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ABSTRACT

Neuronal migration is a fundamental process that governs embryonic
brain development. As such, mutations that affect essential neuronal
migration processes lead to severe brain malformations, which can
cause complex and heterogeneous developmental and neuronal
migration disorders. Our fragmented knowledge about the aetiology
of these disorders raises numerous issues. However, many of these
can now be addressed through studies of in vivo and in vitro models
that attempt to recapitulate human-specific mechanisms of cortical
development. In this Review, we discuss the advantages and
limitations of these model systems and suggest that a
complementary approach, using combinations of in vivo and in vitro
models, will broaden our knowledge of the molecular and cellular
mechanisms that underlie defective neuronal positioning in the
human cerebral cortex.
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Introduction

Neuronal migration is a process that is essential for the development
of the mammalian nervous system. In humans and rodents, a highly
coordinated and regulated series of neuronal migration events is
required to establish the different laminae of the cortex. When these
neuronal migration processes are dysregulated, as occurs in human
neuronal migration disorders (NMDs), malformations of cortical
development (MCDs) can arise, which can cause a wide range of
physiological and functional consequences.

The human cerebral cortex represents the largest region of the
cerebrum — the most highly developed part of the human brain.
It plays vital roles in processing and integrating information from
all bodily senses to result in social and motor behaviours, in
planning and organization, and in determining intelligence and
personality (Kandel and Squire, 2000). As such, MCDs that affect
the structure and functioning of this key brain region can have severe
outcomes. Indeed in humans, MCDs are a recognized cause of
developmental delay, intellectual disability and epilepsy, and are
also associated with dysmorphic features (Guerrini and Dobyns,
2014; Jamuar and Walsh, 2015; Romero et al., 2018). MCDs have
traditionally been classified according to the stage or process of
cortical development that is affected (Table 1) (Barkovich et al.,
2012; Pang et al., 2008). However, findings over recent years
suggest that MCDs are far more heterogeneous — on a genetic,
cellular and physiological level — than traditional classification
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schemes have indicated. Furthermore, the former boundaries
between disorders of neural stem cell (NSC) proliferation,
neuronal migration and cortical organisation are beginning to
break down, as we deepen our understanding of their genetic and
cellular aetiology.

In this Review, we first provide an overview of neuronal
migration in the developing cortex and highlight the similarities and
differences between the mouse and human. We then focus on
NMDs, which are a subgroup of MCDs and which are often
overlapping with other MCDs. We discuss the genetic, cellular and
physiological heterogeneity of NMDs and briefly summarize the
immense knowledge that has been gained in the past decades by
analysing mouse models with specific mutations in genes that, in
humans, lead to NMDs. We highlight the advantages and
disadvantages of using different in vivo animal models and,
finally, provide examples of more recently developed in vitro
models that have been used to provide novel insights into neuronal
migration and NMDs.

Neuronal migration in the developing cortex

During development, the neocortex becomes populated by two
main groups of neurons — excitatory projection neurons and
inhibitory interneurons. These two neuronal populations are
generated in  proliferative  ventricular zones (VZ) and
subventricular zones (SVZ) of the mammalian cortex, adjacent to
the lateral ventricles of the brain (Fig. 1A). In mice, excitatory
neurons are directly generated from apical radial glia (aRG; Box 1,
Glossary) in the dorsal VZ or are derived from multipolar basal
intermediate progenitors (bIPs; Box 1, Glossary) that have
delaminated from the apical and basal surface and reside in the
SVZ (Go6tz and Huttner, 2005; Lui et al., 2011; Taverna et al., 2014)
(Fig. 1B). In humans, aRG generate heterogeneous populations of
proliferative basal progenitors (BPs), including bIPs and a second
population of RG that lose their apical anchoring and move their cell
body into the outer SVZ (0SVZ). These basal radial glia (bRG;
Box 1, Glossary) were recently described to be essential for the
expansion of the cerebral cortex and for the formation of folds
(gyrification; Box 1, Glossary) (Fietz and Huttner, 2011; Hansen
et al., 2010; Reillo et al., 2011). At early stages of neurogenesis in
mice, newborn deep-layer excitatory neurons move basally towards
the marginal zone (MZ, Fig. 1B) by somal translocation (Box 1,
Glossary). Once the developing cortex becomes thicker, newborn
neurons shift to multipolar migration (Box 1, Glossary) until they
reach the intermediate zone (IZ, Fig. 1B) (Tabata and Nakajima,
2003), in which they undergo a multipolar-to-bipolar transition
(Box 1, Glossary). Neurons then begin directed radial migration
(Box 1, Glossary) through the IZ and cortical plate (CP, Fig. 1B),
using RG fibres as a migratory scaffold (Nadarajah et al., 2001).
Glial-guided locomotion (Box 1, Glossary) is regulated by the
coupled movement of cilia/centrosomes and nuclei within the
neurons (Marin, 2013). Locomoting neurons migrate basally
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Box 1. Glossary

Apical radial glia. Neural stem cells, derived from neuroepithelial cells,
which line the lateral ventricles in the developing dorsal and ventral cortex,
thereby forming the ventricular zones. They are connected to the apical and
basal surfaces via processes and are in contact with cerebrospinal fluid via
their primary cilium. They self-renew and/or directly give rise to basal radial
glia, basal intermediate progenitors and neurons, and, after neurogenesis,
to astrocytes.

Basal radial glia. Neural stem cells that are enriched in the outer
subventricular zone of the developing cortex of gyrencephalic species.
They are generated from apical radial glia by delamination from the apical
surface, keeping the basal process that serves as scaffold for glial-guided
locomotion of newborn neurons.

Basal intermediate progenitors. Neurogenic progenitors that populate the
subventricular zone, in which they amplify and generate neurons.
Cajal-Retzius cells. Reelin-producing cells in the marginal zone/layer | of
the developing cerebral cortex (and in the immature hippocampus) that
originate at multiple sites in the developing cortex. These cells are involved
in correct development and lamination.

Embryoid body. Three-dimensional aggregates of pluripotent stem cells
reminiscent of the blastocyst stage of early embryonic development in which
pluripotent stem cells differentiate along all three germ lineages —
endoderm, ectoderm and mesoderm.

Extracellular matrix. Composed of five classes of macromolecules —
collagens, elastins, proteoglycans, hyaluronan and adhesive glycoproteins,
such as laminins, reelin and tenascins — that are secreted by support
cells, it serves functions in cell-cell communication, cell adhesion, and
differentiation.

Ganglionic eminences. Part of the ventral telencephalon, categorized into
medial, lateral and caudal ganglionic eminences. They represent the
location of interneuron generation, contribute to basal ganglia formation and
act in axon guidance between the thalamus and cortex.

Gyrification. The process of folding of the cortical surface, resulting in
ridges (gyri) and furrows (sulci). The degree of gyrification is assessed by
the gyrification index, the ratio between whole gyral contour length and the
outer brain surface. Species with a folded brain surface are referred to as
gyrencephalic animals.

Interkinetic nuclear migration. The characteristic movement of
the nucleus of epithelial cells, including apical radial glia. The nucleus
moves basally and apically within the ventricular zone in coordination
with the cell cycle (with M-phase taking place at the apical surface and

S-phase most basally), making the ventricular zone a pseudo-stratified
tissue.

Locomotion. Glia-dependent radial neuronal migration in which neurons
use radial glia as a scaffold for their migration towards the pial surface.
Locomoting neurons show bipolar cell morphology, with a thick leading
process and a thin trailing process, and the entire cell moves along the radial
fibres that extend through the thickness of the developing cortex.
Multipolar migration. The radial glia-independent slow migration of
neurons in the multipolar state, which functions through the extension and
retraction of multiple processes and is not directed.

Multipolar-to-bipolar transition. The morphological transition of migrating
newborn neurons that polarize and orient for radial migration in the upper
subventricular zone.

Neural rosettes. In two-dimensional cultures, the radial arrangement of
inside-out organized neural progenitors and neurons, with progenitors in the
centre.

Pia. The outer surface of the grey matter of the brain, surrounded by the
meninges (pia mater, arachnoid and dura mater).

Radial migration. Neuronal migration that proceeds from ventricular to pial
surface, seen in newborn glutamatergic neurons in the developing cortex
and in cerebellar Purkinje cells. Different modes of radial migration exist,
such as locomotion and somal translocation.

Radial unit. A radial columnar unit of founder radial glia cells and their daughter
neurons that migrate along their parental glia towards the cortical plate.
Somal translocation. A radial glia-independent mode of neuronal
migration. The soma of neurons is translocated from the point of origin in
the ventricular zone to the cortical plate by extending a long radially directed
leading process towards the pial surface. The leading process is attached to
the pial surface and progressively shortens to pull up the soma.

Terminal translocation. Final migration step of locomoting neurons that
functions similarly to somal translocation. After arrival at the cortical plate
and detachment from the radial glia, terminal translocation serves to reach
the final position within the cortical plate.

Truncated radial glia. Human apical radial glia that lose the contact to the
pial surface by acquiring a shortened, truncated morphology. They also
develop a characteristic gene expression profile.

Tubulinopathies. Awide and overlapping range of brain malformations that
are caused by the mutation of one of seven genes that encode different
isotypes of tubulin, thus regulating the synthesis and function of microtubule
and centrosome key components.

towards the pia (Box 1, Glossary), passing by earlier-born neurons;
they then terminate their migration beneath the MZ once they have
switched to terminal (RG-independent) translocation (Box 1,
Glossary) (Sekine et al., 2011) The six layers of the cortex thus
form in a birth-date-dependent and inside-out manner (Sun and
Hevner, 2014) (Fig. 1B).

In contrast to excitatory neurons, inhibitory GABAergic
interneurons are specified in the distant medial and caudal
ganglionic eminences (GEs; Box 1, Glossary and Fig. 1A). Within
the mouse GEs, an RG-containing VZ develops, as well as an
SVZ that contains intermediate progenitors (IPs) and numerous
subapical progenitors (SAPs) (Pilz et al., 2013). IPs and SAPs
undergo 60-70% of all mitoses found in the GEs, thus expanding the
interneuron population before its migration. Interneurons initially
migrate tangentially in two streams over long distances into the
cerebral cortex (Fig. 1A). They then switch to radial migration to
integrate into the various cortical layers (Fig. 1B) (Anderson et al.,
1997; Peyre et al., 2015; Silbereis et al., 2016; Wonders and
Anderson, 2006).

The correct establishment of the cortical layers by neuronal
migration is tightly controlled by a variety of extracellular and
intracellular signals that regulate the actin and microtubule

cytoskeleton, as well as their dynamics and interplay (Stouffer
et al., 2015). When these precisely regulated developmental
processes become dysregulated, as occurs in NMDs (Table 1), a
number of key cellular and anatomical features of the cortex can
become perturbed (Fig. 2), causing a range of physiological and
functional consequences (Barkovich et al., 2012).

Differences between the mouse and human neocortex

A number of human-specific mechanisms of neocortical development
and expansion have recently been identified (reviewed by Florio et al.,
2017). Indeed, although the mouse model recapitulates a variety of
common features of neurogenesis, such as the basic steps required for
the generation and the migration of excitatory and inhibitory neurons,
many studies have highlighted fine differences that distinguish the
process of neurogenesis in mouse and human. It lies beyond the scope
of this Review to go into details of these differences, but below we
summarize some of the most recent findings that relate to our
understanding of neuronal migration within the cortex.

There are several key aspects in which the mouse and human
neocortex differ (Fig. 3), including differences in progenitor
numbers, types and expansion capacity, in the composition of the
extracellular matrix (ECM; Box 1, Glossary) (Pollen et al., 2015),
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Table 1. Classification scheme for malformations of cortical development (MCDs)

Affected step of development MCDs resulting from the disturbance

Short definition of the MCD

Progenitor cell proliferation and
apoptosis

Microcephaly

Macrocephaly
Hemimegalencephaly

Focal cortical dysplasia
Lissencephaly type |
Periventricular heterotopia (PH)

Neuronal migration

Subcortical band heterotopia/double cortex

Cobblestone lissencephaly/lissencephaly

type Il
Polymicrogyria
Schizencephaly

Neuronal organisation

Abnormally small head and brain

Abnormally big head and brain

Overgrowth of (part of) a cerebral hemisphere

Disturbed lamination and dysmorphic neurons

Absence of normal convolutions/folds

Neurons accumulating at the ventricles underneath a normal cortex

Band of grey matter located between the lateral ventricular wall and the
cortex

Overmigration of neurons to localize on the surface of a brain with
reduced gyri

Too many (usually small) folds/convolutions

Fluid-filled cleft from ventricle(s) to pia lined by heterotopic grey matter

and in gene expression and regulation. Strikingly, the human
cerebral cortex is significantly larger than the rodent cortex based on
neuronal numbers; it is also highly folded, has greater complexity
and has acquired higher cognitive functions (Lui et al., 2011; Rakic,
2009; Sousa et al., 2017). Two of the key factors underlying these
differences are the expansion of cortical progenitors and higher
neuronal production in humans (Borrell and Reillo, 2012). The
increased neuronal number in humans results mainly from a larger
initial pool of stem and progenitor cells at the onset of neurogenesis
per unit of cortical volume, and from a prolonged neurogenic period
(Charvet et al., 2011; Hansen et al., 2010; Noctor et al., 2004).
Similar to the mouse, neurogenesis in humans begins with
expansion of the neuroepithelium and aRG, but there are
differences in human aRG morphology and proliferation
(Kriegstein and Alvarez-Buylla, 2009; Nowakowski et al., 2016),
such as more regenerative asymmetrical cell cycles compared with
non-human primates and mice (Fish et al., 2008; Lukaszewicz et al.,
2005). After the onset of neurogenesis, human aRG divide to give
rise to bRG, which delaminate from the apical surface (keeping their
basal process and attachment to the pial surface) and migrate basally
and populate the oSVZ (Fig. 3). bRG then expand massively and
make the oSVZ the predominant germinal region in the human
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neocortex, increasing neuronal output and cortical folding and
complexity (Lui et al., 2011). The basal processes of bRG act as
additional guides for migrating newborn neurons that disperse in the
tangential axis to expand the surface area of the cerebral cortex
(Reillo et al., 2011). Human aRG then lose their basal process and
retain only the apical process (Nowakowski et al., 2016), which
gives rise to truncated RG (tRG; Box 1, Glossary). Human and/or
primate bRG have also been shown to form a specific niche in the
0SVZ by expressing ECM proteins and growth factors (Pollen et al.,
2015) (Fig. 3). A second mechanism that underlies gyrification, in
which changes in intercellular adhesion influence the migration of
cortical neurons, has also been identified and results in the
regulation of cortical folding (del Toro et al., 2017).

In addition to the cellular-specific differences discussed above,
gene duplications are a major force in human cortex evolution
(Dennis and Eichler, 2016) and may contribute to species-specific
features of cortex development. For example, the human-specific
gene ARHGAPII1B, a truncated duplicate of the ancestral form,
promotes the generation of BPs when expressed in the mouse
neocortex (Florio et al., 2015), whereas the gene TBCID3 (Ju et al.,
2016), which is present in multiple copies in humans but not mice,
promotes BP generation via aRG delamination and induces local

Fig. 1. Mouse cortical development.
(A) Schematic of a coronal section of the
early developing anterior telencephalon
of the mouse at embryonic day 14 of
development, showing cortical
neurogenesis. The grey boxed area is
Co enlarged in panel B. (B) Schematic of
f the cell composition of the developing
mouse cerebral cortex showing radially
} migrating excitatory neurons and
Sp interneurons that enter the cortex
} / tangentially and then switch to radial
2 migration within the dorsal cortex. Ctx,
cerebral cortex; CP, cortical plate; GE,

Sl/g ganglionic eminences; I1Z, intermediate
zone; LGE, lateral ganglionic eminence;
VZ MGE, medial ganglionic eminence; MZ,

marginal zone; SP, subplate; Str,
Striatum; SVZ, subventricular zone, VZ,

Ventral

Key

Pallial-subpallial border ]
—> Tangential neuronal migration Apical radial glia
Radial neuronal migration Basal radial glia
Ventricular zone

Cortical plate

BB Tangentially migrating interneurons
Multipolar newborn excitatory neurons
Radially migrating excitatory neurons

Postmigratory excitatory neurons
Basal intermediate progenitors

ventricular zone.
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Fig. 2. Cellular and morphological defects associated with neuronal migration disorders. (A) Schematics highlighting the cellular basis of NMDs in the adult
human cortex, showing the different cortical layers and neuronal migrations. Single ectopic neurons are shown in grey and the affected structures or processes are
indicated. (B) Schematic showing the MRI-detectable morphological defects in the adult human brain that are caused by the cellular defects of each NMD.
Ectopically located clusters of affected neurons are shown as grey shading. Lissencephaly type | is characterized by a smooth brain surface and a simplified four-
layered cortex (indicated by green shading). In subcortical band heterotopia, the cortex contains an additional band of grey matter underneath the white matter.
Periventricular heterotopia is characterized by clusters (nodular) or sheets (laminar) of neurons accumulating at the ventricles underneath a normal cortex. In
lissencephaly type Il, neurons overmigrate onto the cortical surface. Schematics are adapted from MRIimages, see e.g. Bizzotto and Francis, 2015; Francis et al.,
2006; Guerrini and Parrini, 2010. IKNM, interkinetic nuclear migration; RG, radial glia; RNM, radial neuronal migration; TNM, tangential neuronal migration.

cortical folding in mice upon overexpression. The NOTCH2NL
genes, which arose from human-specific gene duplications of
NOTCH?2, also expand cortical progenitors and increase neuronal
output when overexpressed in the developing mouse cortex (Fiddes
et al., 2018; Suzuki et al., 2018). Because of this higher complexity
in the regulation and heterogeneity of progenitors (which are known
to guide newborn neurons during development), and in the intrinsic-
extrinsic mechanisms involved in fine-tuning human neuronal
migration, it has been difficult to tackle the mechanisms underlying
NMDs using exclusively the mouse model. This, combined with the
complexity and heterogeneity of NMDs, which we discuss below,
has been an ongoing challenge for the field.

Neuronal migration disorders: genetic, cellular and
physiological heterogeneity

As indicated above, recent findings suggest increased complexity in
possible causes of NMDs, and of MCDs more generally, resulting in
a breakdown of traditional boundaries between disorders of NSC
proliferation, neuronal migration and cortical organisation (Guerrini
and Dobyns, 2014). In this section, we discuss the multiple genetic,
molecular, cellular and physiological levels of heterogeneity that
have been recently identified in NMDs (summarised in Fig. 4).

Genetic heterogeneity of NMDs

Although environmental insults, such as in utero viral infection
(Oliveira Melo et al., 2016), hypoxia (Golan et al., 2009), exposure
to heavy metals (Kakita et al., 2001), alcohol or other drugs
(Gressens et al., 1992; Mattson and Riley, 1998; Stanwood et al.,
2001; Thompson et al., 2009) during pregnancy, head injury and
radiation (Roper, 1998) or general genetic background (Poduri et al.,

2013; Martens and van Loo, 2007) can predispose to or cause
MCDs and neuropsychiatric disorders, the majority of NMDs are
now thought to have a genetic basis (Table 2). Genetic variants and
mutations that are associated with NMDs often function during
genetically and functionally interdependent stages of cortical
development. Indeed, current evidence suggests that distinct
clinically defined disorders might be caused by shared risk loci
(Table 2, Figs 2 and 4A) (Sullivan et al., 2012; Zhu et al., 2014),
with the resulting phenotype influenced by the degree of protein
dysfunction or by the levels of remaining functional protein. For
example, mutations in WDR62, DYNCIHI and TUBGI cause a
broad range of cortical malformations (Bilgiivar et al., 2010;
Nicholas et al., 2010; Poirier et al., 2013; Yu et al., 2010).
Tubulinopathies (Box 1, Glossary), such as those caused by
mutations in TUBAIA, can present as lissencephaly type 1 or as
polymicrogyria, (Table 1, Fig. 2 and Table 2); both of these NMDs
share pathological molecular mechanisms that stem from altered
microtubule function and altered interactions with microtubule-
associated proteins (Cushion et al., 2013). Mutations in LIS/ (also
known as PAFAHIBI) can cause subcortical band heterotopia
(SBH) and lissencephaly, whereas other lissencephaly causing
mutations in LIS! and DCX also cause microcephaly (Table 1)
(Sheen et al., 2006). In addition, de novo functional variants in DCX
have been identified in patients with periventricular heterotopia
(PH; Table 1) and were predicted to be causative. MAPIB mutations
are also significantly associated with PH, with patients of this
disorder additionally having deep perisylvean/insular polymicrogyria
(Fig. 4A) (Heinzen et al., 2018).

It has therefore become obvious that the genetics underlying
NMDs are complex and heterogeneous. As a result, genomics
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Fig. 3. Mouse and human dorsal cortical development. (A,B) Schematics illustrating the cell composition and ECM in the developing mouse (A) and human (B)
dorsal cortex. Cell composition in the developing mouse lissencephalic cerebral cortex is shown (A), with aRG giving rise to IPs, or to neurons directly, that
undergo multipolar-to-bipolar transition and locomote or translocate to the CP. In the developing human gyrencephalic cerebral cortex (B), the SVZ is subdivided
by the inner fibre layer into the inner SVZ — corresponding to the mouse SVZ — and the oSVZ. The oSVZ is populated by outer bRG and bIPs that proliferate and
generate neurons. Differences in ECM composition are indicated by different shading. CP, cortical plate; IFL, inner fibre layer; iSVZ, inner subventricular zone; 1Z,
intermediate zone; MZ, marginal zone; oSVZ, outer subventricular zone; SP, subplate; SVZ, subventricular zone, VZ, ventricular zone.

approaches, such as next generation sequencing (NGS) and whole
exome sequencing (WES), are increasingly being used to identify
the genes that contribute to MCDs. Indeed, the use of NGS to
investigate families with two or more affected individuals has
proven to be extraordinarily effective at identifying novel recessive
mutations that contribute to neurodevelopmental and other
disorders (Karaca et al., 2015; Yu et al., 2013). However, this
approach is less useful in non-consanguineous families with a single
affected patient, which is the case for most patients with NMDs. As
a result, and because de novo variants are also strongly associated
with neurodevelopmental conditions, WES combined with in silico
prediction has been used to identify and to prioritize new candidate
genes for various neurodevelopmental disorders, including autism
spectrum disorder (ASD) (Iossifov et al., 2012) and epileptic
encephalopathy (Epi4K Consortium et al., 2013). Two recent
studies (Heinzen et al., 2018; O’Neill et al., 2018) have identified
new candidate genes for PH by focusing on de novo variants and on
rare inherited risk alleles. In the first study (Heinzen et al., 2018),
trio-based WES of 202 patients with PH and epilepsy identified a
significant enrichment of non-synonymous de novo variants in
intolerant genes (termed ‘hot-zone variants’); by combining de novo
and very rare inherited variants, it was found that loss-of-function
MAPIB variants are enriched in patients with this disorder, thereby
identifying MAPIB as a new PH-associated locus. In the second
study (O’Neill et al., 2018), trio-based WES was used to identify
candidate genes, focussing on rare biallelic variants that contain a
stop gain and/or loss or small out-of-frame insertion or deletion in at
least one allele, which results in loss-of-function of the affected

allele. Using this approach, the gene encoding the Hippo pathway
signalling factor MOB2 was identified as a candidate disease gene in
a daughter of healthy parents that presented with epilepsy, learning
difficulties and PH. Another novel, relatively fast and cost-effective
approach to identifying MCD-associated genes was recently
reported (Lu et al., 2018). This approach used a forward genetic
screen in mice using transposon-mediated somatic mutagenesis in
the developing mouse cortex to identify 33 candidate genes with
potential roles in NPC proliferation, neuronal migration or
differentiation (Lu et al., 2018).

Overall, these findings highlight that multiple genes can
contribute to NMDs, and that the timing, severity and type of
genetic (and environmental) factors that are involved in NMDs
influence the type and extent of the resulting malformation.

Molecular and cellular heterogeneity
The heterogeneous genetic causes of NMDs are mirrored by the
heterogeneous cellular phenotypes and functional outcomes that
characterise these disorders. The genes that are implicated in NMDs
encode proteins involved in various progenitor and neuronal
properties and functions (Table 2). These functions include the
maintenance and regulation of the morphology of the RG scaffold, the
polarity and motility of neurons, the integrity of the neuroepithelium
and the delamination of neurons from it, signalling between neurons
and RG, basal membrane integrity, and the signalling that terminates
migration in the CP (Bizzotto and Francis, 2015) (Fig. 4B).

As such, the disruption of any one of these functions can affect
neuronal migration in different ways. Moreover, the proteins that are

5

DEVELOPMENT



REVIEW

Development (2019) 146, dev163766. doi:10.1242/dev.163766

implicated in NMDs often function in more than one step of
neuronal migration and in more than one cell type. For example,
FLNA, which encodes the actin binding protein filamin A and has
been implicated in NMDs (Fox et al., 1998; Lu et al., 2006; Parrini
etal., 2006; Sheen et al., 2004b), is involved in RG proliferation and
in regulating their polarized structure (Carabalona et al., 2012), in
establishing neuronal polarity and in neuronal migration itself. Its
mutation, therefore, could result in an array of defects. Similarly,
LIS1 has been shown to be essential for both interkinetic nuclear
migration (IKNM, Box 1, Glossary) of aRG and neuronal migration
(Hippenmeyer et al., 2010; Moon et al., 2014). Thus, the genetic
heterogeneity that underlies NMDs translates into complexity in
terms of the affected molecules (Fig. 4B), cellular processes and cell

types.

Physiological heterogeneity

In addition to the genetic and cellular heterogeneity of NMDs, the
clinical features of patients are highly variable with regard to the
absence or presence of seizures, as well as intellectual function and
congenital neurological deficits (Fig. 4C). The functional outcome
of PH, for example, ranges from mild, sometimes subclinical, to
very severe (Barkovich and Kuzniecky, 2000; Dubeau et al., 1995),
and ~40% of NMD patients present with various types of epilepsy,

A Causative genes

whereas the rest are seizure free. Even PH patients that share
mutations in the same gene, such as those with familial or sporadic
FLNA mutations, show phenotypic heterogeneity (Parrini et al.,
2006). Similarly, patients with MAP1B mutations can present with a
range of seizures, cognitive impairments and other dysmorphic
features (Heinzen et al., 2018). Furthermore, there is no clear
relationship between the severity of epilepsy in PH and the extent of
neuronal heterotopia (Chang et al., 2005), and epileptic activity can
originate from a general imbalance of excitation versus inhibition,
or it can arise locally from heterotopic clusters of neurons that can
become intrinsically epileptogenic (Kothare et al., 1998) or from
neurons surrounding heterotopic nodules.

Together, the genetic, cellular and functional heterogeneity of
MCDs (Fig. 4) lead us to suggest that the way that NMDs have been
classified to date as independent diseases is too limited. We thus
propose that NMDs should be considered as an overlapping family
of diseases or a spectrum of disorders.

Animal models of cortical development: their relevance,
advantages and limitations

Ideally, research into the genesis of NMDs and MCDs should be
performed using human tissue. However, access to human tissue — in
the form of post-mortem and pathological specimens — is limited,
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Table 2. Genes known to cause neuronal migration disorders (NMDs) in humans upon disruption

Gene

Cortical malformation

Main protein function

References

Lissencephaly type | and subcortical band heterotopia
LIS1 (PAFAH1B1) Lissencephaly type |; subcortical band heterotopia; Cytoskeleton (microtubules, dynein)

DCX

(microcephaly)
Lissencephaly type I; subcortical band heterotopia;
periventricular heterotopia; (microcephaly)

14-3-3e (YWHAE) Lissencephaly type |

TUBA1A

RELN

ARX

VLDLR

NDE1

ACTG1
ACTB

Lissencephaly type |; subcortical band heterotopia;
polymicrogyria (with microcephaly, corpus
callosum agenesis, and cerebellar hypoplasia)

Lissencephaly type | with cerebellar hypoplasia;
(microcephaly)

Lissencephaly type | with corpus callosum
agenesis

Lissencephaly type | with cerebellar hypoplasia

Extreme microcephaly with lissencephaly type |

Lissencephaly type |
Lissencephaly type |

Periventricular heterotopia

FLNA

KIF2A

TUBG1

ARFGEF2

EML1

FAT4
DCHS1

ERMARD
(C6orf70)

NEDDA4L

AKT3

MAP1B
MCPH1

INTS8

Periventricular nodular heterotopia; polymicrogyria

Heterotopia; subcortical band heterotopia; agyria,
pachygyria; (thin corpus callosum, congenital
microcephaly)

Laminar heterotopia; agyria, pachygyria;
(microcephaly, dysmorphic corpus
callosum)

Periventricular nodular heterotopia with
microcephaly

Periventricular heterotopia; ribbon-like subcortical
band heterotopia; lissencephaly type I;
(macrocephaly)

Periventricular nodular heterotopia

Periventricular nodular heterotopia

Periventricular nodular heterotopia with
polymicrogyria and corpus callosum agenesis

Periventricular nodular heterotopia; polymicrogyria

Periventricular heterotopia with megalencephaly;
polymicrogyria

Periventricular heterotopia; (polymicrogyria)

Microcephaly with periventricular nodular
heterotopia and pachygyria

Periventricular nodular heterotopia

Cobblestone lissencephaly (lissencephaly type II)

TMTC3

POMT1

POMT2

FKRP

Cobblestone lissencephaly; periventricular
heterotopia; lissencephaly type |

Cobblestone lissencephaly; pachygyria
Cobblestone lissencephaly; (microcephaly)

Cobblestone lissencephaly

Cytoskeleton (microtubule stability),
dynein binding, nucleokinesis

Cytoskeleton (microtubules),
intracellular signalling
Cytoskeleton (microtubule component)

Secreted ECM protein; Cytoskeleton
(microtubules and actin), cell adhesion
Transcription factor

Reelin receptor: RELN to microtubule
signalling

Cytoskeleton (microtubules/
centrosome): nuclear migration,
centrosome duplication, mitotic
spindle assembly

Cytoskeleton (actin component)

Cytoskeleton (actin component)

Cytoskeleton (actin binding and
crosslinking protein), junction
formation

Kinesin: microtubule-associated motor

Cytoskeleton (microtubule component)

Golgi vesicle formation and trafficking;
cell-cell adhesion; interaction with
FLNA; Rac/Rho signalling

Cytoskeleton (microtubules), mitotic
spindle orientation, cell adhesion

Protocadherin: cell-cell and apical
adhesion

Protocadherin: cell-cell and apical
adhesion

ER membrane-associated RNA
degradation; trafficking; cell-cell
adhesion

Ubiquitin ligation and protein
degradation, mTOR and (PI3K) AKT
pathway

(PI3K) AKT pathway

Cytoskeleton (microtubules)

DNA damage response (G2/M
checkpoint)

RNA processing and transcription
regulation

Protein degradation in the endoplasmic
reticulum; regulation of GABAergic
inhibitory synapses

O-glycosylase: basement membrane
integrity

O-glycosylase: basement membrane
integrity

O-glycosylase: basement membrane
integrity

des Portes et al., 1998; Faulkner et al., 2000;
Reiner et al., 1993; Sheen et al., 2006

Bahi-Buisson et al., 2013; des Portes et al.,
1998; Francis et al., 1999; Gleeson et al.,
1998; Horesh et al., 1999; Sicca et al.,
2003

Reiner et al., 1993

Bahi-Buisson et al., 2008; Bahi-Buisson
et al., 2013; Keays et al., 2007; Poirier
et al., 2007

Dulabon et al., 2000; Hirota and Nakajima,
2017; Hong et al., 2000

Colombo et al., 2007; Kato et al., 2004;
Kitamura et al., 2002

Schlotawa et al., 2013; Trommsdorff et al.,
1999

Alkuraya et al., 2011

Verloes et al., 2015
Verloes et al., 2015

Fox etal., 1998; Lu et al., 2006; Parrini et al.,
2006; Sheen et al., 2004b

Poirier et al., 2013

Poirier et al., 2013

Barddn-Cancho et al., 2014; Lu and Sheen,
2005; Lu et al., 2006; Sheen, 2014; Sheen
et al., 2004a; Shin et al., 2005

Bizzotto et al., 2017; Kielar et al., 2014

Badouel et al., 2015; Cappello et al., 2013

Cappello et al., 2013

Conti et al., 2013

Broix et al., 2016

Alcantara et al., 2017

Heinzen et al., 2018
Trimborn et al., 2004

Oegema et al., 2017

Farhan et al., 2017; Jerber et al., 2016

Beltran-Valero de Bernabé et al., 2002;
Mercuri et al., 2009
Mercuri et al., 2009; van Reeuwijk et al., 2005

Mercuri et al., 2009
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Table 2. Continued

Gene Cortical malformation Main protein function References
FCMD (FKTN) Cobblestone lissencephaly O-glycosylase: basement membrane Mercuri et al., 2009; Yamamoto et al., 2004
integrity
POMGNT1 Cobblestone lissencephaly; (microcephaly) O-glycosylase: basement membrane Mercuri et al., 2009; Vuillaumier-Barrot et al.,
integrity 2011
LARGE Cobblestone lissencephaly O-glycosylase: basement membrane Longman et al., 2003; Vuillaumier-Barrot
(LARGET) integrity etal., 2011
LAMB1 Cobblestone lissencephaly; (macrocephaly) ECM component: basement membrane Radmanesh et al., 2013
integrity
GPR56 Bilateral fronto-parietal polymicrogyria and/or G-protein coupled receptor: basement  Bahi-Buisson et al., 2010; Li et al., 2008
(ADGRGT) cobblestone lissencephaly; (white matter membrane integrity
abnormalities, cerebellar dysplasia)
COL4A1 Cobblestone lissencephaly ECM component: basement membrane Labelle-Dumais et al., 2011

integrity/linkage of RG to the pial
basement membrane

Accompanying MCDs are listed in brackets; owing to partial overlap in causative genes, polymicrogyria was taken into this list of NMDs.

particularly in the case of rare diseases. We therefore require suitable
model systems to improve our understanding of human cortical
development and disorders. To date, the mouse has been the principal
model organism used to investigate the basis of cortical development
and has been essential for revealing some of the molecular, cellular
and functional mechanisms that underlie the formation of the most
common types of NMDs. Extensive detailed reviews regarding the
use of mouse models in this context are available (Guerrini and
Dobyns, 2014; Jamuar and Walsh, 2015; Romero et al., 2018);
however, a key challenge to modelling NMDs in mouse models is to
take into account species-specific differences in cortical development.
Below, we discuss examples of the advantages and limitations of the
mouse model and highlight additional iz vivo model systems that more
closely resemble some features of the human brain (e.g. bRGs and
folds) and, therefore, could be used to help refine our findings.

Mouse models of NMDs

Mouse models have been widely used to uncover essential
mechanisms that underlie neurogenesis and neuronal migration.
Moreover, modelling MCDs (including NMDs) in vivo using
specific knockout (KO) models of the genes that have mutated in
patients with MCDs has highlighted basic essential mechanisms
that cause microcephaly, lissencephaly type I, neuronal heterotopia
and other MCDs (Guerrini and Parrini, 2010; Stouffer et al., 2015).
However, although several mouse models recapitulate the
morphological phenotypes of human NMDs, the genetic
mutations involved are not always those that are associated with
human disorders. For example, impaired neuronal migration
phenotypes — similar to those seen in humans with SBH — have
been achieved by conditionally inactivating genes in mice that
function in the apical adherens junction, including Ctnnal (Schmid
et al., 2014), Rapgef2, Rapgef6 (Maeta et al., 2016), Mlit4 (Afdn)
and Cdh2 (Gil-Sanz et al., 2014). The conditional inactivation of
RhoA, which encodes the small GTPase, in the developing mouse
brain also leads to SBH, thereby revealing that the integrity of both
the actin and microtubule cytoskeleton in RG is important for
generating a functional glial scaffold for radial migration (Cappello
et al., 2012). PH can also be generated in mice by mutating genes
that are involved in signalling via FLNA, for example, by
conditionally inactivating Mekk4 (Map3k4; Sarkisian et al., 2006)
or acutely knocking down Rcanl (Li et al., 2015). In addition, a
missense mutation in the mouse Napa gene (which encodes
alphaSnap) has revealed a role for vesicle trafficking in PH, similar
to that mediated by ARFGEF2 in humans (Chae et al., 2004).

An example of an excellent mouse model that does recapitulate
the patient phenotype with the same genetics is the KO of the
microtubule-associated Emll: patient brains have ribbon-like
neuronal heterotopia and the mouse brain also shows SBH
(Bizzotto et al., 2017; Kielar et al., 2014). Such mouse models
have been very useful for understanding the general actiology of
neuronal heterotopia.

Mouse models for the neuronal overmigration seen in cobblestone
lissencephaly have also been described (Bizzotto and Francis, 2015).
These models highlight the importance of an intact basement
membrane and of Cajal-Retzius cells (Box 1, Glossary). Mutations
that produce neuronal overmigration phenotypes in mice include loss-
of-function mutations in Ps/ (Psenl; Hartmann et al., 1999) and in
basement membrane receptors, such as the alpha 6 integrins (Georges-
Labouesse et al., 1998) and /lk (Niewmierzycka et al., 2005).

Rodent models of NMDs have also been generated by
manipulating a mouse homologue of a human NMD-associated
gene, but this approach does not always produce the expected
human phenotype. These models include the mouse Dex KO model,
which does not recapitulate the human phenotype of isocortical
malformation. By contrast, acute knockdown (KD) of Dcx in the rat
does mimic the human phenotype, displaying aberrant
electrophysiology (Nosten-Bertrand et al., 2008; Ramos, 2005).
Likewise, the FIna KO mouse does not develop PH, whereas RNAIi-
mediated KD of Fina in the rat leads to ectopic neurons (Carabalona
etal., 2012). Fat4 KO in mice does not cause cortical heterotopia, as
found in patients with FAT4 mutations (Badouel et al., 2015), but
instead leads to overproliferation and to reduced neuronal
differentiation when acutely knocked down (Cappello et al.,
2013). Finally, whereas TUBAIA mutations can cause severe
lissencephaly, microcephaly, SBH and abnormal gyrification in
human patients (Aiken et al., 2017), a mouse mutant of Tubala
develops with hippocampal, but no cortical, defects (Liu, 2011).

The knowledge we have gained by studying the development of
the cortex in these models is, without doubt, highly valuable.
However, it is somewhat fragmentary: we can extrapolate basic
ideas of why progenitor cells fail to expand or differentiate in the
correct manner and why neurons fail to reach their final destination,
but we are facing a simplified system that may mask or not
adequately display key human-specific mechanisms. In addition, it
is becoming clear that common phenotypes are sometimes driven by
different genetic human and/or mouse mutations, and that multiple
or missing phenotypes are often observed in the mouse brain, which
suggests an additional level of regulation in humans.
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Fig. 5. In vivo and in vitro model systems of neurodevelopment and neurodevelopmental disorders. (A,B) Schematic depicting animal model systems (A)
and pluripotent stem cell-based human model systems (B) of increasing complexity and similarity to the developing human brain. (A) Schematics of mouse, ferret
and non-human primate brains as in vivo model systems. Axes are indicated. (B) 2D human models include NPCs and neurons, and 3D models include
rosette-based spheroids, brain region or whole-brain organoids, and assembloids with different brain regions fused together, which are particularly promising for
the study of both radial and tangential neuronal migration. Note that in vitro-derived cells/aggregates can also be transplanted into the mouse brain (not shown), in
which neurons can integrate, mature, become vascularized and generate functional circuits with the host cells.

Non-rodent models of cortical development

To overcome the challenges of modelling cortical development and
NMDs in mice, researchers have turned to new in vivo models,
including the ferret and non-human primates (Fig. 5A). Several lines
of evidence suggest that the ferret neocortex represents a more
‘human-like” model system than that of the mouse. The ferret
neocortex is, for example, folded and equipped with an oSVZ that
contains abundant bRG (Fietz et al., 2010) and discrete domains of
gene expression (de Juan Romero et al., 2015); for example, the
differential expression of adhesion molecules in future gyri and
sulci (del Toro et al., 2017). Furthermore, the dynamics of neuronal
migration are more complex in the ferret brain than in the rodent
brain: concomitant with the start of cortical folding, neurons can
acquire tortuous migratory routes, using processes of multiple
neighbouring RG to disperse laterally and generate a complex
cortical architecture (Gertz and Kriegstein, 2015). Importantly,
similar to the mouse, gene expression can be acutely manipulated in
the developing ferret brain by in utero electroporation (Kawasaki
et al., 2013; Smith et al., 2018). As such, the ferret is emerging as a
powerful model for studying cortical development (Johnson et al.,
2018; Smith et al., 2018).

The brains of non-human primates are much more similar to the
human cortex in terms of their size, neuronal numbers and
gyrification. In the developing cortex of gyrencephalic monkeys,
such as the macaque, an inner and outer SVZ can be clearly
distinguished (Dehay et al., 2015; Smart et al., 2002), and the oSVZ
contains an abundant population of bRG. The diversity of precursor
cell types is also much higher in primates than in rodent germinal
zones, with heterogeneity of bRG evident in primates (Betizeau
et al., 2013; Dehay and Kennedy, 2007; Dehay et al., 2015;
Lukaszewicz et al., 2005). Despite the high degree of similarity to
the human cortex, the cortex of the monkey is still decisively

smaller. This highlights that additional mechanisms underlying
differences in brain development likely exist and remain to be
elucidated; this observation also highlights the shortcomings of
using non-human primates as models of human cortical
development. A further limitation in the use of non-human
primates is their long gestation and developmental time and the
difficulty of genetic manipulation compared with rodents, although
there are some successful examples of the generation of transgenic
animals with germline transmission [e.g. in marmosets (Sasaki
et al., 2009) and macaques (Liu et al., 2016)]. Taken together, in
vivo studies of cortex development in mouse, ferret and primates
(Fig. SA) have been, and will continue to be, essential to understand
neuronal migration and NMDs, but we clearly need an accessible
human-specific system to validate our in vivo findings in a human
context.

In vitro models of cortical development

Given the aforementioned limitations of in vivo models for studying
human cortex development and malformation, a number of in vitro
models of cortical development have been created. Many of these
use mouse and human stem cells as a starting point, and thus
represent highly accessible systems that can be manipulated in
various ways. Indeed, both embryonic stem cells (ESCs) (Evans and
Kaufman, 1981; Thomson et al., 1998) and induced pluripotent
stem cells (iPSCs) (Takahashi and Yamanaka, 2006) can be
differentiated in culture to generate neurons via neural progenitor
cells (NPCs) (Zhang et al., 2001). The ability of such pluripotent
stem cells (PSCs) to spontaneously acquire neural identity (Ying
et al, 2003) and self-organize and differentiate in vitro is
remarkable, and is most likely underscored by the fact that few
external factors are needed to induce neuroectoderm formation
(Holtfreter, 1944). Genome editing (Ran et al., 2013) and acute
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manipulation by transfection and transduction are also relatively
simple in human PSCs, further strengthening their utility. In
addition, human PSCs can be differentiated in vitro to create 2D or
more complex 3D model systems (Fig. 5B), and the resulting cells
and tissues can also be transplanted into animal models. The
advantages that 3D systems offer for modelling and studying NMDs
relative to other approaches, as discussed in more detail below,
include the possibility of exploring molecular, cellular and
functional properties of human progenitors and neurons in an
accessible, three-dimensional structure that, in a rudimental manner,
resembles the early steps of human brain development.

2D models

In vitro protocols for generating 2D neuronal models are based on
the capacity of polarized neuroepithelial cells to self-organize into
neural rosettes (Box 1, Glossary) around a pseudo-lumen (Elkabetz
et al., 2008). The default fate of NPCs is forebrain cells (Levine and
Brivanlou, 2007) that sequentially generate layer-specific neurons
in a stereotypical temporal order; these neurons then mature to build
networks of neurons that form synapses and that are able to actively
fire (Espuny-Camacho et al., 2013; Gaspard et al., 2008; Pankratz
etal., 2007; Pasca et al., 2011; Shi et al., 2012). A key advantage of
such 2D neuronal in vitro systems is that they recapitulate the human
species-specific molecular clock of development and maturation
(Suzuki and Vanderhaeghen, 2015), enabling cellular morphology
and proliferation, as well as migration and differentiation, to be
easily studied to uncover disease mechanisms (Iefremova et al.,
2017; Pasca etal., 2014). However, their disadvantages are based on
the limitations of an in vitro system, in that spatial organisation is
restricted and cellular behaviour is highly dependent on culture
conditions.

3D models

3D suspension cultures have recently been developed to generate
neural model systems that more closely resemble in vivo tissue.
NPCs can self-organize to form 3D aggregates — termed organoids
or spheroids — that produce various CNS lineages (Eiraku et al.,
2011; Nakano et al., 2012; Reynolds and Weiss, 1992; Turner et al.,
2016). Based on this inherent genetically encoded ability, several
protocols have been developed to generate brain region-specific
spheroids and cerebral organoids that can be used to investigate
cortex development and MCDs (summarised in Table S1). All of
these approaches result in VZs containing aRG that are organized
around a ventricle-like lumen. Basally to this lumen lies an SVZ-
like zone that contains bIPs and bRG, a CP-like zone with neurons
of different layer identities, and a marginal-like zone with Cajal-
Retzius neurons. These 3D tissues are classified according to the
amount of external patterning they undergo, which is dependent on
them undergoing either directed or undirected approaches (as
discussed below), or according to the complexity of the generated
tissue. As the approaches used to generate 3D neuronal tissues have
recently been reviewed (Di Lullo and Kriegstein, 2017; Pasca,
2018), we focus here on the differences between protocols and
illustrate the type of question they can be used to investigate.

In protocols of ‘directed’ spheroid generation, 3D aggregates
known as embryoid bodies (Box 1, Glossary) are patterned (Chambers
et al., 2009; Watanabe et al., 2005) to acquire an ectodermal fate and
are then instructed to develop towards a certain brain region using
exogenously supplied morphogens to mimic endogenous patterning
events (Mariani et al., 2012; Bagley et al., 2017; Eiraku et al., 2008; Li
et al., 2017; Qian et al., 2016) (Fig. 5B). Cortical spheroids
recapitulate mid-foetal stages and contain bRG, neurons and glia, as

well as functional synapses and electrophysiological signatures of
network activity (Pasca et al., 2015). They even mature to resemble
postnatal stages of cortex development, containing mature astrocytes
that are very similar to human primary astrocytes (Sloan et al., 2017).
Special protocols that combine the action of small molecules, culture
in high oxygen and miniaturized bioreactors have been designed to
direct differentiation towards forebrain, midbrain, or hypothalamus,
adenohypophysis and cerebellum identity, and to facilitate drug
screening (Bershteyn et al., 2017; Iefremova et al., 2017; Jo et al.,
2016; Kadoshima et al., 2013; Krefft et al., 2018; Muguruma et al.,
2015; Qian et al., 2016; Rigamonti et al., 2016; Sakaguchi et al., 2015;
Suga et al., 2011). These directed spheroid approaches are more
reproducible than unpatterned approaches (see below) and reach a
higher degree of maturation than do cultures in 2D. Spheroids and/or
organoids can also undergo long-term in situ live imaging, using the
‘organoids-on-a-chip’ method (Karzbrun et al.,, 2018), in which
cerebral organoids are grown in micro-fabricated compartments,
allowing tissue expansion only in the x,y-plane and imaging through
the coverslip (Table S1).

By contrast, ‘undirected’ approaches can be used to develop
spheroids and/or organoids without the addition of external
patterning factors (Lancaster and Knoblich, 2014; Lancaster et al.,
2013; Lindborg et al., 2016; Renner et al., 2017). They rely on the
intrinsic capacity of cells to differentiate along a lineage and self-
organise. The resulting cerebral organoids contain germinal zones
with cells of all brain region identities, including dorsal and ventral
forebrain and forebrain organising centres, midbrain, hindbrain,
midbrain-hindbrain boundary, choroid plexus, and retina (Table S1).
These cell types are generated via the same transcriptional
programmes and developmental trajectories as those that occur in
the human foetal brain (Camp et al., 2015; Quadrato et al., 2017). A
key advantage of undirected protocols is the high complexity of the
interacting areas — reminiscent of different brain regions — that they
generate. They therefore enable a more comprehensive study of brain
development and disease, enabling the identification of cell types that
are affected by certain disease genes.

Regardless of how they are generated, both brain region-specific
spheroids and cerebral organoids can be analysed using an array of
unbiased approaches, including single cell RNA sequencing, single
cell live imaging and fluorescence-activated cell sorting. Their
disadvantages include the high variability in the efficiency of neural
induction, in the brain regions generated, and between organoids
and batches (Camp et al., 2015; Jabaudon and Lancaster, 2018;
Quadrato et al., 2017). Organoid size is also currently limited by the
diffusion of oxygen and nutrients because of the absence of
vascularisation. The addition of microfilaments and scaffolding can
nevertheless improve neural induction efficiency, the production of
regions with dorsal cortical identity and the generation of radial
units (Box 1, Glossary; Krefft et al., 2018; Lancaster et al., 2017;
Zhu et al., 2017).

It is also possible to fuse together formerly patterned spheroids to
acquire different regional identities and to create tissues — termed
fused-organoids or assembloids — of high, defined complexity in
vitro. For example, pallial and subpallial spheroids have been fused
to create mature glutamatergic projection neurons of all layer
identities, as well as several different GABAergic interneuron types
that subsequently migrate towards a dorsal cortex-like region (Birey
et al., 2017). Both pallial and subpallial ‘brain regions’ give rise to
astrocytes, and the subpallial spheroids also produce
oligodendrocytes. In additional examples, assembloids of ventral
and dorsal telencephalon were created to study the radial migration
of glutamatergic neurons and the saltatory tangential migration of
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interneurons, as well as interneuron integration into dorsal cortical
laminae with the establishment of electrophysiologically active
microcircuits (Bagley et al., 2017; Birey et al., 2017; Xiang et al.,
2017). Such assembloids can be used to study altered neural circuit
formation in patient-derived cells and to distinguish cell-
autonomous mechanisms from non-cell-autonomous ones by
combining patient- and control-derived spheroids.

Transplantation of in vitro generated tissues and cells

In vitro-generated neural cell preparations can also be transplanted
into mice in order to obtain an additional level of complexity. When
in vitro-generated human NPCs or neurons are transplanted into the
mouse brain (Fig. 5A,B), they migrate into the host tissue, undergo
further morphological and electrophysiological maturation, show
long-term survival and functionally integrate into host neural
circuits (Kriks et al.,, 2011; Reddington et al., 2014; Zhu et al.,
2016). The intrinsic, human-specific molecular clock of
development and maturation is thus recapitulated in vitro and
retained upon transplantation into the mouse or rat cortex (Espuny-
Camacho et al., 2013; Suzuki and Vanderhaeghen, 2015). Using
such transplantation experiments, disease mechanisms can be
elucidated by studying the development, migration, integration
and physiological function of neurons in vivo (Espuny-Camacho
et al., 2017). In an example of this approach, iPSC-derived glial
progenitor cells, created from cells obtained from a schizophrenia
patient, were transplanted into the mouse brain to generate a ‘human
iPSC glial mouse chimera’ (Windrem et al., 2017). This chimeric
model revealed a role for oligodendrocytes and astrocytes in the
acetiology of schizophrenia. Behavioural experiments even showed
patient-like changes in the host mice following the transplantation
of patient-derived cells, such as increased anxiety and anhedonia,
and disturbed social interaction and sleep-wake rhythm.

As mentioned above, a key limitation of organoids is their lack of
vascularization. A recent study attempted to overcome this by
mixing iPSC-derived tissue-specific progenitors with endothelial
cells and mesenchymal stem cells and transplanting the resulting
organ buds into mouse hosts (Takebe et al., 2015). The subsequent
vascularisation of the transplanted organ buds increased their self-
organisation capacity and enabled the transplanted tissues to
successfully mature, marking a step towards the generation of
functional complex organs. A method for implanting human
cerebral organoids into the adult mouse brain has also been
described (Mansour et al., 2018). The transplanted organoids
integrate into the host brain and became vascularized, with grafted
neurons establishing functional synaptic connections with host
neurons and responding to physiological stimuli.

Thus, by combining human cell-based in vitro models with
mouse in vivo models, it is possible to generate physiological
environments that can facilitate research into the human-specific
mechanisms of cortical development and also enable improved
disease modelling. As mentioned in previous sections, however, a
transitional and combinatorial approach is needed in order to
validate basic mechanisms identified in in vivo animal models.

Modelling human neurodevelopmental disorders in vitro

In recent years, the in vitro systems discussed above have been applied
to model various NMDs and MCDs, as well as other neurological
disorders in which aberrant neuronal migration might be implicated.
2D iPSC models, for example, have been used to shed light on the
mechanisms that underlie certain human neurological disorders, such
as schizophrenia (Brennand et al., 2011), bipolar disorder (Madison
etal.,2015; Mertens etal., 2015), and Rett syndrome (Marchetto et al.,

2010), and have helped researchers to analyse important cell
processes, such as gene expression, cell morphology and motility,
neuronal excitability, and synapse formation (Flaherty and Brennand,
2017; Wenetal., 2016). Both 2D and 3D models have been applied to
investigate species-specific differences in cortical development,
specifically between humans and non-human primates (Mora-
Bermudez et al., 2016; Otani et al., 2016). In addition, 3D models
can be used to elucidate the effects of genomic variants between
humans and their hominid ancestors (Cohen, 2018; Hajdinjak et al.,
2018), and to address the regulation of cortical folding (Karzbrun
et al., 2018; Li et al., 2017). They have also served to model human
neuropsychiatric disorders and MCDs, e.g. microcephaly (Cugola
etal., 2016; Gabriel etal., 2016,2017; Lancasteretal., 2013; Lietal.,
2017; Ming et al., 2016) (summary Table S1). Importantly, many of
these studies have provided novel insights into how aberrant neuronal
migration might contribute to human disease.

Cerebral spheroids, organoids and assembloids have been applied
by several groups to investigate the pathophysiology of ASD
(recently reviewed by Ilieva et al., 2018). For example, the
upregulation of forkhead box G1 (FOXG1) expression, accelerated
cell cycle progression and decrease in cell cycle length, enhanced
synaptic maturation and overproduction of inhibitory GABAergic
neurons were all identified in patient-derived forebrain spheroids
(Mariani et al., 2015). Timothy syndrome, a rare disorder in which
ASD and epilepsy can be observed, has also been modelled using
forebrain assembloids (Birey et al., 2017). This study identified cell-
autonomous defects in the saltatory migration of cortical
interneurons that were derived from Timothy syndrome patients,
which could be restored pharmacologically (Birey et al., 2017).
Taken together, these two novel studies suggest that neuronal
migration and perhaps the (consequent) imbalance of excitatory and
inhibitory neurons are at the basis of ASD (Table S1).

Classic NMDs have also been modelled using 3D human in vitro
approaches (Table S1). Many of these studies have focused on
lissencephaly, as the lissencephalic mouse brain cannot serve as a
model system owing to its intrinsic physiological lack of folds. Of
note, three recent studies, using different complementary organoid
technologies, have identified several novel factors that contribute to
this disease. In the first study (Bershteyn et al., 2017), cerebral
organoids were generated using lissencephaly patient-derived
iPSCs, with the patient carrying a heterozygous 17p13.3 deletion
that results in Miller-Dieker syndrome (MDS), the most severe form
of lissencephaly, which features epilepsy and intellectual disability.
The organoids that are generated from the patient-derived iPSCs
recapitulate specific cellular phenotypes that have been previously
identified in mouse models of this syndrome, e.g. spindle and
migration defects. However, the organoids also reveal some
additional human-specific features, including severe apoptosis and
the increased horizontal division of aRG, resulting in more
neurogenic aRG divisions, overproduction of deep-layer neurons
and smaller organoid size. The nuclei of aRG are less elongated,
consistent with a reduced tension during nucleokinesis, and bRG
show a cell-type-specific mitotic defect, which causes delayed cell
division. A second study used forebrain-specific organoids to
elucidate the mechanisms that underlie MDS (Iefremova et al.,
2017). In support of the findings reported from mouse models of
this syndrome, and in line with the findings reported by Bershteyn
et al. (2017), this study found that aRG show reduced expansion
(but no increase in apoptosis), resulting from a transition to more
asymmetrical divisions and leading to premature neurogenesis. In
addition, the microtubule network of aRG in patient organoids is
altered and truncated in appearance, with reduced extension towards
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the basal membrane. Altered expression of cell adhesion molecules
added to the disruption of cortical niche architecture, which led to a
non-cell-autonomous disturbance of the N-cadherin/B-catenin
signalling axis. The third study, using an ‘organoids-on-a-chip’
approach (Karzbrun et al., 2018), found that, in contrast to control
organoids, CRISPR/Cas9-generated LIS! (+/—) mutant organoids
show fewer convolutions, leading to a decreased gyrification index
that is consistent with the lissencephaly patient phenotype. Using
atomic force microscopy, the researchers found mutant cells to be
softer and to swell less than control S-phase cells, indicating
defective interkinetic nuclear migration.

Foetal alcohol syndrome (FAS) has also been modelled in vitro
by treating cerebral organoids with ethanol (Lancaster et al., 2017;
Zhu et al., 2017). This results in smaller cortical-like regions and
cortical plate disruption, with ectopic clusters of neurons present at
the organoid surface or in the VZ (reminiscent of cobblestone
lissencephaly and PH). Importantly, disrupted leading processes —
which are needed for neuronal locomotion — were identified as the
cause of these aberrant features (Lancaster et al., 2017). These
studies also found that reduced NPC proliferation, increased cell
death and premature neural differentiation, with a concomitant
increase in glutamatergic neurons, might underlie the excitation/
inhibition imbalance that causes, for example, the hyperactivity
symptoms observed in FAS patients.

Finally, cerebral organoids can also be used to identify a cellular
role for candidate causative genes that have been identified in
patients with MCDs. In a recent study, cerebral organoids were used
to confirm the phenotype seen in a mouse KD model of MOB2,
which is associated with PH (O’Neill et al., 2018). As in the KD
mouse model, defects in cilia number were observed in cerebral
organoids, which highlights the importance of proper MOB2 levels
for cilia maintenance and neuronal positioning in human neurons.
Taken together, these studies exemplify how cerebral organoids can
serve both to reveal human-specific roles of known disease-
associated genes, adding human-specific aspects to the knowledge
gained from in vivo models, and to decipher new candidate
causative genes and their human-specific mechanisms of action.

Conclusions and future perspectives

As we have highlighted here, recent studies of in vivo and in vitro
models of cortical development have provided important insights
into the role played by neuronal migration, both in the context of
normal development and in the case of human neuronal disorders.
Of particular importance for future research in this field are recent
advances in cerebral organoid technology that aim to improve the
reproducibility and patterning of organoids. This has been achieved
using various biomaterials (Lancaster et al., 2017; Zhu et al., 2017)
in combination with instructive factors that mimic the morphogen
gradients that pattern axis formation in vivo, and via improved
modelling of the basement membrane for the establishment of
functional radial units (Kadoshima et al., 2013; Krefft et al., 2018;
Lancaster et al., 2017). Until recently, cerebral organoids were
suggested to lack microglia, which are of non-ectodermal origin
(Pagca, 2018). However, it is has been reported (Ormel et al., 2018)
that mesoderm-derived progenitor cells that are innately present in
cerebral organoids (Quadrato et al., 2017) can differentiate to mature
microglia that transcriptionally resemble adult human microglia and
acquire typical ramified morphology and microglial functions.
Cerebral organoids are thus more ‘complete’ than had previously
been thought, and represent a valuable and highly accessible tool
with which to study neuron-glia interactions in normal and diseased
human brain development.

Nevertheless, organoids are not without limitations, and they
clearly represent a simplification of in vivo neural tissue, being
relatively immature, small and heterogeneous (Camp et al., 2015;
Jabaudon and Lancaster, 2018; Pasca, 2018; Quadrato et al., 2017).
This creates uncertainty about the specificity of the established
neuronal connections, especially as input and output organs are
missing. In addition, the proportion of astrocytes in cerebral
organoids is lower than in primary tissue and endothelial cells are
missing, as well as white matter regions, meninges and a circulation.
In addition to modelling developmental axes and morphogen
gradients in organoids, the recapitulation of the ECM and
perineuronal nets needs to be tackled in the future. These are
human-specific and of importance during a crucial window of
development, as well as for adult neuronal plasticity (Galtrey and
Fawcett, 2007). Despite these limitations, cerebral organoids have
successfully been used to uncover human-specific aspects of
cortical development and have helped to elucidate mechanisms that
underlie NMDs — especially when combined with in vivo models.
Exploiting all of the described model systems will be important for
advancing our knowledge of neuronal migration, NMDs and
MCDs, and of neuronal development and disorders more broadly.
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