and success may lie several decades
away or more. Discovery science in the field of appendage
regeneration has merged classic experimental methods like tissue
grafting and genetic screens with modern technologies that
deconstruct regeneration to context-dependent behaviors of
individual cells, gene products and DNA regulatory sequences.
Holistic ideas are also revealing insights into how communication
between distant tissues can influence regeneration (Busse et al.,
2018; Kang et al., 2013; Rodgers et al., 2014). The new mechanistic
vantage points reached by contemporary studies, coupled with the
evolution of delivery methods with better-than-surgical precision,
will provide beacons for the journey ahead.
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