
STEM CELLS AND REGENERATION RESEARCH ARTICLE

Neuro-mesodermal progenitors (NMPs): a comparative study
between pluripotent stem cells and embryo-derived populations
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ABSTRACT
The mammalian embryo’s caudal lateral epiblast (CLE) harbours
bipotent progenitors, called neural mesodermal progenitors (NMPs),
that contribute to the spinal cord and the paraxial mesoderm
throughout axial elongation. Here, we performed a single cell
analysis of different in vitro NMP populations produced either from
embryonic stem cells (ESCs) or epiblast stem cells (EpiSCs) and
compared them with E8.25 CLE mouse embryos. In our analysis of
this region, our findings challenge the notion that NMPs can be
defined by the exclusive co-expression of Sox2 and T at mRNA level.
We analyse the in vitro NMP-like populations using a purpose-built
support vector machine (SVM) based on the embryo CLE and use it
as a classification model to compare the in vivo and in vitro
populations. Our results show that NMP differentiation from ESCs
leads to heterogeneous progenitor populations with few NMP-like
cells, as defined by the SVM algorithm, whereas starting with EpiSCs
yields a high proportion of cells with the embryo NMP signature. We
find that the population from which the Epi-NMPs are derived in
culture contains a node-like population, which suggests that this
population probably maintains the expression of T in vitro and thereby
a source of NMPs. In conclusion, differentiation of EpiSCs into NMPs
reproduces events in vivo and suggests a sequence of events for the
emergence of the NMP population.
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INTRODUCTION
In mammalian embryos, the trunk consists of the endoderm, the
spinal cord and the derivatives of different kinds of mesoderm
(axial, paraxial, intermediate and lateral plate). Much of our
current understanding regarding the development of this body
region has focused on two progenitor cell populations: the node,
that will give rise to the axial mesoderm (Beddington, 1982;
McGrew et al., 2008; Tam and Beddington, 1987) and the neural
mesodermal progenitors (NMPs), a bipotent stem cell population
that contributes to the spinal cord and the paraxial mesoderm
(PXM) (Henrique et al., 2015; Selleck and Stern, 1991; Wilson

et al., 2009). Both populations are closely related within the
anterior region of the caudal epiblast (CE) in the embryo
(Wymeersch et al., 2016). This association persists for as long
as the node is visible, between embryonic day (E)7.5 and E9.0
(Fig. 1, Fig. S1; Wymeersch et al., 2016; Wymeersch et al., 2019;
Yamanaka et al., 2007). It is not clear when the NMPs arise but
their association with the node suggests that they might emerge at
the same time, around E7.5, from a multipotent population (Edri
et al., 2019); the NMP population must then proliferate to sustain
the axial extension process. Absence of the node results in severe
axial truncations (Ang and Rossant, 1994; Davidson and Tam,
2000; Weinstein et al., 1994), suggesting a relationship between
the node and the establishment and maintenance of the NMPs.
However, little is known about these interactions.

The earliest identifiable NMPs emerge in the CE of E8.25
embryos distributed between the node streak border (NSB) and the
caudal lateral epiblast (CLE) (Cambray and Wilson, 2007;
Wymeersch et al., 2016, 2019). They are associated with the co-
expression of T (Brachyury), Sox2 and NKx1-2 (Henrique et al.,
2015; Steventon and Martinez Arias, 2017; Wilson et al., 2009).
However, molecular analysis in embryos is limited, because of
accessibility to primary material and the challenging temporal
resolution. To circumvent these difficulties, over the last few years
embryonic stem cells (ESCs) have emerged as a useful model for
mammalian development. In the context of axial extension, it has
been possible to generate NMPs in vitro from pluripotent stem cells
(PSCs) (Edri et al., 2019; Gouti et al., 2014, 2017; Lippmann et al.,
2015; Tsakiridis and Wilson, 2015; Turner et al., 2014). These
studies provide large quantities of material and allow the study of
details that are difficult to obtain in vivo, particularly the structure
and the genetic profile of the NMP population. In these studies, it is
important to establish the relationship between the in vitro and the
in vivo populations. A recent study aiming to do this, using an ESC-
based protocol, has established some features of an ESC-derived
NMP population (Gouti et al., 2017).

Here, we perform a single cell analysis of different in vitro-
derived populations, comparing them with those in the E8.25
embryo CLE (Ibarra-Soria et al., 2018; Pijuan-Sala et al., 2019),
in which NMPs can be clearly observed (Cambray and Wilson,
2007; Wymeersch et al., 2016, 2019). We perform this analysis
with a support vector machine (SVM) based on the reference
CLE embryo data. We use the SVM as a classification model to
analyse the different in vitro NMP-like populations and show that,
whereas ESC-derived CLE-like populations are heterogeneous and
contain few NMP-like cells, epiblast stem cell (EpiSC)-derived
populations produce a high proportion of cells with the embryo
NMP signature. Importantly, we find that Epi-CE, the population
fromwhich the Epi-NMPs are derived (Edri et al., 2019), contains a
node-like population, and we show that this population can
maintain the expression of T in vitro. Our results suggest a
sequence of events for NMP emergence, which we discuss here.Received 21 May 2018; Accepted 22 May 2019
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RESULTS
To understand the complexity and identity of the cell populations
that emerge when recapitulating NMPs in vitro and how they relate
to the embryo CLE, we characterized these populations at a single
cell level. We focused our study on the populations that we have
previously described (Edri et al., 2019) and extracted mRNA from
single cells of ES-NMP (Edri et al., 2019; Turner et al., 2014), Epi-
CE and Epi-NMP (Edri et al., 2019), as well as of the T-expressing
cells from the Epi-CE population (Epi-CE-T, see Materials and
Methods). As a reference for the in vivo population, we used a gene
expression dataset containing 7006 cells from E8.25 embryos
(Ibarra-Soria et al., 2018; Pijuan-Sala et al., 2019). However, rather
than using the complete dataset, we performed an in silico
dissection of the caudal region of the embryo (Fig. 1). We
selected cells that co-expressed Sox2 and T (putative NMPs)
(Cambray and Wilson, 2007; Henrique et al., 2015; Koch et al.,
2017; Tsakiridis et al., 2014; Wymeersch et al., 2016, 2019); cells
that expressed Sox2 and Nkx1-2 but not T (preneural progenitors)
(Henrique et al., 2015; Schubert et al., 1995); and cells that
expressed T but not Sox2, Mixl1 or Bmp4, which represent
mesodermal progenitors and exclude progenitors for the
endoderm (Mixl1) and the allantois (Bmp4) (Dunty et al., 2014;
Lawson et al., 1999; Robb et al., 2000; Wolfe and Downs, 2014).

We refer to these three population as NMP, preNeuro and preMeso,
respectively. The extraction process yielded 498 cells that
represented the caudal region of the embryo (108 NMP cells, 133
preNeuro cells and 257 preMeso cells).

In vitro-derived populations reflect temporally overlapping
embryonic populations
As a first step in our analysis we performed batch correction analysis
between the embryo and the in vitro population datasets, based on
the detection of mutual nearest neighbours (MNNs) in the high-
dimensional expression space (Haghverdi et al., 2018; Figs S2-S3).

For the batch-corrected data we implemented the Seurat package
(Butler et al., 2018; Stuart et al., 2018 preprint) to observe how the
cells clustered together (Materials and Methods). Between two and
eight clusters were tested and coloured according to the conditions
and clusters, following the projected cells in tSNE plots (Fig. 2A,B).
Seven clusters were chosen for the downstream analysis. The
marker genes that distinguish between clusters are shown in Fig. S4.
The tSNE plots in Fig. 2A,B allowed us to obtain a first
approximation of the transcriptional complexity of the different
samples. There is an overlap between the different NMP-like
populations and also with the cells from the embryo in the
dimensionally reduced gene space (Fig. 2B).

Fig. 1. Organization and gene expression patterns in the E8.5 mouse embryo caudal region. Top, ventral view; bottom: lateral (a) and medial (b) views.
The caudal region of the embryo is derived from the posterior epiblast of E7.5 (green in Fig. S1) when the primitive streak (pink) reaches the most distal
region of the embryo and the node (purple) appears. This region proliferates and undergoes several morphogenetic events which lead to the organization
visible at E8.5 and indicated in the figure. Bottom: marker genes that are expressed in each region are detailed. The sources for the outlines shown here can
be found in Table S1 and (Edri et al., 2019).
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Fig. 2B shows how each cluster relates to the different samples.
Cluster 3 is composed mainly from Epi-CE-T, cluster 5 from
ES-NMP and cluster 6 from E8.25 and Epi-CE-T. Using the major
reference genes of the CLE gene expression signature (Figs 1, 2C
and Fig. S5), we observed a spread in the markers expressed by the
different populations which can be used to determine their identity.
Cluster 5 contains cells that express pluripotent markers [Nanog,
Rex1 (also known as Zfp42), Sox2, Esrrb, Fgf4], whereas cluster 3
exhibits cells with node identity (T, Foxa2, Nog, Chrd, Shh) and
cluster 6 cells contains cells that express mesodermal markers
(Tbx6, Cited1, Msx1 and Msx2), the range of Hox genes (Hox1-
Hox9) and CE markers (Wnt3a, Fgf8, Cdx2, Cdx4, Cyp26a1).

Clusters 0-2 are composed of cells belonging to the ES-NMP,
Epi-CE, Epi-CE-T and Epi-NMP population, and exhibit some
similarity to the gene expression profile of cluster 6.

Analysis of the gene expression patterns associated with each
cluster (Fig. 2C and Fig. S5), revealed the heterogeneity of these
populations, particularly in the ES-NMP sample, in which we can
find cells with a mixed signature of pluripotency (Nanog, Rex1,
Sox2, Esrrb, Fgf4), primed epiblast (Fgf5, Otx2 and Cdh1), a later
epiblast population that expresses some CLE and NMP markers as
well as cells with a neural identity and others with mixed
mesodermal characteristic. Overlapping with the last population,
we noticed a group of cells with mixed potential expressing Mixl1

Fig. 2. Visualization of the samples and their gene expression along the seven clusters. (A,B) tSNE plots coloured by seven detected clusters
(A) and the sample names (B). Quantification of cell composition of clusters from different samples (B, right). (C) Expression of chosenmarker genes of pluripotent
state, CE (E7.5), CLE, neural, mesoderm and the node along the seven clusters. The genes are ordered according to hierarchical clustering.
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and Fgf17 together with Evx1,Hoxb9,Oct4 (also known as Pou5f1)
and Wnt genes, which might represent the posterior primitive streak
population that will give rise to mesendodermal tissue (Dunty et al.,
2014; Kojima et al., 2014; Robb et al., 2000;Wolfe and Downs, 2014).
The heterogeneity of the ES-NMPs confirms the conclusion from our
previous ensemble study (Edri et al., 2019) that differentiation in the
absence of FGF leads to a highly heterogeneous and asynchronous
population with some, but few, NMPs.
The Epi-NMP population is enriched in cells with expression

profiles clearly associated with the E8.25-E8.5 embryo – expression
of Cyp26a1 and Cdh2 – and an absence of Otx2, Oct4, Cdh1 and
Fst, all of which are associated with earlier stages of the embryo
(E7.5) (Fig. 2C and compare gene expression of E8.25 CLE embryo
with Epi-NMP in Fig. S5). In vitro, Epi-NMPs are derived from
Epi-CEs (Materials and Methods and Edri et al., 2019) which can
explain how the expression of the different genes indicates a
progression in the developmental stage from Epi-CE to Epi-NMP
(early epiblast markers in Epi-CE versus CLE markers in Epi-NMP,
Fig. S5). We also observed that Epi-NMP, but not Epi-CE, contains
a few cells differentiated into mesoderm, as highlighted by the
expression of Tbx6, Meox1 and Aldh1a2 (Fig. S5). Most
surprisingly, we noted that the Epi-CE population, but not Epi-
NMP, contained cells co-expressing genes that are associated
with the node e.g. Nodal, Foxa2, Ccno, Chrd, Nog and Shh
(Fig. S5). A similar population can also be found in the Epi-CE-T
and suggests the presence of node-like cells in the Epi-CE
population. These cells are reduced in the Epi-NMP population,
following the characteristics of the E8.5 CLE (Fig. 1).
The above observations provide support for our conjecture that

that Epi-CE and Epi-NMP correspond to temporally consecutive
populations in the embryo, which probably reflect a spectrum
between E7.5 [emergence of the node (Davidson and Tam, 2000),
Epi-CE] and E8.25-E8.5 (Epi-NMP), when NMPs are clearly
discernible (Wymeersch et al., 2016; Wymeersch et al., 2019). The
temporal sequence can also be observed in the pattern of Hox genes
expression, as the Epi-NMP population expresses more posterior
Hox genes than the Epi-CE (Fig. S5).

The NMP landscape in the E8.25 embryo
To interpret the in vitro-derived cell populations, we used the caudal
cells dissected in silico from the E8.25 embryo to build an SVM
pipeline that would enable us to map the NMP-like cells to the
in vivo CLE. As a first step, we attempted to identify phenotypically
distinct populations amidst the three pools of cells that we defined
based on their pattern of T, Sox2 and Nkx1-2 expression (Fig. 3A).
After processing the single cell data for both the embryo and the
in vitro samples, we found a total of 14,822 genes that can be used
for the analysis (Materials and Methods). To provide identifier
genes associated with the CLE region, we based our gene selection
on the report from Koch et al. (2017), in which the authors perform
an ensemble analysis of the caudal region of the E8.5 embryo based
on the levels of Sox2 and T. This work identified 1402 genes that,
together, provide specific signatures for five distinct subpopulations in
the caudal end of the embryo: Group 1, axial elongation and trunk
development; Group 2, early mesoderm; Group 3, later (committed)
mesoderm; Group 4, early neural; and Group 5, later (committed)
neural (Koch et al., 2017 and Table S3).
In this study, the marker genes of Group 1 are significant in cells

that are positive for Sox2 and T and are hence defined as putative
NMPs. Moreover, these cells also have significant expression of
marker genes which are upregulated in cells that are defined as
early mesoderm (Group 2) and early neural (Group 4). We used

these 1402 genes and added 69 genes that were expressed in the
decision-making region of the embryo according to the literature
(Table S1 and Edri et al., 2019), yielding 1471 genes, which were
reduced to 1342 after the removal of genes with a mean expression
of zero (Table S2). These 1342 genes were used to cluster the
embryo data using an SC3 R package (Bioconductor; Kiselev
et al., 2017), an algorithm based on k-means clustering (Materials
and Methods).

The analysis yielded an optimal number of four clusters in the
E8.25 cells (Fig. 3A, Materials and Methods) and 96 marker genes
that act as discriminating identifiers of the clusters (Table S3). The
top ten marker genes associated with each cluster are visualized in
Fig. 3A. Having allocated cells to the four clusters based on their
gene expression, we looked to see how each of the three functional
groups (NMP candidates, preNeuro and preMeso) that compose the
CLE region occupies each of the clusters.

Cluster 1 is a mixed cluster, composed of the three cell categories:
NMP candidates, preMeso and preNeuro (Fig. 3A and Table S3);
71% of its 28 marker genes are part of the NMP profile gathered
from the literature, including Cdx4, Nkx1-2, Fgf8 and Fgf17
(Fig. 3A, Table S3 and Koch et al., 2017). Cluster 2 is mainly
composed from cells defined as preMeso, and the most highly
expressed genes in this cluster exhibit a mesodermal affiliation
[lateral plate mesoderm (LPM), intermediate mesoderm (IM), PXM
and somites; see Table S1], with 91% of the 23 marker genes being
mesodermal according to Koch et al. (2017) (Fig. 3A and Table S3).
Cluster 3 is constructed mostly from preNeuro cells and has a neural
identity characterized by genes related to the spinal cord and the
nervous system: 85% of the 13 marker genes of cluster 3 are defined
as neural based on Koch et al. (2017) (Fig. 3A and Table S3).
Finally, cluster 4 is mostly composed of preMeso cells and, as
defined in Koch et al. (2017), 34% of the 32 marker genes match to
Group 3 (LPM and IM), but with additional genes affiliated to
endoderm and IM (Tables S1 and S3).

Our clustering suggests that cluster 1 has an NMP signature, as it
highlights genes such as Nkx1-2, Cdx1-4, Fgf8, Grsf1, Epha5 and
Cystm1, which are all associated with NMPs (Cambray and Wilson,
2007; Edri et al., 2019; Gouti et al., 2014, 2017; Henrique et al.,
2015; Koch et al., 2017; Wymeersch et al., 2016, 2019).
Furthermore, it suggests that, rather than being a population of
bipotent cells that is characterized mainly by the co-expression of
Sox2 and T at the mRNA level, which makes only 29% of cluster 1,
the ensemble appears to contain some pre-mesodermal (38%) and
pre-neural (33%) cells. This analysis thus raises a question about the
differences between the preMeso and preNeuro cells in cluster 1 in
comparison with those that are found in clusters 2 and 3. One
probable explanation is that cluster 1 encompasses very early neural
and mesodermal cells, embedded in the NMP region of the mouse
embryo, whereas the other clusters contain committed cells, similar
to what was found in Koch et al. (2017). Indeed, cluster 1 includes
genes that have been previously linked to the NMP profile together
with genes that have neural or mesodermal characteristics. Based on
the work of Koch et al. (2017), out of the 28 marker genes defining
cluster 1, two genes (Ptk7 and Fgf8) are linked to Group 1 (axial
elongation and trunk development), 15 genes (Epha5, Nkx1-2,
Cdx2, Cdx4, Cystm1, Acot7, Stmn2, Fgf17, Lhpp, Mgst1, Lix1,
Hoxc4, Ccnjl, Sp8 and Oat) are linked to Group 4 (early neural) and
the rest of the genes are either expressed in the embryo CLE at
around E8.5 (Grsf1, Cdx1,Hoxb9,Hoxc9,Wnt5b), or exhibit neural
(Hes3, Ncam1, Pmaip1) or mesodermal (Evx1, Hes7, Foxb1, which
also express in the neural plate) progenitor characteristics (see
Table S1 for references).
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Having identified an organization based on gene expression for
the E8.25 CLE embryo the next step was to build an SVM classifier
that would learn the gene profile of the four different clusters found
in the embryo data. After testing its performance and its stability on
the embryo (Fig. 3B, Materials and Methods), the SVMwas used to
assign cells of the in vitro populations to the four classes (clusters)
based on their gene expression.
To build a robust and accurate classifier selecting the input features

(genes) that the SVMneeds to learnwas an important task. Hence, we
first wanted to identify the informative genes associated with the four
clusters. To do this, and to avoid the underrepresentation of genes that

were not previously linked to the NMPs, we used the whole set of
qualified genes (14,822). We selected the genes by computing the
mutual information (MI) measure between the genes and the four
clusters (see Table 3 in Materials and Methods), which resulted in 82
informative genes (Table S4) that were used as input features to the
SVM. The feature selection process leads to a classifier that, by
reading the expression of these 82 genes, can correctly classify 97%
of the input cells (Fig. 3B, Table 3). Of the 82 informative genes, 60%
are identical to the 96 marker genes of the four clusters, whereas the
remaining 40% include genes such as T, Hoxc8, Hoxb8 and Cdkn1c,
which are expressed in the embryo CLE at E8.25-E8.5.

Fig. 3. Building SVM based on E8.25 embryo data. (A) A total of 498 cells representing the CLE and NSB from three E8.25 embryos were dissected
in silico and subjected to an unsupervised clustering approach (SC3 R package; Kiselev et al., 2017; Materials and Methods). This yielded four clusters and their
marker genes: (1) genes associated with NMPs (pink); (2) mainly mesodermal genes (green); (3) genes associated with neural fate, mainly spinal cord
(dark yellow); (4) genes associated with endoderm, mesoderm and extra-embryonic tissue (peach) (Table S1). Venn diagram shows the criteria for the in silico
dissection: cells co-expressing Sox2 and T are NMP candidates; cells co-expressing Sox2 and Nkx1-2 but not T are neural progenitors (PreNeuro); cells
co-expressing T but not Sox2,Mixl1 or Bmp4 are mesodermal progenitors (PreMeso), excluding progenitors for the endoderm (Mixl1) and the allantois (Bmp4).
(B) Leave one out SVM workflow: an iterative process in which each cell is trained and tested (Materials and Methods).
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A comparison between the in vitro and in vivo cell
populations
We used the SVM that was established from the embryo data to
explore the structure and nature of the in vitro populations. To do this,
we first needed to ensure that the input cells from the in vitro
populations did not contain cells with gene expression patterns on
which the SVM had not been trained, as we only want to test the cells
with similarity to the E8.25 caudal region (Fig. 3A and Step 1 in
Fig. 4A). Similarly to the in silico dissection of the CLE from the
embryo cells, we selected cells co-expressing Sox2 and T, cells
expressing Sox2 and Nkx1-2 but not T, and cells expressing T but not
Sox2, Mixl1 or Bmp4. This step resulted in filtering out a higher
number of cells from the ES-NMP condition (45%) in comparison

with the other conditions (∼30%), consistent with the previously
noted heterogeneity. Feeding the remaining CLE-like cells to the
classifier with the expression of the 82 informative genes, which are
the features onwhich the SVMhad been trained and needs to perform
the classification task, resulted in the assignment of probabilities for
each cell to be classified to each of the four classes (Fig. 4A). As the
true classification of the in vitro cells is not known, and as there might
be some hidden classes in the in vitro populations that were not
trained using the embryo data, only the cells with a minimum
probability of 0.8 are assigned to the class with the highest probability
among the four classes and proceeded to the next step (see the
probability plot under Step 6 in Fig. 4A: probability of 0.8 is indicated
by the red line, see also Materials and Methods). In this step the

Fig. 4. Classifying the in vitro cells using the SVM trained on the embryo data. (A) Workflow of the classification of the in vitro cells (for details see text and
Materials and Methods). (B) Average expression of the 96 marker genes found in the embryo in the in vitro samples classified to the four classes. Rows of
the expression heatmap are hierarchy clustered. Blue-red colour bar indicates the gene expression.
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highest filter of cells (50%) was observed in the ES-NMP condition
compared with the others (∼30-35%), suggesting that this condition
produces a high quantity of cells that do not correspond to the E8.25
embryo CLE. The last step (Step 7, Fig. 4A) was to summarize the
distribution of the cells of each sample across the four classes.Most of
the qualified cells (Fig. 4A, Table of Step 6) from ES-NMP (84%)
and Epi-NMP (73%) were allocated to class 1 (Step 7, Fig. 4A),
which is associated with the NMP signature. On the other hand, more
than 90% of the qualified cells (Fig. 4A, Table of Step 6) from Epi-
CE (91%) and Epi-CE-T (97%) were allocated to class 4 (Step 7,
Fig. 4A), which is characterized by the expression ofmesodermal and
endodermal genes. Class 2 and class 3, which have mesodermal and
neural differentiation characteristics, did not attract many cells from
the different samples, suggesting that the in vitro cells, passed through
this pipeline, are not very differentiated.
Fig. 4B shows the average expression of the 96 marker genes of

the four clusters in the in vitro cell populations. This result
emphasizes that the same classes from different samples clustered
together, which displays the similarity of the cells from different
conditions that assign to the same class. In addition, it shows that the
in vitro cells exhibit the expression of marker genes for the four
classes found in the embryo, demonstrating that the SVM pipeline
detects the in vitro cells in agreement with the learned embryo cells.

A node-like population induced in vitro
The finding that Epi-CE and Epi-CE-T were allocated mainly to
class 4, and that Epi-CE is the origin of Epi-NMP (Materials and
Methods; Edri et al., 2019), led us to investigate further the identity
of cluster 4. As a first step, we arranged all the qualified cells from
the SVM pipeline (Fig. 4A, Table of Step 6) into pseudotime
ordering using TSCAN (Bioconductor R package, version 1.16.0;
Materials andMethods). This analysis revealed that class 4 cells (red
cells in Fig. 5A) are split into two pseudotime ranges, with class 1
cells (blue cells in Fig. 5A) forming a bridge between these two
classes. This result lends support to the possibility that Epi-NMP
cells (mainly classified to class 1) are derived from Epi-CE (class 4,
mainly composed from Epi-CE and Epi-CE-T). It also highlights
the existence of two different populations in Epi-CE. When
exploring the highly expressed genes that define the two
pseudotime ranges of class 4 (Fig. 5A, Materials and Methods
and Table S5), we observed that the later range is defined by genes
that are associated with rapidly dividing cells, whereas the early one
does not show this enrichment (Fig. 5A). This observation suggests
the existence of a group of cells in a phase of large expansion in
class 4. Similar results were obtained by pseudotime ordering the
cells using Monocle (Bioconductor R package, version 2.10.1; Qiu
et al., 2017a,b; Trapnell et al., 2014; Fig. S7), where class 4 is
divided to two groups: an early one that contains Epi-CE-T cells and
a later one that is mainly composed of Epi-CE. Class 1, which is
composed of Epi-NMP and ES-NMP, is a later population in the
pseudotime range, in comparison with class 4 (Epi-CE conditions).
This result indicates that class 1 is derived from class 4, which is true
in culture (Epi-NMP derived from Epi-CE) and in the embryo: the
CE will harbour the NMP in a later state.
The presence of endodermal and mesodermal markers in class 4

is surprising, as it suggests the existence of a cell type in the embryo
caudal region that would be associated with these germ layers. One
structure that could fit this criterion is the node (Blum et al., 2007;
Lee and Anderson, 2008; Martinez Arias and Steventon, 2018), a
structure that appears at E7.5, contains the progenitors of the axial
mesoderm (Beddington, 1982; McGrew et al., 2008; Tam and
Beddington, 1987) and has been associated with the NMPs (Albors

and Storey, 2016; Garriock et al., 2015; Henrique et al., 2015;
Wymeersch et al., 2016). Thus, we considered the possibility that
class 4 contains node cells.

At a very coarse level, the node can be identified as cells
expressing combinations of three genes; Foxa2, Nodal and T
(Fig. 5B; Davidson and Tam, 2000; Jeong and Epstein, 2003; Lee
and Anderson, 2008; Shiratori and Hamada, 2006). Applying this
coarse definition, we detected node-like cells in our in vitro samples
with a very high representation in class 4 (Fig. 5C). The allocation of
a node identity to cells in class 4 is not a bias of the sample size, as a
statistical test controlling the size of the classes yielded that class 4
has the highest proportion of node-like cells (calculated empirical
P<0.001; see Materials and Methods for details). To further test this
coarse identification of node-like cells, we gathered a list of
additional genes that are associated with the structure and function
of the node, e.g. Shh, Ccno and Chrd (Davidson and Tam, 2000;
Funk et al., 2015; Jeong and Epstein, 2003; Lee and Anderson,
2008; Shiratori and Hamada, 2006; Tam and Behringer, 1997), and
tested for their expression in class 4 (Fig. 5D).

Having identified node-like cells in our in vitro populations, we
thought we could use the dynamic changes in this region of the
embryo to stage our in vitro populations. For example, at the time of
its appearance the node expressesOct4 andOtx2; however, by E8.0-
E8.5 the expression of these genes have disappeared from the node
(Cajal et al., 2012; Downs, 2008). The expression of Oct4 is
particularly diagnostic for this transition. Ordering node-like cells of
class 4 (Fig. 5D) from high to low Oct4 expression reveals
additional patterns of gene expression that confirm the presence of a
node-like population in the in vitro class 4 associated with Oct4
expression. Cells with decreasing levels of Oct4 display increasing
levels of genes associated with the node: Foxa2, Bmp7, noggin,
Chrd, Slit and, significantly, Shh (Fig. 5D; Davidson and Tam,
2000). Within the cells expressing low or no Oct4, we observe a
further division based on Sox2 expression: although all cells express
node genes, some of them express Sox2 and some do not. The
ventral-most region of the neural plate is called the floor plate
(Fig. 5B) and shares many of the pattern of gene expression of the
node (Jeong and Epstein, 2003b; Wood and Episkopou, 1999).
These results suggest that our experiment not only yields node-like
cells (Sox2 negative) but also floor plate precursors (Sox2 positive).

Moreover, we checked the proportion of the node-like cells in the
two pseudotime ranges of class 4, as shown in Table 1, however no
difference was found. This result supports our hypothesis that these
two populations are very similar, however one of them represents an
amplifying population, whereas the second one is more stable in
terms of size.

In the in silico E8.25 embryo CLE, we found 38 node-like cells
(Fig. 6A,B), 30 of which were mapped to the embryo class 4 cells
(Fig. 6A). When comparing the node-like cells in class 4 of the
embryo with those of the in vitro cells, some notable differences
become apparent (Fig. 6B), for example Oct4, which is off in the
embryo cells. As Epi-NMPs express very few node genes (Step 7,
Fig. 4A, and Fig. 6C) and no Oct4, this supports our previous
assertion that it has the closest relationship to the E8.25 CLE region,
that the node-like cells are lost in the transition between Epi-CE and
Epi-NMP (Fig. 6C) and that the Epi-CE cells represent a
developmentally earlier cell state than the Epi-NMPs.

An in vitro functional test of the in vitro induced node-like
population
Previously, we have shown that the Epi-NMP population has a
limited but clear self-renewing ability in culture when exposed to
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FGF and Chiron (Edri et al., 2019). These cells maintain T and Sox2
expression for at least two passages (Epi-NMP, Epi-meso2, Epi-
meso3); however, over time the levels of NMP markers go down
and the cells exhibit a slow increase in the expression of
differentiation genes associated with neural fates (Edri et al.,
2019). In the embryo, the self-renewing population also decreases
with time, and this is associated with the disappearance of the node
(Steventon and Martinez Arias, 2017; Wymeersch et al., 2016).
Thus, we considered that in our in vitro system, the loss of T might

be associated with the loss of node-like cells. To test this, we added
node-like cells from Epi-CE to Epi-NMP and passaged the mixed
sample to make Epi-meso2, then we checked whether the addition
of node-like cells could maintain the levels of T expression
(Fig. 6D).

We used a Ubiquitin::tomato cell line as a source of NMP-like
cells and a Nodal::YFP cell line as a source of node cells. Both were
cultured to produce Epi-CE: Epi-CE RFP (from the Ubiquitin::
tomato cell line) and Epi-CE Nodal (from the Nodal::YFP cell line).
The Epi-CE RFP were further grown to make Epi-NMP (Epi-NMP
RFP). After two days of culturing Epi-NMP RFP, we plated a
mixture that equally consisted of Epi-NMP RFP-positive cells and
Epi-CE Nodal-positive YFP cells (Fig. 6D, Fig. S8A,B, Materials
and Methods). The mixture (Epi-meso2) was cultured for 4 days
(Fig. 6D) until cells were sorted into RFP-positive (EM2-RFP+4d,
contains only the Ubiquitin::tomato cells) and RFP-negative (EM2-
RFP–4d, contains Nodal::YFP cells and might contain Ubiquitin::

Table 1. The distribution of the node-like cells in the two pseudotime
ranges of class 4 of the in vitro cells

Pseudotime range Class 4 Node-like cells
Out of
class 4

Time group 1 tp≤1250 1050 433 41%
Time group 2 2500≤tp≤3700 916 442 48%

Fig. 5. Class 4 contains node-like cells. (A) Pseudotemporal order of the in vitro cells that were classified to the four classes. Class 4 is divided to two pseudotime
ranges: the later range of highly expressed genes contains 55% of cycling genes, whereas the early range does not contain any cycling genes (Materials and
Methods). (B) E8.5mouse embryo node: illustration of a sagittal view of the embryo shows the expression ofT (red) in theNSB (Tsakiridis et al., 2014). Posterior view
of the embryo exhibits the expression of Nodal (blue) in the node and in the LPM (Shiratori and Hamada, 2006) and its left (L) right (R) asymmetry. A transverse
section (A′A′) reveals the pit and crown cells of the node, PXM, LPM, endoderm and the prospective floor plate. The expression of Nodal and Foxa2 is
indicated in blue and green, respectively. The pit cells co-express T and Foxa2 and the crown cells express Nodal and T (Davidson and Tam, 2000; Jeong and
Epstein, 2003; Lee and Anderson, 2008; Shiratori and Hamada, 2006). (C) The distribution of the node-like cells among the four classes: a significantly higher
number of the node-like cells are found in class 4 in comparison with the other classes. ***P<0.001 (calculated empirical P-value; see Materials and Methods for
details). (D) Gene expression heatmap of chosen node genes in class 4. The genes are hierarchically clustered and the cells are ordered in accordance with the
decreasing expression of Oct4 (Pou5f1). Gene expression, which is defined as log2(CPM+1) (Materials and Methods), is indicated by the blue-red colour bar.
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tomato cells that did not express RFP; Fig. S8C and Materials and
Methods). These populations of cells were compared with the EM2-
RFP4d, which are only Epi-NMP RFP cells cultured for 4 days to
make Epi-meso2 (Fig. 6D, Materials and Methods).
Addition of node-like cells to the Epi-NMP population elevates

the level of T and Foxa2, maintains the expression of Cdx2 and
Nkx1-2 and decreases the level of the neural fate markers Sox2 and
Sox1 (Fig. 6E and Fig. S9, EM2-RFP4d versus EM2-RFP+4d). In

addition, there is not much difference in the expression of Tbx6,
Hoxc6, Fgf8 and Cyp26a1 when comparing those genes between
EM2-RFP4d and EM2-RFP+4d.

This result, aligned with what we have previously shown (Edri
et al., 2019), suggests that node-like cells are necessary to maintain
the relative levels of Sox2 and T and buffer the tendency that the
Epi-NMPs have towards the neural fate when passaging them in
culture.

Fig. 6. Node cells are needed to maintain the NMPs. (A) Distribution of the node cells among the four classes in the embryo. (B) Expression of chosen
node genes in the embryo class 4. Genes and cells are hierarchically clustered. Gene expression, which is defined as log2(CPM+1), is indicated by the blue-red
colour bar. (C) Proportion of node-like cells in the Epi-CE and Epi-NMP samples. (D) YFP-positive cells of Epi-CE Nodal sample composed of Nodal::YFP cells
and RFP-positive cells of Epi-NMP RFP sample composed of Ubiquitin::Tomato cells were used to make Epi-meso2 mixture (Materials and Methods). This
mixture was grown for 4 days then the cells were sorted based on their RFP fluorescence: RFP-positive cells (EM2-RFP+4d) and RFP-negative cells
(EM2-RFP-4d). EM2-RFP4d is the control. The sorted cells and the control sample were quantified for their mRNA of a chosen set of genes using RT-qPCR.
(E) Expression heatmap of 11 genes, obtained using RT-qPCR, in cells grown in the three conditions indicated in Fig. 6D. The normalized expression
of each gene to the housekeeping genePpiawas scaled between 0 and 1 across the different conditions. Gene expression is indicated by the blue-red colour bar.
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DISCUSSION
Over the last few years, ESCs have emerged as a useful
experimental system to study mammalian development. Although
they are no substitute for the embryo, they have some advantages
when addressing processes that happen early in development, when
material and experimental accessibility are scarce. However, their
validation as an experimental system depends on testing how the
events observed in culture relate to those taking place in the embryo.
Here, we have used mouse PSCs to analyse, at the single cell level,
the origin and structure of NMPs, a bipotent population that is
thought to give rise to the spinal cord and the paraxial mesoderm. As
an important reference for our study, we have used a single cell
dataset from E8.25 embryos, the stage at which NMPs are first
distinguishable.
Analysis of PSC-derived NMPs suggests that different protocols

produce heterogeneous populations in terms of gene expression
(Edri et al., 2019). To gain insights into these heterogeneities and
their origins, we have performed a single cell transcriptomics
analysis of the different populations. As a reference, we have used
data from E8.25 embryos out of which we have dissected in silico
the CLE/NSB region based on T, Sox2 and Nkx1-2 expression
patterns, as cells that express these genes are often identified as
NMPs. Our results suggest that, by this stage, these cells are distinct
from those in the pluripotent epiblast. The transition between the
states appears to be associated with the loss of expression of Cdh1,
Oct4, Fst andOtx2 and the gain of expression ofCdh2 andCyp26a1
among others (Fig. 1 and Fig. S1). Our results contrast with those of
a recent study which allocated expression of Cdh1 and Oct4 to
NMPs at E8.5 (Gouti et al., 2017). Analysis of published gene
expression patterns (Fig. 1, Fig. S1 and Table S1) supports our
conclusions that these markers are associated with the pluripotent
epiblast. It might be that changes in the transcription of these genes
happens abruptly at ∼E8.25 and that there is a difficulty in staging
the embryos. The transition from pluripotent epiblast to the bipotent
cells in the CLE/NSB region can be detected in our in vitro samples,
as represented by the transition from Epi-CE to Epi-NMP (Fig. 2
and Fig. S5; see also Edri et al., 2019).
As a reference for the in vitro-derived populations, we used a

clustering algorithm on existing datasets (Ibarra-Soria et al., 2018;
Pijuan-Sala et al., 2019) to classify populations in the embryo: class
1 with NMP signature; class 2 with mesodermal signature; class 3
with neural signature and class 4 with extra-embryonic, endoderm
and IM signature. Class 1 contains cells co-expressing Sox2 and T
and cells in a pre-neural and pre-mesodermal state, i.e. not all of
them co-express exclusively Sox2 and T. This observation
emphasizes the notion that the co-expression of Sox2 and T alone
is not a valid definition, or at least it is not an absolute structural
condition, for NMPs (see also Edri et al., 2019). It also raises the
possibility that an NMP population is not only a collection of Sox2
and T co-expressing cells (Gouti et al., 2014, 2017; Turner et al.,
2014), but includes a heterogeneous population of mesodermal
and neural poised and early differentiated cells. This situation is
reminiscent of many stem and progenitor cell populations and
suggests that, as in some of those cases (Huang, 2009; Moris et al.,
2016; Pina et al., 2012), these different cell populations are in
dynamic equilibrium. A suggestion has been made that
differentiation from the T and Sox2 co-expressing population is a
stochastic event biased by cell signalling (Gouti et al., 2017); our
results support that observation but also suggest that the NMP
population includes differentiation-poised cells.
The structure of the E8.25 caudal region inferred from our

analysis was used as a reference for the study of the in vitro-derived

populations. To do this, we used the four classes derived from the
embryo data to build an SVM classification model that allowed us to
allocate cells from the different protocols to our reference.We found
that the ESC-based protocol contained few cells allocated to the
E8.25 embryo CLE, but that the EpiSC samples are enriched in this
population. Furthermore, we found that Epi-NMP cells, which are
derived from Epi-CE (Materials and Methods), contained the most
E8.25 CLE-like cells (>70% of the selected cells, Fig. 4A), andmost
of them map to class 1. Furthermore, we find many E8.25 CLE-like
cells in the Epi-CE population (>60% of the selected cells, Fig. 4A)
but, in contrast with Epi-NMPs, these cells predominantly map to
class 4. Interestingly, very few cells of the Epi-CE descendant, Epi-
NMP, map to class 4. A detailed analysis of class 4 reveals that it has
a large representation of node-like cells and, interestingly, cells of
the floor plate. The floor plate in the embryo shares many features
with the node and its main derivative, the notochord. This allocation
is confirmed by the identification of node-like cells in the embryo
reference data.

The representation of cells from two different sequentially
induced in vitro populations to one embryonic stage is, at first
sight, surprising; however, we believe that there is an explanation.
The CLE at E8.25 is derived from an earlier caudal region, at E7.5,
the most prominent feature of which is the node, which is
maintained until E9.0. Thus, at E8.25 the embryo has a signature
of an early stage in the node. The representation of node cells in
Epi-CE, but not much in its Epi-NMP progeny, suggests that, in
adherent culture the conditions are not conducive to maintenance of
the node. What we find interesting, given the relationship between
Epi-CE and Epi-NMP, is the presence of NMP-like cells in the
Epi-NMP population. This led us to speculate that, in the embryo,
there might be a very close relationship between the emergence of
the node and of the NMPs, something that has been suggested
before (Albors and Storey, 2016; Garriock et al., 2015; Henrique
et al., 2015; Wymeersch et al., 2016, 2019).

We find two interesting features of the possible relationship
between these two populations. The first one is the observation that
within the Epi-CE population there is a subpopulation in a high
proliferative state. Second, there appears to be a relationship
between a node population and the maintenance of the T and Sox2
expression ratio. These observations lead us to suggest that, in the
embryo, the NMP population arises early in development, near the
node, and that the node might play a role in its maintenance and
amplification at that early stage. A need for amplification of the
initial NMP pool could be explained by the size of the primordia
relative to the size of the tissue that needs to be generated. It is not
clear how the node would mediate this function, but an interaction
between BMP and Nodal (Edri et al., 2019) might be important. A
relationship between the node and axial elongation can be gauged
from the effect of mutations in which the node is absent, which leads
to a loss of T expression in the caudal region of the embryo and
severe truncations (Ang and Rossant, 1994; Davidson and Tam,
2000; Weinstein et al., 1994). In this context, there might be an
effect of Oct4 as we observe a clear transition in the behaviour of
the in vitro populations depending on whether they express Oct4
(Epi-CE) or not (Epi-NMP). This transition might correspond to the
proliferative amplification phase and the start of the differentiation
phase of the NMPs.Oct4might create a molecular context for Sox2;
as long as both are expressed the cells in the epiblast are multipotent
and, only when Oct4 is downregulated, Sox2 becomes engaged in
neural differentiation. It will be interesting to test this hypothesis.

Our study highlights the value of comparing embryonic and
in vitro-derived cell populations. This can not only provide useful
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information for the derivation of specific populations, but might
also generate hypotheses and thus provide insights into normal
development which might not be obtainable by classical genetic
methods.

MATERIALS AND METHODS
ESC culture and routine cell culture
E14-Tg2A, Bra::GFP (Fehling et al., 2003), Nodal::YFP (Papanayotou
et al., 2014) and Sox17::GFP Ubiquitin::Tomato (Niakan et al., 2010)
mouse ESCs were cultured in tissue-culture plastic flasks coated with 0.1%
gelatine in PBS (with calcium and magnesium), filled with GMEM (Gibco)
supplemented with non-essential amino acids, sodium pyruvate,
GlutaMAX™ (Gibco), β-mercaptoethanol, foetal bovine serum and LIF.
Cell medium was changed daily and cells passaged every other day. The
differentiation protocols are described below.

ES-NMP
E14-Tg2A cells were plated at a density of 4.44×103 cells/cm2 in a 0.1%
gelatine-coated flask with a base medium of N2B27 (NDiff 227, Takara
Bio) for 2 days. After 48 h, N2B27 was supplemented with 3 μM of
CHIR99021 (Chiron 10 mM, Tocris Bioscience) for an additional 24 h.

EpiSCs
E14-Tg2A or Bra:GFP were grown in a culture flask coated with 0.5%
plasma fibronectin (FC010, 1 mg/ml, Chemicon) in PBS (with calcium and
magnesium) with N2B27 supplemented with 12 ng/ml FGF2 (R&D
Systems, 50 µg/ml) and 25 ng/ml Activin A (Stem Cells Institute, University
of Cambridge, 100 μg/ml), known as Epi-media, for at least four passages.
These cells were considered to be EpiSCs, confirmed by seeding them in a
colony assay at a density of 67 cells/cm2 in restricted medium [2i: N2B27
supplemented with 3 μM Chiron and 1 μM PD0325901 (PD03, Tocris
Bioscience, 10 mM)], resulting in no growth of cells; this ensured that the
cells were no longer in the naïve pluripotent state and they had moved on to
the prime pluripotent state (data not shown).

Epi-CE and Epi-CE-T
EpiSCs were plated at a 5×104 cells/cm2 density in a 0.5% fibronectin pre-
coated flask with Epi-media for the first day. On day 2, the concentration of
FGF2 was increased to 20 ng/ml in the base medium of N2B27 and Activin
A removed. On day 3, N2B27 was supplemented with 3 μM Chiron, which
was added to the 20 ng/ml FGF2. After 72 h those cells were known as
Epi-CE. This protocol is a variation of one that has been used to derive
NMP-like cells from human ESCs (Lippmann et al., 2015). Epi-CE-T were
cultured from the Bra:GFP cell line at the same way as Epi-CE, with the
modification that after 72 h the cells were sorted for positive GFP cells only.

Epi- NMP
Epi-CE cells were detached from the culture flask using Accutase
(BioLegend, 0.5 Mm) and seeded on a flask coated with 0.5% fibronectin
at a density of 5×104 cells/cm2. The cells were grown for 2 days in N2B27
supplemented with 20 ng/ml FGF2 and 3 μM Chiron.

Single cells transcriptomic analysis
10xGenomics single cell transcriptomic servicewas used to sequence our four
different samples. We loaded 8700 cells from each sample into the 10x
Chromium system. The preparation of the libraries and the Illumina
sequencing (HiSeq 4000) was carried out by Cambridge Genomic Services.
Cell Ranger version 1.3.1 (10xGenomics)was used to process raw sequencing
data and the Seurat R package (version 2.0; Butler et al., 2018; Macosko et al.,
2015) was used to read the data fromCell Ranger to R and build the expression
matrix. Gene expression was quantified using UMI counts. The final output
was a matrix of genes versus cells, utilized for further analysis.

Embryo data
In this work, we used the published transcriptomic single cell data from three
mouse embryos (females and males) at E8.25 (Ibarra-Soria et al., 2018;
Pijuan-Sala et al., 2019) including their extra-embryonic tissues. These

embryos were dissociated to single cells and processed on a 10x
microfluidic chip. The resulting libraries were sequenced on an Illumina
HiSeq 2500, providing 7006 cells out of which 4706 are male and 2300 are
female.

Single cell data clean up and quality control
Using the Scater package in R (McCarthy et al., 2017), the expression matrix
was cleaned according to the four following aspects: (1) UMI counts –
drawing the histogram of the RNA UMI total counts per cell allowed us to
set a threshold of above 8000 UMI counts in a cell, ensuring a sufficient
sequencing depth for each cell; (2) detected genes – from the histogram of
total detected genes in a cell we set a threshold of above 2500 unique genes
in a cell, ensuring the reads are distributed across the transcriptome; (3)
mitochondrial gene expression – plotting the percentage of mitochondrial
gene counts in a cell versus the total detected genes in a cell allowed us to set
a threshold of 20%, ensuring the cells to be further analysed are not likely to
be dead or stressed; (4) gene filtering – undetectable genes were filtered out
by setting a threshold of having at least two cells containing more than 1
UMI of a gene. The number of cells and total genes following the clean up
are presented in Table 2.

The UMI count normalization, which is necessary to make an accurate
comparison of gene expression between samples, was carried out by first
scaling the counts of each gene in a cell to the total counts in that cell per
million counts (known as counts per million, CPM). Then the log2(CPM+1)
was calculated for each gene, this is the normalized gene expression (the 1
was added to the CPM to keep zero counts as zero in the binary logarithm
scale).

Seurat clustering
We used Seurat R package (version 2.3.4; Butler et al., 2018; Stuart et al.,
2018preprint) for clustering, which is based on a community detection
approach. This package calculates highly variable genes and focuses on
them for downstream analysis. It calculates the average expression and
dispersion for each gene, places these genes into bins, and then calculates a
z-score for dispersion within each bin. This helps control for the relationship
between variability and average expression.

Clustering the embryo cells
The dissection of CLE in silico from the whole mouse embryo was carried
out by selecting cells that co-express Sox2 and T; cells that express Sox2 and
Nkx1-2 but not T; and cells that express T but not Sox2,Mixl1 and Bmp4 (see
text). Clustering the embryo CLE cells was guided using a selection of
genes. The selection was made to focus on the caudal region of the embryo
and, importantly, to avoid biases towards clustering results led by genes that
are associated with different processes or regions; for example, the embryo
data is a mixture of male and female embryos and, in this situation, Xist
expression leads to clusters of female and males (S.E., unpublished
observation). The genes that were selected for our analysis were 1402 genes
reported by Koch et al., 2017 in a study of the NMPs and the caudal region
of the embryo (Koch et al., 2017). Further genes were added to this list
owing to their association with the CLE region of the E8.5 embryo (Edri
et al., 2019), reaching a total of 1471 genes. From this list, genes with zero
mean expression were removed, yielding a total of 1342 genes for analysis
(Table S2). Clustering was performed using the Cell Consensus Clustering
(SC3) package in R (Kiselev et al., 2017) with the following steps: (1) Gene
filter – filtering genes that are either expressed in less than 6% of the
cells (rare genes) or expressed in at least 94% of cells (ubiquitous genes).

Table 2. The number of cells in each sample and the total number of
detected genes after single cell data clean up

Sample Total cells Total genes

ES-NMP 3133 14,822
Epi-CE 2404 14,822
Epi-CE-T 2135 14,822
Epi-NMP 1108 14,822
Embryo E8.25 4183 14,822
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(2) Distance matrices calculations – distances between the cells are
calculated using the Euclidean, Pearson and Spearman matrices.
(3) Transformations – all distance matrices are then transformed using
either principal component analysis or by calculating the eigenvectors of the
associated Laplacian matrix. (4) k-means – k-means clustering is performed
on the first set of eigenvectors of the transformed distance matrices. The
number of clusters, k, is set by the user. (5) Consensus clustering – a binary
similarity matrix is constructed for each individual clustering result from the
corresponding cell labels obtained in the previous step: if two cells belong
to the same cluster, their similarity is 1; otherwise the similarity is 0.
A consensus matrix is calculated by averaging all similarity matrices of the
individual clustering results. The resulting consensus matrix is clustered
using hierarchical clustering.

The clustering of the embryo cells was carried out between k=2 and k=8.
The consensus matrices for the different k are shown in Fig. S6. The
averaged Silhouette width values for each clustering results between k=2
and k=8 are 0.8, 0.9, 0.85, 0.78, 0.77, 0.77 and 0.72, respectively.

The silhouette is a quantitative measure that represents the consensus
matrix diagonally. An average silhouette width, which is calculated as the
weighted average between the silhouette values of each cluster, varies from
0 to 1, and the closer it is to 1 the better the clustering is for that value of
k. From the consensus matrices on Fig. S6 and from the averaged silhouette
width in Table 3, we estimated that the optimal number of clusters could be
k=3 or k=4. For k=3, the three clusters are: a mixed cluster – containing cells
from all the three categories; NMP candidates, preNeuro and preMeso; and
the two other, mainly composed from preMeso cells (Fig. S6). For k=4 the
clusters are: a mixed cluster composed from all the three cell categories; two
others which are mainly composed of cells with a mesodermal identity;
and a fourth one which is mainly constructed from neural-oriented cells
(Fig. S6). We decided to continue to downstream analysis with k=4 because
of the appearance of a clear neural cluster along with mesodermal clusters.
K=4 ensures a representation for all the three cell categories: NMP
candidates, mesodermal and neural cells.

Marker genes
Using the SC3 package in R (Kiselev et al., 2017), 96 marker genes were
identified for the four obtained clusters (see Table S3). Marker genes are
defined as genes that are highly expressed in only one of the clusters and can
lead to the segregation of one cluster from the rest. The marker genes were
found according to the following steps (Kiselev et al., 2017): constructing a
binary classifier for each gene based on comparing the mean expression
values across the clusters; calculating the classifier prediction by comparing
the gene expression ranks across clusters; quantifying the accuracy of the
prediction by calculating for each gene the area under the receiver operating
characteristic (ROC) curve (true positive rate versus false positive rate);
calculating the P-value for each gene using the Wilcoxon signed rank test
and comparing the gene ranks in the cluster with the highest mean
expression with all others; setting a threshold for the area under the ROC
curve and the P-value to determine the marker genes.

The genes with the area under the ROC curve >0.65 and with the
P-value<0.01 are defined as marker genes. The top 10 marker genes of each
cluster are visualized in Fig. 3A.

Mutual information between genes and classes
After identifying the four different clusters in the in silico CLE embryo data,
the downstream analysis was constructed using the whole set of qualified
genes (14,822) rather than with the genes restricted to CLE (1342). This step

was performed to avoid an underrepresentation of genes that were not
previously linked to the NMPs. However, there is a need for dimensionality
reduction to elucidate the data and to feasibly reduce computer calculation
time. Here, similar to the work of Vanitha et al. (2015), we used an MI
technique (Battiti, 1994) to select the informative genes related to the four
clusters. The steps of computing the MI between the clusters (denoted as Y)
and genes (denoted as X) start with calculating the cluster’s entropy:

HðY Þ ¼ �
X

y¼1:4

pðyÞ log2ð pðyÞÞ ð1Þ

where p(y) is the probability of each cluster y=1, 2, 3, 4, which is computed
based on the distribution of the four clusters in the embryo data. We then
discretized the gene expression values into ten bins and calculate the
conditional entropy H(Y|X ) as follows:

HðY jX Þ ¼
X

x

pðxÞHðY jX ¼ xÞ ð2Þ

where p(x) is the probability of the discretized expression values of a gene
across the cell population and H(Y|X=x) is the cluster’s entropy given a
specific gene expression value, calculated following Eqn 1. Finally, we
computed the MI between the clusters and each gene according to the below
equation:

MIðX ;Y Þ ¼ HðY Þ � HðY jX Þ ð3Þ
setting a threshold of the MI of all the genes and selecting the informative
genes above this value to train the SVM.

Testing different values of MI between the genes and the clusters in which
there are genes with MI above these values determined which genes were
selected as input features for building the SVM (Table 3). The gene selection
step helped to removemany irrelevant genes, which improved the classification
accuracy. As can be seen in Table 3, setting a higher threshold to theMI value
led to a lower numberof informative genes thatwere fed to theclassifierand that
influenced its performance. Using anMI threshold above 0.15 led to 82 useful
genes (Table S4) without damaging the classifier performance.

Multiclass SVM
In machine learning, SVM is a supervised learning model used either for
classification or regression analysis, introduced in 1992 by Boser, Guyon
and Vapnik (Boser et al., 1992). Given labelled training data, an SVM
classifies it by finding the best hyperplane that separates all the data points of
one class from the other class. The best hyperplane for an SVM means the
one with the largest margin between the two classes. The support vectors are
the data points that are on the margins of the separating hyperplane. New
data points are then mapped into the same space and predicted to belong to a
specific class based onwhich side of the hyperplane they fall. It often happens
that the sets to discriminate are not linearly separable in a finite dimensional
space. In that case a kernel function is used to map the original finite
dimensional space into a much higher dimensional space, making the
separation easier in that space. The selection of an appropriate kernel function
is important, as it defines the space in which the training set will be classified.
Exploration of the different kernel functions is described in the PhD thesis of
S.E. (Edri, 2019); here, we show the result of the linear kernel function.

The classification problem encountered in this work is a multiclass
classification rather than a binary classification. To solve this problem, the
dominant approach is to reduce the single multiclass problem into multiple
binary classification problems. Using the R package e1071 (version 1.6.8),
the ‘one-against-one’ approach was selected in which n(n−1)/2 binary
classifiers are trained, where n is the number of classes (in this work, n=4);
the appropriate class is assigned by the majority output of a voting scheme.

We chose SVM in this work as a classifier owing to its high accuracy and
its ability to deal with high dimensional data, as has been previously proven
in large-scale image classification and gene expression data (Abdullah et al.,
2011; Jiang et al., 2007; Lin et al., 2011; Vanitha et al., 2015).

To train the SVM and test its performance, a leave one out cross validation
(LOOCV) method was used. In this method, the train data isN−1 cells, where
N is the total number of cells in the embryo data (498 cells) and the remaining
Nth cell is used for testing the model, and the same is repeated N times such

Table 3. Performance of the SVM with different MI-value thresholds

Number of
informative genes

Correctly
classified Misclassified

Error
rate

MI>0.05 455 483 15 3%
MI>0.1 158 482 16 3%
MI>0.15 82 483 15 3%
MI>0.2 51 477 21 4%
MI>0.3 17 464 34 7%
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that each cell is tested, classified and contributing to the model performance
(Fig. 3B). The informative genes that passed the MI threshold were used as
input features to the SVM. The LOOCV method makes the best use of the
available data, especially when the number of samples is small (498 cells),
and avoids the problem of random selection (Ben-Dor et al., 2000).

Predicting the class of the in vitro cells
Predicting the class of the in vitro cells involved selecting the CLE cells in
the same way as for the embryo data, selecting the same informative genes
that were used to build the SVM on the embryo data, and inserting the
expression matrix of the in vitro cells as an input to the SVM. The output is
the probability of each cell to be assigned to any of the four trained clusters.
The dominant class that the cell was assigned in agreement with the
maximum probability out of the four probabilities was then chosen (see the
plot under Step 6 in Fig. 4A). As the true classification of the cells is not
known, and as there might be some hidden classes in the in vitro data that
were not trained using the embryo data, a harsh constrain needs to be taken:
only the cells with minimum probability of 0.8 to be assigned to the
dominant class are proceeded to the next step (see the probability plot under
Step 6 in Fig. 4A: probability of 0.8 is indicated by the red line. The
classification results are that only the qualified cells from the previous step
are assigned to any of the four classes.

Pseudotime analysis
The cells from the in vitro samples (ES-NMP, Epi-CE, Epi-CE-T and Epi-
NMP) that were classified to the four classes (the qualified output cells from
the SVM pipeline) went through a pseudotemporal cell ordering. For
pseudotime reconstruction of single cell RNA-seq data there are not a lot of
available tools that have been systematically tested and have easily accessible
software. Moreover, in this work we are analysing a heterogeneous cell
population of different conditions rather than cells from a time course
experiment, hence the supervised pseudotime reconstruction approaches are
not applicable and one should rely on unsupervised methods. We decided to
use TSCAN, the Bioconductor R package (version 1.16.0), as it has
demonstrated reliable unsupervised pseudotime reconstruction results
compared with alternative methods.

TSCAN first clusters the cells, then it builds a minimum spanning tree to
connect the clusters. The branch of this tree that connects the largest number
of clusters is the main branch, which is used to determine the pseudotime
order of the cells. This algorithm does not detect starting or ending points,
and previous biological information is needed to understand the start of the
pseudotime order. The pseudotime order might represent the underlying
developmental trajectory.

Defining the highly expressed genes in the two pseudotime
ranges of class 4
The cells in class 4 were split into two groups based on their pseudotime
order: tp≤ 1250; 2500≤ tp≤ 3700. We then identified the differentially
expressed genes between the two groups using the two-sidedWilcoxon rank
sum test. The P-value was corrected using the ‘BY’ method of Benjamini
and Yekutieli (2001). This method controls the false discovery rate and
the proportion of false discoveries among the rejected hypotheses. We
detected 4569 differentially expressed genes by setting the adjusted
P-value to �0:01. The mean expression of the 4569 genes across the
cells in each group and the log2-fold between the mean expression of the
two groups was calculated and the highly expressed genes in each group
were defined as the genes with log2-fold above 1, resulting in 24 genes in the
early pseudotime range and 178 genes in the later range (Table S5). Using
the ccRemover R package (version 1.0.4; Barron and Li, 2016) each gene
from the identified highly expressed genes could be identified as a cycling
gene; 55% of the highly expressed genes in the later pseudotime range group
are defined as cycling genes, whereas the cells in the earlier range do not
show this enrichment (no cycling genes).

Statistical test for controlling the sample size
The numbers of in vitro cells classified to each of the four clusters were:
class 1, 1141 cells; class 2, 264 cells; class 3, 70 cells; class 4, 2036 cells.

Class 4 is approximately twice the size of class 1, and the node-like cells
were assigned almost exclusively to class 4. Hence, one might think that the
different size of the classes might bias the finding of the node-like cells in
class 4. The statistical test that was designed in this case was to control for
the size of the classes: 570 cells (half of class 1) were randomly selected
from each of class 1 and class 4, and the null hypothesis is that there is no
difference in the number of the node-like cells between class 1 and class 4. This
step was repeated 1000 times, with the result that, in 1000 cases, class 4
contained more node cells than class 1, meaning that the calculated
P-value<0.001 and the null hypothesis was rejected.

Culturing Nodal-YFP cells and ubiquitous-tomato cells
Nodal::YFP and Sox17::GFP Ubiquitin::Tomato cells were cultured under
the Epi-CE protocol [Epi-CE Nodal and Epi-CE RFP (for red fluorescent
protein), respectively]. The Epi-CE RFP were further grown to make
Epi-NMP (Epi-NMP RFP). After two days of culturing Epi-NMP RFP, we
plated a mixture that consists of 50% Epi-NMP RFP-positive cells and 50%
Epi-CE Nodal YFP-positive cells, at a total density of 5×104 cells/cm2

(Fig. S8A,B). After sorting, the cells might be in stress, so we decided to
culture the mixture for 4 days and not for the normal period of 2 days to let
the cells recover. The mixture was grown in N2B27 supplemented with
20 ng/ml FGF2 and 3μM Chiron to make Epi-meso2 (EM2), until sorting
the cells to RFP-positive (EM2-RFP+4d, contains only the Ubiquitin::
Tomato cells) and RFP-negative (EM2-RFP-4d, contains Nodal::YFP cells
and might contain Ubiquitin::Tomato cells that did not express RFP, see
Fig. S8C). This population of cells was compared with the EM2-RFP4d
(Epi-NMP RFP cells plated in a flask and cultured for 4 days in N2B27
supplemented with 20 ng/ml FGF2 and 3 μM Chiron to make Epi-meso2).
Total RNA was isolated from the three samples (EM2-RFP4d, EM2-
RFP+4d and EM2-RFP-4d) using TRIzol (Invitrogen/Thermo Fisher
Scientific). First-strand cDNA synthesis was performed using the
Superscript III system (Invitrogen) and the quantification of double-
stranded DNA was obtained using specific primers (see Table S6) using
QuantiFast SYBR Green PCRMaster Mix (Qiagen) and the standard cycler
program (Qiagen RotorGene Q). The qPCR was carried out in technical
triplicates. Expression values were normalized against the housekeeping
gene Ppia. To calculate the normalized gene expression values we identified
the Ct (threshold cycle) for each gene (technical triplicates) and calculated
the expression values (2−Ct). We then calculated the mean and s.d. for each
gene from the triplicate expression values, and divided the mean and s.d. of
each gene by the expression value of Ppia. The gene expression across the
different conditions was scaled between 0 and 1.

Cell sorting
Epi-CE Nodal cells were sorted according to their YFP-positive
fluorescence in a MoFlo sorter (Beckman Coulter) using a 488 nm laser
with an emission filter of 530/40 (Fig. S8A). Epi-NMP RFP cells were
sorted according to their RFP-positive fluorescence using a 647 nm laser
with an emission filter of 610/20 (Fig. S8B). Cells were collected, counted
and replated in N2B27 supplemented with 20 ng/ml FGF2 and 3 μMChiron
medium to make the 50% Epi-CE Nodal YFP-positive/Epi-NMP RFP-
positive mixture of cells, as described above. After 4 days, the mixture was
sorted to RFP-positive and -negative cells in the MoFlo sorter using the
same laser and filter sets mentioned above (Fig. S8C).

Acknowledgements
We thank Bertie Gottgens for sharing the embryo data before publication, Meritxell
Vinyoles for helping in experimental design and insightful discussion, and James
Briscoe, Valerie Wilson and Ben Steventon for insightful discussions.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: S.E., A.M.A.; Methodology: S.E., P.H., W.J.; Software: S.E.;
Validation: S.E., W.J.; Formal analysis: S.E., P.H.; Investigation: S.E., P.H.;
Resources: W.J., A.M.A.; Data curation: S.E., W.J.; Writing - original draft: S.E.,
A.M.A.; Writing - review & editing: S.E., A.M.A; Visualization: S.E.; Supervision:
A.M.A.; Project administration: A.M.A.; Funding acquisition: A.M.A.

13

STEM CELLS AND REGENERATION Development (2019) 146, dev180190. doi:10.1242/dev.180190

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental


Funding
This work was supported by the Cambridge Commonwealth, European and
International Trust and Cambridge Philosophical Society scholarships and an AJA
Karten Trust (the Anglo-Jewish Association Trust and the Ian Karten Charitable
Trust) award to S.E., a Wellcome Trust Clinical PhD Fellowship (103392/Z/13/Z and
103392/Z/13/A) to W.J., and a Sir Henry Dale Fellowship jointly funded by the
Wellcome Trust and Biotechnology and Biological Sciences Research Council project
grants (BB/M023370/1 and BB/P003184/1) to A.M.A. Deposited in PMC for release
after 6 months.

Data availability
Single cell RNA-seq data data have been deposited in Gene Expression Omnibus
under accession number GSE132504.

Supplementary information
Supplementary information available online at
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental

References
Abdullah, N., Ngah, U. K. and Aziz, S. A. (2011). Image classification of brain MRI
using support vector machine. In 2011 IEEE International Conference on Imaging
Systems and Techniques, pp. 242-247. IEEE. doi:10.1109/IST.2011.5962185

Albors, A. R. and Storey, K. G. (2016). Mapping body-building potential. eLife 5,
e14830. doi:10.7554/eLife.14830

Ang, S.-L. and Rossant, J. (1994). HNF-3β is essential for node and notochord
formation in mouse development. Cell 78, 561-574. doi:10.1016/0092-
8674(94)90522-3

Barron, M. and Li, J. (2016). Identifying and removing the cell-cycle effect from
single-cell RNA-Sequencing data. Sci. Rep. 6, 33892. doi:10.1038/srep33892

Battiti, R. (1994). Using mutual information for selecting features in supervised
neural net learning. IEEE Trans. Neural Networks 5, 537-550. doi:10.1109/72.
298224

Beddington, R. S. P. (1982). An autoradio graphic analysis of tissue potency in
different regions of the embryonic ectoderm during gastrulation in the mouse.
Embryol. Exp. Morph 69, 265-285.

Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M. and Yakhini,
Z. (2000). Tissue classification with gene expression profiles. J. Comput. Biol. 7,
559-583. doi:10.1089/106652700750050943

Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in
multiple testing under dependency. Ann. Statist. 29, 1165-1188. doi:10.1214/aos/
1013699998

Blum, M., Andre, P., Muders, K., Schweickert, A., Fischer, A., Bitzer, E.,
Bogusch, S., Beyer, T., van Straaten, H.W. M. and Viebahn, C. (2007). Ciliation
and gene expression distinguish between node and posterior notochord in the
mammalian embryo. Differentiation 75, 133-146. doi:10.1111/j.1432-0436.2006.
00124.x

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In COLT ’92 Proceedings of the fifth annual workshop on
Computational learning theory, pp. 144-152. ACM Press.

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411-420. doi:10.1038/nbt.4096

Cajal, M., Lawson, K. A., Hill, B., Moreau, A., Rao, J., Ross, A., Collignon, J.,
Camus, A., Simeone, A. and Levi, G. (2012). Clonal and molecular analysis of
the prospective anterior neural boundary in themouse embryo.Development 139,
423-436. doi:10.1242/dev.075499

Cambray, N. and Wilson, V. (2007). Two distinct sources for a population of
maturing axial progenitors. Development 134, 2829-2840. doi:10.1242/dev.
02877

Davidson, B. P. and Tam, P. P. L. (2000). The node of the mouse embryo. Curr.
Biol. 10, R617-R619. doi:10.1016/S0960-9822(00)00675-8

Downs, K. M. (2008). Systematic localization of Oct-3/4 to the gastrulating mouse
conceptus suggests manifold roles in mammalian development. Dev. Dyn. 237,
464-475. doi:10.1002/dvdy.21438

Dunty, W. C., Kennedy, M. W. L., Chalamalasetty, R. B., Campbell, K. and
Yamaguchi, T. P. (2014). Transcriptional profiling of Wnt3a mutants identifies Sp
transcription factors as essential effectors of the Wnt/β-catenin pathway in
neuromesodermal stem cells. PLoS ONE 9, e87018. doi:10.1371/journal.pone.
0087018

Edri, S. (2019). Date with Destiny: Genetic and epigenetic factors in cell fate
decisions in populations of multipotent stem cells. PhD thesis, University of
Cambridge, UK. doi:10.17863/CAM.35678

Edri, S., Hayward, P., Baillie-Johnson, P., Steventon, B. J. and Arias, A. M.
(2019). An Epiblast stem cell-derived multipotent progenitor population for axial
extension. Development 146, dev.168187. doi:10.1242/dev.168187

Fehling, H. J., Lacaud, G., Kubo, A., Kennedy, M., Robertson, S., Keller, G. and
Kouskoff, V. (2003). Tracking mesoderm induction and its specification to the

hemangioblast during embryonic stem cell differentiation. Development 130,
4217-4227. doi:10.1242/dev.00589

Funk, M. C., Bera, A. N., Menchen, T., Kuales, G., Thriene, K., Lienkamp, S. S.,
Dengjel, J., Omran, H., Frank, M. and Arnold, S. J. (2015). Cyclin O (Ccno)
functions during deuterosome-mediated centriole amplification of multiciliated
cells. EMBO J. 34, 1078-1089. doi:10.15252/embj.201490805

Garriock, R. J., Chalamalasetty, R. B., Kennedy, M. W., Canizales, L. C.,
Lewandoski, M. and Yamaguchi, T. P. (2015). Lineage tracing of
neuromesodermal progenitors reveals novel Wnt-dependent roles in trunk
progenitor cell maintenance and differentiation. Development 142, 1628-1638.
doi:10.1242/dev.111922

Gouti, M., Tsakiridis, A., Wymeersch, F. J., Huang, Y., Kleinjung, J., Wilson, V.
and Briscoe, J. (2014). In vitro generation of neuromesodermal progenitors
reveals distinct roles for Wnt signalling in the specification of spinal cord and
paraxial mesoderm identity. PLoS Biol. 12, e1001937. doi:10.1371/journal.pbio.
1001937

Gouti, M., Delile, J., Stamataki, D., Wymeersch, F. J., Huang, Y., Kleinjung, J.,
Wilson, V. and Briscoe, J. (2017). A gene regulatory network balances neural
and mesoderm specification during vertebrate trunk development. Dev. Cell 41,
243-261.e7. doi:10.1016/j.devcel.2017.04.002

Haghverdi, L., Lun, A. T. L., Morgan, M. D. andMarioni, J. C. (2018). Batch effects
in single-cell RNA-sequencing data are corrected by matching mutual nearest
neighbors. Nat. Biotechnol. 36, 421-427. doi:10.1038/nbt.4091

Henrique, D., Abranches, E., Verrier, L. and Storey, K. G. (2015).
Neuromesodermal progenitors and the making of the spinal cord. Development
142, 2864-2875. doi:10.1242/dev.119768

Huang, S. (2009). Non-genetic heterogeneity of cells in development: more than just
noise. Development 136, 3853-3862. doi:10.1242/dev.035139

Ibarra-Soria, X., Jawaid, W., Pijuan-Sala, B., Ladopoulos, V., Scialdone, A.,
Jörg, D. J., Tyser, R. C. V., Calero-Nieto, F. J., Mulas, C., Nichols, J. et al.
(2018). Defining murine organogenesis at single-cell resolution reveals a role for
the leukotriene pathway in regulating blood progenitor formation.Nat. Cell Biol. 20,
127. doi:10.1038/s41556-017-0013-z

Jeong, Y. and Epstein, D. J. (2003). Distinct regulators of Shh transcription in the
floor plate and notochord indicate separate origins for these tissues in the mouse
node. Development 130, 3891-3902. doi:10.1242/dev.00590

Jiang, Y., Li, Z., Zhang, L. and Sun, P. (2007). An improved SVM classifier for
medical image classification. In Rough Sets and Intelligent Systems Paradigms,
pp. 764-773. Berlin, Heidelberg: Springer Berlin Heidelberg.

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T.,
Natarajan, K. N., Reik, W., Barahona, M., Green, A. R. et al. (2017). SC3:
consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483-486.
doi:10.1038/nmeth.4236

Koch, F., Scholze, M., Wittler, L., Schifferl, D., Sudheer, S., Grote, P.,
Timmermann, B., Macura, K. and Herrmann, B. G. (2017). Antagonistic
activities of Sox2 and brachyury control the fate choice of neuro-mesodermal
progenitors. Dev. Cell 42, 514-526.e7. doi:10.1016/j.devcel.2017.07.021

Kojima, Y., Kaufman-Francis, K., Studdert, J. B., Steiner, K. A., Power, M. D.,
Loebel, D. A. F., Jones, V., Hor, A., de Alencastro, G., Logan, G. J. et al.
(2014). The transcriptional and functional properties of mouse epiblast stem cells
resemble the anterior primitive streak. Cell Stem Cell 14, 107-120. doi:10.1016/j.
stem.2013.09.014

Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright,
C. V. E., Korving, J. P. W. F. M. and Hogan, B. L. M. (1999). Bmp4 is required for
the generation of primordial germ cells in the mouse embryo. Genes Dev. 13,
424-436. doi:10.1101/gad.13.4.424

Lee, J. D. and Anderson, K. V. (2008). Morphogenesis of the node and notochord:
the cellular basis for the establishment and maintenance of left-right asymmetry in
the mouse. Dev. Dyn. 237, 3464-3476. doi:10.1002/dvdy.21598

Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L. and Huang, T. (2011).
Large-scale image classification: Fast feature extraction and SVM training. In
CVPR 2011, pp. 1689-1696. IEEE. doi:10.1109/CVPR.2011.5995477

Lippmann, E. S., Williams, C. E., Ruhl, D. A., Estevez-Silva, M. C., Chapman,
E. R., Coon, J. J. and Ashton, R. S. (2015). Deterministic HOX patterning in
human pluripotent stem cell-derived neuroectoderm. Stem Cell Rep. 4, 632-644.
doi:10.1016/j.stemcr.2015.02.018

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M.,
Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M. et al. (2015). Highly
parallel genome-wide expression profiling of individual cells using nanoliter
droplets. Cell 161, 1202-1214. doi:10.1016/j.cell.2015.05.002

Martinez Arias, A. and Steventon, B. (2018). On the nature and function of
organizers. Development 145, dev159525. doi:10.1242/dev.159525

McCarthy, D. J., Campbell, K. R., Lun, A. T. L. andWills, Q. F. (2017). Scater: Pre-
processing, quality control, normalization and visualization of single-cell RNA-seq
data in R. Bioinformatics 33, 1179-1186. doi:10.1093/bioinformatics/btw777

McGrew, M. J., Sherman, A., Lillico, S. G., Ellard, F. M., Radcliffe, P. A.,
Gilhooley, H. J., Mitrophanous, K. A., Cambray, N., Wilson, V. and Sang, H.
(2008). Localised axial progenitor cell populations in the avian tail bud are not
committed to a posterior Hox identity.Development 135, 2289-2299. doi:10.1242/
dev.022020

14

STEM CELLS AND REGENERATION Development (2019) 146, dev180190. doi:10.1242/dev.180190

D
E
V
E
LO

P
M

E
N
T

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE132504
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.180190.supplemental
https://doi.org/10.1109/IST.2011.5962185
https://doi.org/10.1109/IST.2011.5962185
https://doi.org/10.1109/IST.2011.5962185
https://doi.org/10.7554/eLife.14830
https://doi.org/10.7554/eLife.14830
https://doi.org/10.1016/0092-8674(94)90522-3
https://doi.org/10.1016/0092-8674(94)90522-3
https://doi.org/10.1016/0092-8674(94)90522-3
https://doi.org/10.1038/srep33892
https://doi.org/10.1038/srep33892
https://doi.org/10.1109/72.298224
https://doi.org/10.1109/72.298224
https://doi.org/10.1109/72.298224
https://doi.org/10.1089/106652700750050943
https://doi.org/10.1089/106652700750050943
https://doi.org/10.1089/106652700750050943
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1111/j.1432-0436.2006.00124.x
https://doi.org/10.1111/j.1432-0436.2006.00124.x
https://doi.org/10.1111/j.1432-0436.2006.00124.x
https://doi.org/10.1111/j.1432-0436.2006.00124.x
https://doi.org/10.1111/j.1432-0436.2006.00124.x
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1242/dev.075499
https://doi.org/10.1242/dev.075499
https://doi.org/10.1242/dev.075499
https://doi.org/10.1242/dev.075499
https://doi.org/10.1242/dev.02877
https://doi.org/10.1242/dev.02877
https://doi.org/10.1242/dev.02877
https://doi.org/10.1016/S0960-9822(00)00675-8
https://doi.org/10.1016/S0960-9822(00)00675-8
https://doi.org/10.1002/dvdy.21438
https://doi.org/10.1002/dvdy.21438
https://doi.org/10.1002/dvdy.21438
https://doi.org/10.1371/journal.pone.0087018
https://doi.org/10.1371/journal.pone.0087018
https://doi.org/10.1371/journal.pone.0087018
https://doi.org/10.1371/journal.pone.0087018
https://doi.org/10.1371/journal.pone.0087018
https://doi.org/10.17863/CAM.35678
https://doi.org/10.17863/CAM.35678
https://doi.org/10.17863/CAM.35678
https://doi.org/10.1242/dev.168187
https://doi.org/10.1242/dev.168187
https://doi.org/10.1242/dev.168187
https://doi.org/10.1242/dev.00589
https://doi.org/10.1242/dev.00589
https://doi.org/10.1242/dev.00589
https://doi.org/10.1242/dev.00589
https://doi.org/10.15252/embj.201490805
https://doi.org/10.15252/embj.201490805
https://doi.org/10.15252/embj.201490805
https://doi.org/10.15252/embj.201490805
https://doi.org/10.1242/dev.111922
https://doi.org/10.1242/dev.111922
https://doi.org/10.1242/dev.111922
https://doi.org/10.1242/dev.111922
https://doi.org/10.1242/dev.111922
https://doi.org/10.1371/journal.pbio.1001937
https://doi.org/10.1371/journal.pbio.1001937
https://doi.org/10.1371/journal.pbio.1001937
https://doi.org/10.1371/journal.pbio.1001937
https://doi.org/10.1371/journal.pbio.1001937
https://doi.org/10.1016/j.devcel.2017.04.002
https://doi.org/10.1016/j.devcel.2017.04.002
https://doi.org/10.1016/j.devcel.2017.04.002
https://doi.org/10.1016/j.devcel.2017.04.002
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1038/nbt.4091
https://doi.org/10.1242/dev.119768
https://doi.org/10.1242/dev.119768
https://doi.org/10.1242/dev.119768
https://doi.org/10.1242/dev.035139
https://doi.org/10.1242/dev.035139
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1038/s41556-017-0013-z
https://doi.org/10.1242/dev.00590
https://doi.org/10.1242/dev.00590
https://doi.org/10.1242/dev.00590
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1016/j.devcel.2017.07.021
https://doi.org/10.1016/j.devcel.2017.07.021
https://doi.org/10.1016/j.devcel.2017.07.021
https://doi.org/10.1016/j.devcel.2017.07.021
https://doi.org/10.1016/j.stem.2013.09.014
https://doi.org/10.1016/j.stem.2013.09.014
https://doi.org/10.1016/j.stem.2013.09.014
https://doi.org/10.1016/j.stem.2013.09.014
https://doi.org/10.1016/j.stem.2013.09.014
https://doi.org/10.1101/gad.13.4.424
https://doi.org/10.1101/gad.13.4.424
https://doi.org/10.1101/gad.13.4.424
https://doi.org/10.1101/gad.13.4.424
https://doi.org/10.1002/dvdy.21598
https://doi.org/10.1002/dvdy.21598
https://doi.org/10.1002/dvdy.21598
https://doi.org/10.1109/CVPR.2011.5995477
https://doi.org/10.1109/CVPR.2011.5995477
https://doi.org/10.1109/CVPR.2011.5995477
https://doi.org/10.1016/j.stemcr.2015.02.018
https://doi.org/10.1016/j.stemcr.2015.02.018
https://doi.org/10.1016/j.stemcr.2015.02.018
https://doi.org/10.1016/j.stemcr.2015.02.018
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1242/dev.159525
https://doi.org/10.1242/dev.159525
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1242/dev.022020
https://doi.org/10.1242/dev.022020
https://doi.org/10.1242/dev.022020
https://doi.org/10.1242/dev.022020
https://doi.org/10.1242/dev.022020


Moris, N., Pina, C. and Arias, A. M. (2016). Transition states and cell fate decisions
in epigenetic landscapes.Nat. Rev. Genet. 17, 693-703. doi:10.1038/nrg.2016.98

Niakan, K. K., Ji, H., Maehr, R., Vokes, S. A., Rodolfa, K. T., Sherwood, R. I.,
Yamaki, M., Dimos, J. T., Chen, A. E., Melton, D. A. et al. (2010). Sox17
promotes differentiation in mouse embryonic stem cells by directly regulating
extraembryonic gene expression and indirectly antagonizing self-renewal.Genes
Dev. 24, 312-326. doi:10.1101/gad.1833510

Papanayotou, C., Benhaddou, A., Camus, A., Perea-Gomez, A., Jouneau, A.,
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