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The evolving concept of cell identity in the single cell era
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ABSTRACT
Fueled by recent advances in single cell biology, we are moving away
from qualitative and undersampled assessments of cell identity,
toward building quantitative, high-resolution cell atlases. However, it
remains challenging to precisely define cell identity, leading to
renewed debate surrounding this concept. Here, I present three pillars
that I propose are central to the notion of cell identity: phenotype,
lineage and state. I explore emerging technologies that are enabling
the systematic and unbiased quantification of these properties,
and outline how these efforts will enable the construction of a
high-resolution, dynamic landscape of cell identity, potentially
revealing its underlying molecular regulation to provide new
opportunities for understanding and manipulating cell fate.
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Introduction
For centuries, biologists have sought to deconstruct the complexity
of biological systems by breaking them down into their component
parts – cells – and cataloging these individual units according to
their identity. Establishing such a cellular taxonomy provides a
universal scheme to standardize cell biology, yet the notion of cell
identity, or cell type, remains poorly defined. Historically, cells have
been classified by features such as morphology, location, ontogeny
and interactions with other cell types. Over time, new assays were
developed to measure the physiological function of cells, and these,
accompanied by advances in molecular biology that enable the
quantification of gene and protein expression, have allowed for
more nuanced cell type classifications.
Fundamentally, though, no general method to accurately define

cell identity currently exists. This represents a barrier to cataloging
cell types in organisms where the full repertoire of cell identities
remains unknown, such as in mouse (Han et al., 2018; Tabula Muris
Consortium et al., 2018) and human (Regev et al., 2017). Thus,
although several cell atlas construction endeavors are under way,
these efforts have reignited debate around how cell identity can be
effectively and accurately curated, revealing many differing
viewpoints on this subject (Various authors, 2017; see also Xia
and Yanai, 2019 in this issue). Here, I draw on new and established
notions to synthesize a framework consisting of three pillars (Fig. 1)
that I propose are central to the concept of cell identity:
(1) phenotype (and function) – representing a central pillar for the
definition of cell identity, this defines the broad range of physical,
molecular and functional features that can be captured and analyzed
to enable systematic and unbiased cell type categorization;

(2) lineage – to fully characterize cell identity, it is also valuable
to understand the lineage relationships between different cell types
and their genesis. Tracing the developmental origins of cell identity
may allow a cellular taxonomy to be constructed, enabling similar
cell types to be grouped together, potentially helping to characterize
new cell species; (3) State – cell identity is stable; however, in
response to diverse stimuli, the same cell type can exhibit a range
of different phenotypes (states). Curating the cell states associated
with a given cell type enables identity to be distinguished from state.
Moreover, mapping the landscape of cell states lays the foundation
for identifying when a cell travels out of normal physiological
bounds into a pathological state. Together, a consideration of
these three pillars can enable the construction of a high-resolution,
dynamic cell identity landscape, potentially providing new
opportunities for understanding and manipulating cell fate.

Phenotype and function: curating high-resolution snapshots
of cellular features to characterize identity
Inferring cell identity from phenotype
The characterization of cell phenotype is central to defining cell
identity and represents a longstanding focus of biologists. In the
1600s, aided by light microscopy, Robert Hooke initially described
the cells that made up a sample of cork (Hooke, 1665). Two-hundred
years later, the first histological stains using carmine, silver, and
Hematoxylin and Eosin emerged, thus allowing relatively detailed
cytological observations to be made (Pearse, 1984). It was around
this time that Ramón y Cajal used Golgi’s silver staining method
to describe neurons, providing evidence that the nervous system
isn’t a continuum of fibers but is composed of individual units,
neurons (Ramón y Cajal, 1888). Since these early discoveries, cell
visualization using ever increasingly sophisticated microscopy and
imaging techniques has remained central to cell type identification;
probing key features such as cell shape, size, location and interactions
with other cell types facilitates the classification of cells into discrete
categories. With advances in molecular biology came the ability
to stain cells for specific markers of identity (Coons et al., 1941).
Eventually, distinct cell types could be labeled with fluorescent tags
such as GFP (Chalfie et al., 1994), enabling the detailed investigation
of cell phenotype within whole biological systems.

Imaging-based phenotypic assessment, along with other
established techniques, such as flow cytometry, provides high
resolution in terms of capturing information on an individual cell
basis. Furthermore, these analyses can be deployed in intact cells
and organisms, enabling cell function to be probed. However,
the information yielded by these assays is comparatively low
dimensional, i.e. relatively few phenotypic features are captured
frommany cells. In addition, the selection of these features tends to be
driven by prior knowledge of the biological system under study,
limiting and potentially biasing assessment of cell identity. In contrast,
methods supporting genome-wide analysis of RNA and protein
abundance support the collection of broader and more objective
measurements. Indeed, increasing the number of molecular features
used to define cell types has enabled more systematic and unbiased
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assessments of cell identity, based on gene expression alone (Cahan
et al., 2014; Roost et al., 2015). Nevertheless, these approaches have
relied on bulk analysis of mixed cell populations, blending signals
from different sub-populations and altogether masking rare cell
species, limiting the precision of cell type identification.
Recently developed single cell technologies have served to bridge

the gap between detailed studies of individual cells and bulk studies
of cell populations. These methods enable the capture of many
thousands of features, without the requirement for experimental
cell enrichment, thus generating a rigorous and unbiased picture of
the range of cell phenotypes that exists within any given tissue. Of
the current suite of technologies, which include genetic, epigenetic
and proteomic profiling (Stuart and Satija, 2019), single cell
RNA-sequencing (scRNA-seq), has seen rapid and wide adoption
since its recent emergence (Tang et al., 2009). Although early
iterations requiring cell separation in wells were relatively low-
throughput and expensive, more recently developed microfluidic-
based technologies have brought huge gains in cell capture rate
(Klein et al., 2015; Macosko et al., 2015). Presently, pool-and-split
cell labeling strategies are yielding even greater cell capture rates and
further reductions in cost (Cao et al., 2017; Rosenberg et al., 2018).
scRNA-seq delivers relatively high-dimensional datasets,

consisting of thousands of measurements across thousands of
individual cells. Computational tools based on dimensionality
reduction seek to reduce this complexity, clustering cells based on
transcriptional similarity and enabling their visualization within
two-dimensional space (Becht et al., 2018; Satija et al., 2015). It is
important to note here that cluster-specific gene expression is used to
infer cell type, representing an initial prediction of identity that must
be orthogonally validated. One key limitation of scRNA-seq is that it

requires tissue disruption and cell destruction, resulting in loss
of spatial information that is valuable for cell type identification.
Maintaining this spatial information has been a recent focus of new
single cell techniques (reviewed by Mayr et al., 2019 in this issue).
For example, multiplexed in situ hybridization and sequencing
technologies have enabled the measurement of gene expression at
subcellular spatial resolution within intact tissues (Chen et al., 2015;
Lee et al., 2014). Although these approaches initially required the
upfront selection of genes for analysis, information on the expression
of thousands of transcripts (Eng et al., 2019) and even genome-wide
gene expression can be now captured (Rodriques et al., 2019).
Overall, these technologies are particularly promising, offering
high-resolution visualization of many cellular features in situ,
thereby allowing powerful predictions of cell identity to be made,
based on phenotype.

Cell function: a ground truth of cell identity
Ultimately, cell identity is best defined by function. One powerful
method for investigating cell function involves the physical
elimination of cells, followed by observation of any physiological
or behavioral impact on the organism. For example, laser ablation
of a specific subset of C. elegans neurons revealed their role in
locomotion (Chalfie et al., 1985). Alternatively, where a cell type is
exclusively marked by expression of a specific gene, genetic
ablation is possible, as illustrated by the targeted expression of a
toxin gene to selectively kill pancreatic acinar cells (Palmiter et al.,
1987). Although elegant in approach, ablation experiments are
limited if cells cannot be physically accessed or are not marked by
exclusive gene expression. For example, in the context of assessing
cell function in humans, ablation experiments are clearly not
feasible. Under these more limited circumstances, cells can be
isolated and their function tested in vitro or in xenograft models.
These approaches are being facilitated by single cell technologies
that can identify new cell surface marker combinations at the
proteomic level, for a given transcriptional state, enabling new cell
species to be captured by flow cytometry and functionally assessed
(Peterson et al., 2017; Stoeckius et al., 2017). However, assigning
cell function to a previously undescribed cell type would require an
intractable array of assays to be deployed. Moreover, isolated cells
often quickly lose their phenotype and function if culture conditions
are not optimized, as illustrated by the dedifferentiation of ex vivo
cultured hepatocytes (Elaut et al., 2006). Therefore, how do we
begin to explore the function of novel cell types?

Where it is impractical to validate cell identity based on
functional assays, will it be possible to predict cell function?
Gene ontology serves as one commonly implemented method to
predict cell function and behavior based on gene expression patterns
(Ashburner et al., 2000). However, this approach often returns
vague annotations, as gene expression does not directly translate to
cell function. Considering that proteins are key effectors of cell
function, measurement of protein abundance may be a more
accurate predictor. Indeed, machine learning approaches have been
deployed to infer cellular function based on tissue-specific protein
function (Zitnik and Leskovec, 2017). To improve these predictions,
quantifying protein localization in addition to protein abundance,
e.g. via spatial proteomics, will undoubtedly prove beneficial. In
this context, the recent construction of high-resolution cell atlases of
protein expression, based on immunostaining of 12,003 proteins
across 56 human cell lines, is extremely valuable (Thul et al., 2017).
Also promising are machine learning algorithms that can be used to
predict protein expression and localization in cells, based on light
microscopy images alone (Christiansen et al., 2018). Indeed, the
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Fig. 1. The three pillars of cell identity. Phenotype and function: the main
pillar concerns measurements of a cell in the present that enable systematic
and unbiased cell type categorization. Lineage: this represents the past state of
the cell and allows a cellular taxonomy to be constructed, enabling similar cell
types to be grouped together to fully characterize cell identity. However, cell
identity cannot accurately be defined by lineage alone. State represents the
landscape of different future phenotypes within which a given cell type can
exist in response to diverse stimuli. Together, these three pillars enable the
construction of a high-resolution dynamic landscape of cell identity.
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broader application of machine learning to weave a more
comprehensive picture of cell phenotype may serve well to infer
cell function and classify cell identity (Smith et al., 2018). However,
where possible, these predictive approaches must ultimately be
supported by experimental evidence.

Lineage: new tracking technologies reveal cellular origins
So far, I have discussed some of the key tools that can be used to
measure cellular phenotype and function, and how they serve to
define cell identity. Consider a situation where the composite of these
measurements reveals a previously undescribed novel cell type. It
may be possible to assign some function to this new cell species using
predictive tools, ideally confirmed by experimental assays. Even so,
to fully understand cell identity is to place it within the context of all
other cell types, in a cellular taxonomy. Constructing such a
classification of cell identities from a snapshot of the adult organism
in homeostasis is challenging, especially at present where datasets are
sparse and we are still working to best integrate them in a meaningful
way (Stuart and Satija, 2019). Instead, understanding the origins of a
cell’s identity, its developmental lineage, is a powerful and simple
way to position a cell within a much more complex hierarchy. At a
minimum, the new cell species can then be connected to its nearest
relatives to provide further clues as to its role in the organism. Can,
then, developmental origins alone provide sufficient information to
define cell identity?
Lineage tracing, the identification of all progeny stemming from an

individual cell, originates from Whitman’s light microscopy studies
of cell cleavage and eventual cell fate in invertebrate embryos
(reviewed by Kretzschmar and Watt, 2012). Following on from these
early studies, C. elegans has proven to be a particularly powerful
model for lineage tracing, given its amenability to imaging, its
relative small number of somatic cells and its invariant cell lineage.
Indeed, a complete lineage tree for every cell in the C. elegans
embryo has been constructed via non-invasive live imaging,
documenting how cells decrease in potential and increase in
specialization as development progresses (Sulston et al., 1983).
With sequencing technologies, new methods to diagram the

relationships between lineal ancestry and prospective cell fates have
emerged. These stemmed from DNA-based barcoding approaches,
where cells are labeled with random heritable DNA sequences (Lu
et al., 2011), later progressing to transcribed barcodes that allow
clonal relationships and cell identity to be read in parallel (Yao et al.,
2017). These early approaches enable clonal analysis, i.e. all
descendants of an ancestrally marked founder cell can be identified
via inheritance of their integrated barcodes. However, lineage
relationships between clonal descendants cannot be mapped using
these techniques. New single cell tracking approaches are emerging
to fill this gap (reviewed by McKenna and Gagnon, 2019 in this
issue). For example, sequential rounds of labeling with transcribed
barcodes has enabled the construction of lineage trees (Biddy et al.,
2018). In an alternative approach, CRISPR/Cas9-based genome
editing has been leveraged to introduce mutable genetic labels into
individual cells (Alemany et al., 2018; Raj et al., 2018; Spanjaard
et al., 2018). Yet another method, transposon-based TracerSeq
(Wagner et al., 2018), exploits the Tol2 transposase to randomly
integrate unique heritable labels into individual cell genomes;
asynchronous insertion over successive cell divisions then permits
lineage tree reconstruction. When applied to zebrafish development,
TracerSeq revealed evidence of convergent differentiation, where
clonally distinct embryonic fields give rise to similar cell types
(Wagner et al., 2018). In contrast, some clonally related cells diverged
toward distant identities, supporting the case for divergent

differentiation. Thus, lineage analyses do not always produce an
expected tree structure, i.e. cells from diverse embryonic origins can
converge on a similar identity. This is not surprising given classic C.
elegans lineage tracing studies showing that similar neuron types can
be generated by distinct lineages (Sulston et al., 1983).More recently,
the same phenomenon has been suggested in mouse development,
where myocytes are produced by two convergent trajectories, and
neurons by several trajectories (Cao et al., 2019). However, it is
important to note that in this studyofmouse development, trajectories
were inferred via computational methods and are not based on ground
truth data. Nonetheless, taken together, we must bear these examples
of convergent differentiation in mind when considering the utility of
lineage alone in defining cell identity.

Another limitation of relying on lineage to facilitate cell type
identification is its deployment in the context of human
development. How, in the absence of ground truth data that can
be used to map lineage relationships, can we infer a meaningful and
accurate cell developmental hierarchy? Representing a relatively
simple experimental strategy, retrospective lineage tracing exploits
naturally occurring genetic variation to trace clonally related cells
(Ludwig et al., 2019), but this is limited in scale and cannot produce
detailed lineage trees. As an alternative, computational approaches
enable temporal reconstruction of scRNA-seq data (Saelens et al.,
2019; Tritschler et al., 2019 in this issue). However, the resulting
trajectories are inferred, relying on sufficient capture and sampling
of intermediate cell states. This can be problematic, particularly for
tracing the origins of human cell identities. Here, in vitro models of
mammalian development (Huch and Koo, 2015) could offer
valuable insights into human development. Another possibility is
to leverage non-human primate models, performing cross-species
comparisons to infer lineage (Boroviak et al., 2018).

Altogether, considering the restricted opportunity for ground
truth lineage tracing in humans, and the above evidence of
convergent differentiation, defining cell identity based on lineage
alone may not provide accurate cell type classification. However,
combining lineage with phenotypic and anatomical features could
be powerful, especially given that spatial transcriptomics is now
poised to enable the generation of fate maps by supplementing
lineage trees with positional information.

State: same identity, different guise
In the previous sections, I explored how high-resolution snapshots of
cell phenotype and function, together with lineage, can serve to
define cell identity. A third and essential facet of cell identity is
‘state’, which can be described as the range of cellular phenotypes
arising from the interaction of a defined cell type with its
environment. T cells serve as a well-characterized example: these
cells exist in different activation states, which arise in response to
different stimuli, yet they maintain their T-cell identity (Zemmour
et al., 2018). Indeed, cell identity is generally stable, maintained by
the autoregulation of identity-specifying transcription factors
(Holmberg and Perlmann, 2012). In this respect, cell identity can
be thought of as ‘hard-wired’, although it is reprogrammable under
defined conditions (as exemplified by Takahashi and Yamanaka,
2006). On the contrary, cell state can be thought of as ‘soft-wired’,
where a given cell type can exist in a range of subtly different
states, raising the issue of how cell identity and state can be
distinguished for previously uncharacterized cell types. For example,
how can we be confident that a novel transcriptional signature
represents a new cell type rather than a known cell type in an
unrecognized state? As the cell transcriptome adjusts rapidly
in response to changes in environmental conditions, reliance on
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scRNA-seq-based technologies alone is likely insufficient to address
these questions. In this respect, probing heritable, epigenetic
signatures of cell identity (reviewed by Ludwig and Bintu, 2019
in this issue) may provide a more stable measure of cell type,
permitting identity to be distinguished from state. For example,
ATAC-seq (assay for transposase-accessible chromatin using
sequencing) provides information on chromatin accessibility and
can now be applied at single cell resolution (Cusanovich et al., 2018).
Ideally, ‘multi-omic’ measurements will be collected from the
same individual cell (Cao et al., 2018), revealing the different
transcriptional states that are associated with the same epigenetic
signatures. Ultimately, though, these technologies provide only a
‘snapshot’ of cell phenotype within a tissue, with connections
between identity and state largely inferred, providing little objective
measurement of the states associated with a given identity.
To provide a direct measure of cell state potential, single cell

clonal or lineage mapping can be applied to map the emergence of
different cell states from a given cell identity. To achieve this, the
introduction of perturbations will be essential. For example, several
recent methods have employed pooled CRISPR/Cas9 genome
editing to introduce a large array of genetic perturbations into a
population of cells, followed by measurement of the effects via
scRNA-seq or scATAC-seq (Adamson et al., 2016; Dixit et al.,
2016; Rubin et al., 2018 preprint). This approach could be modified
to expose cells to a range of different environmental perturbations,
e.g. exposure to different cytokines, tracking features of clonally
related cells under different conditions and pushing given cell types
into their full range of potential states. Altogether, this will provide
ground truth data that reflect the different cell states that can arise
from the same cell identity in response to different environmental
cues. Using these approaches, we might also explore more extreme
scenarios where cells are pushed over their boundaries, into
different identities. In such cases, lineage may prove helpful to
distinguish the line between a change in identity versus a dramatic
change in state. Overall, for each cell identity, we can attach to it the
probability that it will exist in a given state under defined conditions,
potentially revealing the molecular regulation underlying hard-
wired cell identity and soft-wired cell state.

Perspectives
Here, I have outlined three pillars of cell identity – phenotype (and
function), lineage and state – each encompassing a unique and
complementary set of measurements that together can serve to
define cell identity in a systematic and unbiased manner. This
approach will undoubtedly reveal new cell identities that can be
placed within a larger cellular taxonomy, providing valuable clues
to their physiological role. The full application of this framework in
a human context may be somewhat limited at present, due to a
reliance on in vitro culture systems that do not fully recapitulate
in vivo counterparts. However, continued efforts to improve human
tissue culture models will prove beneficial in this context.
Altogether, these three pillars of cell identity will support the
construction of high-resolution dynamic cell atlases, with the
promise to reveal novel facets of the molecular regulation
controlling cell identity, and providing new opportunities for
understanding and manipulating cell fate. These endeavors raise
some interesting questions: first, is there a minimal set of
observations that will serve to universally define cell identity
across all cell types and organisms? This leads to a second question:
what information do we need to capture from cells to be able to
predict their past and future from their present state? This is
particularly exciting, as the construction of a probabilistic model of

cell identity could enable, for example, the future disease state of a
cell to be predicted, providing new insight into disease progression
and diagnosis. These questions are also relevant for the cell fate
reprogramming field where, at a minimum, we will gain a high-
resolution template to recapitulate the identity of major functional
cell types. Once we have amassed a critical amount of information,
will the landscape of cell identity be continuous or discrete? If cell
identity can indeed exist as a continuum, this presents the
opportunity to stabilize transient phenotypes and to create new
cell identities, endowing known cell types with new functions.
Through our continued efforts to define cell identity, we come
closer to realizing these possibilities.
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