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Revealing age-related changes of adult hippocampal
neurogenesis using mathematical models
Frederik Ziebell1,2, Sascha Dehler2, Ana Martin-Villalba2,*,‡ and Anna Marciniak-Czochra1,3,*,‡

ABSTRACT
New neurons are continuously generated in the dentate gyrus of the
adult hippocampus. This continuous supply of newborn neurons is
important to modulate cognitive functions. Yet the number of newborn
neurons declines with age. Increasing Wnt activity upon loss of
dickkopf 1 can counteract both the decline of newborn neurons and
the age-related cognitive decline. However, the precise cellular
changes underlying the age-related decline or its rescue are
fundamentally not understood. The present study combines a
mathematical model and experimental data to address features
controlling neural stem cell (NSC) dynamics. We show that available
experimental data fit a model in which quiescent NSCs may either
become activated to divide or may undergo depletion events, such
as astrocytic transformation and apoptosis. Additionally, we
demonstrate that old NSCs remain quiescent longer and have a
higher probability of becoming re-activated than depleted. Finally, our
model explains that high NSC-Wnt activity leads to longer time in
quiescence while enhancing the probability of activation. Altogether,
our study shows that modulation of the quiescent state is crucial to
regulate the pool of stem cells throughout the life of an animal.
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INTRODUCTION
The subgranular zone of the hippocampal dentate gyrus (DG) is one of
the twomajor regions in the adult brainwhere neural stem cells (NSCs)
continuously produce new neurons involved in learning and memory
(Ming and Song, 2011). The age-associated impairment of learning
and memory has awakened much interest in understanding the cellular
and molecular mechanisms underlying the accompanying decline of
NSC counts in the hippocampus (Ben Abdallah et al., 2010; Jinno,
2011;Walter et al., 2011; Furutachi et al., 2013; Seib et al., 2013; Jones
et al., 2015). Hence, interpretations of the dynamics of NSCs in
homeostasis have led to many recent studies (Bonaguidi et al., 2011;
Encinas et al., 2011; Mandyam et al., 2007; Sierra et al., 2010; Brandt
et al., 2012; Bouchard-Cannon et al., 2013).

To decipher the cellular dynamics behind hippocampal
neurogenesis, we apply an interdisciplinary approach combining
mathematical modeling with experimental data. These data consist
of already published studies (Sierra et al., 2010; Bonaguidi et al.,
2011; Encinas et al., 2011; Brandt et al., 2012; Seib et al., 2013) as
well as novel data specifically designed to reveal age-related
changes during hippocampal neurogenesis. Our approach of
combining modeling with data was successfully applied in other
stem cell-based systems (Alcolea et al., 2014; Baker et al., 2014;
Chabab et al., 2016; Flossdorf et al., 2015; Watson et al., 2015) to
identify and quantify stem cell-related processes such as self-
renewal and differentiation.

The mathematical model developed describes the evolution of the
hierarchical cell production system of adult hippocampal
neurogenesis and incorporates basic cell properties, such as
quiescence, proliferation, self-renewal and apoptosis. As the
configuration of regulatory feedbacks in neurogenesis is not well
understood, we follow a top-down approach in which we start with a
basic model with constant rates and then apply it to experimental
data in order to identify which parameters are changing during
aging.

Our study shows that the data are consistent with a model in
which NSCs reside in a quiescent phase from which they can
either become activated to proliferate or undergo depletion. By
applying our model to novel data displaying an age-related
accumulation of astrocyte numbers, we demonstrate that about
50% of NSC depletion can be attributed to direct transformation
into astrocytes, with the remaining part likely being a result of
apoptosis.

Finally, we use our model to uncover the response of the
neurogenesis system upon dickkopf 1 (Dkk1) deletion (Seib et al.,
2013). We show that the best explanation for the effects upon Dkk1
knockout is that stem cells spend longer time in quiescence but they
are also more likely to become activated than being depleted from
the quiescent phase.

RESULTS
Stem cell model fits population-level and clonal data
Our model is based on a compartment of quiescent NSCs,
corresponding to the G0 phase of the cell cycle (Fig. 1). Those
quiescent NSCs have the ability to enter the cell cycle and perform
a symmetric self-renewing or asymmetric division, followed by
NSCs returning to quiescence after division (Bonaguidi et al.,
2011). Although Bonaguidi et al. (2011) do not address a
mechanism leading to NSC disappearance, they found an
increased number of NSC-depleted stem cell clones in their data
and concluded that NSC depletion occurs. Accordingly, we
assume an outflow from the quiescent NSCs compartment not only
due to cell cycle entry but also due to depletion. As shown later,
our results suggest that NSC depletion consists of apoptosis as well
as astrocytic transformation. Accordingly, our model is given byReceived 28 April 2017; Accepted 7 November 2017
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the set of equations:

d

dt
c0ðtÞ ¼ �ðr þ qÞc0ðtÞ þ 2apc1ðtÞ;

d

dt
c1ðtÞ ¼ rc0ðtÞ � pc1ðtÞ;

(2.1)

where c0 represents quiescent NSCs and c1 cycling NSCs. The
parameter p denotes the proliferation rate, q is the depletion rate
and r the activation rate (see Fig. 1 for a graphical representation).
Moreover, as we consider experimentally observed symmetric and
asymmetric NSC divisions (Bonaguidi et al., 2011), we introduce
the parameter a as the fraction of self-renewal, which is the
probability of a progeny cell to have the same fate as the parent cell
(Marciniak-Czochra et al., 2009).
We investigate the proposed model by comparison with

experimental data. For this, we measure the number of NSCs
and the fraction of 5-bromo-2-deoxyuridine (BrdU)-incorporating
NSCs at several age points during mouse adulthood (Fig. 2).
Our data agree with those reported by Encinas et al. (2011), as
we also observed a decline of the NSC pool (Fig. 2E) and a
constant fraction of BrdU-incorporating NSCs of ∼1% at all
ages (Fig. 2F). By estimating model parameters, we find that
the model can be fitted to these population-level data (Fig. 2E,F,
black line).
In contrast to the population-level data that account for large cell

numbers and admit inferences about the collective behavior of a
whole-cell population, clonal data reflect single-cell level behavior
by tracking the progeny of individual cells. To assess the clonal
dynamics of NSCs, Bonaguidi et al. (2011) labeled individual NSCs
at the age of 8-12 weeks and evaluated their clonal progeny 1
month, 2 months and 1 year later. This led to a classification of NSC
clones into three categories: quiescent, consisting of exactly one
NSC; activated, including one NSC and at least one additional cell;
and depleted, containing no NSCs.
While populations of many cells can be modeled using a

deterministic approach based on averaging over the population,
modeling of clonal data requires a stochastic approach taking

into account cellular heterogeneity. Therefore, to fit our model
to the clonal data (Fig. 3), we made use of Gillespie
algorithm (Gillespie, 1977) to define a stochastic counterpart of
model (2.1).

A detailed description of the model quantification procedure is
presented in Materials and Methods. Our analysis shows that the
population-level and the clonal data set cannot be explained
simultaneously and it is necessary to use different parameters to
reproduce the two data sets. Simulation of the stochastic version of
model (2.1) using the parameters obtained from population-level
data does not recapitulate the clonal dynamics data (Fig. 3A), even if
one population-level parameter is allowed to be different (Fig. S7).
On the other hand, estimating model parameters by fitting the
stochastic version of model (2.1) to the clonal data results in a good
agreement between observed and predicted clonal behavior
(Fig. 3B). However, to obtain a good agreement, it is necessary to
assume existence of a population of resilient NSCs. By resilient
cells, we mean quiescent NSCs that never become activated or
depleted, thus remaining quiescent indefinitely (see ‘Existence of
resilient NSCs’ for details). Assuming the existence of such
subpopulation prevents a rapid extinction of quiescent clones.
According to the model fit, resilient NSCs account for about 10% of
all NSCs in a 10-week-old mouse. A model without resilient cells
predicts that the fraction of quiescent clones approaches zero,
contradicting the clonal data at the 1 year time point. Note that
resilient stem cells can be labeled in the clonal experiment of
Bonaguidi et al. (2011), because the applied labeling technique does
not require cells to divide. Moreover, we want to stress that the
concept of resilient stem cells is only needed to fit the clonal data of
Bonaguidi et al. (2011), not the population-level data. The
discrepancy between clonal and population data may be caused
by differences in experimental setup. The differences between the
processes quantified by the available data sets may be linked to the
sparse labeling protocol in case of the clonal data. It seems to select
for a special subset of cells (the ones responding to low doses of
tamoxifen). We also note that the clonal data are based on
quantification of only about 100 clones and, hence, the parameter
estimates are potentially biased.

Model (2.1) assumes that dividing stem cells return to quiescence
after division and that depletion events occur from the quiescent
phase. An alternative stem cell model has been proposed by Encinas
et al. (2011). The latter is based on a hypothesis that stem cell
depletion occurs after a series of asymmetric division events. This
scenario leads to a mathematical model (Fig. S1) that can be fitted to
the population data (Fig. S2) but cannot capture the clonal dynamics
(see supplementary information, section: Stem cell depletion
coupled to stem cell division; Fig. S3). Hence, in the remainder of
this paper we focus on model (2.1).

Aged stem cells spend longer in quiescence but also have a
higher probability of becoming activated
The age-related decline of the NSC pool is a central characteristic of
adult hippocampal neurogenesis. We asked whether the decline
occurs uniformly with age or if the dynamics of NSCs change
during adulthood. In the case of a uniform decline, NSCs numbers
are expected to drop exponentially, corresponding to a constant
decay rate. As outlined in our previous study (Ziebell et al., 2014),
the decline of NSC number saturates with age, resulting in an
underestimation of the total number of NSCs in old age (Fig. 2E).
This indicates that the dynamics of NSCs change during aging.
Using mathematical modeling, we evaluate different scenarios for
their ability to explain this saturation.

Fig. 1. The proposedmodel.Quiescent NSCs are either activated to enter the
cell cycle and subsequently perform a symmetric or asymmetric division, or
vanish from the NSC pool by a depletion event. Moreover, cycling NSCs re-
enter the quiescent phase after division.
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Decreasing depletion
The depletion process is the integral part of the NSC decline.
Without it, the number of NSCs would not decrease. One possibility
to explain the saturation of decline of NSCs is that the depletion rate
of NSCs declines during aging, leading to a decreased fraction of
depleting stem cells in old age. Accordingly, we modify model (2.1)
by assuming

q ¼ qðtÞ ¼ qmaxe
�bqt: (2.2)

As can be seen from Fig. 4A, the discussed mechanism allows a
good fit to the data. The exponential decay function is a particular
choice of a time-dependent parameter, reflecting the existence of a
feedback loop based on some time-decaying variables. Other
plausible control mechanism is a bang-bang control. It can be
modeled by a function changing abruptly from a constant positive
value to zero. However, assuming a bang-bang decay of the
depletion rate does not explain the observed dynamics (data not
shown). Our results suggest that the depletion rate is a subject of a
nonlinear regulation that might be based, for example, on the total
number of stem cells, which is decaying in time.

Existence of resilient NSCs
Our analysis of the clonal data set of Bonaguidi et al. (2011) points
towards a possible second population of resilient NSCs: cells that
can neither become activated nor depleted. The additional
population cres is implemented with

d

dt
cresðtÞ ¼ 0;

cresð0Þ
c0ð0Þ þ c1ð0Þ ¼

r

1� r
;

where ρ is the fraction of resilientNSCs of allNSCs at the begining of
adulthood. However, existence of such a population in combination
with the decline of NSCs leads to a decrease of the fraction of cycling
NSCs (Fig. 4B), contradicting the observed constant fraction of
BrdU-labeled NSCs in old age (Encinas et al., 2011).

Lengthening of the cell cycle
If NSCs take progressively longer during aging to complete the cell
cycle, the number of stem cells entering the quiescent phase
declines with time, leading to a decreasing net depletion of stem
cells residing in quiescence. Accordingly, we assume a decline of

Fig. 2. GFAP-YFP-expressing cells in the DG and population-level dynamics of hippocampal neural stem cells. (A,C) GFAP-YFP-positive cells in 8-week-
old (A) and 56-week-old (C) GFAP-YFP reporter mice. Scale bars: 100 μm. (B,D) Representative confocal images of immunostaining for GFP (green) and
S100β (red). Shown are examples of a GFAP+/S100β− neural stem cell (B) and aGFAP+/S100β+ astrocyte (D). Scale bars: 20 μm. (E,F) Fit of the proposedmodel
to the total number of NSCs (E) and the fraction of BrdU-incorporating NSCs (F). Estimated parameters are displayed in Table 1.
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the proliferation rate given by

p ¼ pðtÞ ¼ pmaxe
�bpt:

A comparison of the suggested mechanism with the data shows a
lack of fit, because lengthening the cell cycle dramatically increases
the fraction of cycling NSCs and as a result the fraction of BrdU-
incorporating NSCs (Fig. 4C).

Increasing self-renewal
The saturation of the NSC decline could also indicate that NSCs
increase their self-renewal to counteract the depletion. The
corresponding modification takes the form

a ¼ aðtÞ ¼ amin þ aat:

An analysis of this scenario shows that, in order to fit our population
level data, NSC number should increase at the age of about 1 year
(Fig. 4D). However, this implication contradicts the fact that NSCs
and other downstream compartments, such as neural progenitors
and immature neurons, decline in number even at later time points
than 1 year of age (Encinas et al., 2011; Walter et al., 2011).

Increasing quiescence
An increase in NSC quiescence, corresponding to an age-related
lengthening of the G0 phase, could also explain the decline pattern
of NSCs. Because leaving the quiescent phase is associated with a
higher tendency to deplete than to maintain or expand the pool of
NSCs – otherwise it could not be explained why this pool declines –
remaining in quiescence would neutralize the decline. The
modification takes the form

q ¼ qðtÞ ¼ qmaxe
�bqr t

and

r ¼ rðtÞ ¼ rmaxe
�bqrt:

The justification for these equations is that leaving the quiescent
phase c0 is driven by a joint decay process (Magill and Galy, 2005),

which consists of activation (with rate r) and depletion (with rate q).
The mean time of NSCs to sojourn in quiescence is thus given by

1

qðtÞ þ rðtÞ ¼
1

qmax þ rmax
ebqrt:

However, in order to explain the saturation of NSC decline in this
scenario, the strong increase of quiescence reduces the fraction of
cycling NSCs (Fig. 4E), contradicting the observation of a constant
fraction of BrdU-incorporating stem cells up to even 20 months of
age (Encinas et al., 2011).

Increasing activation
Another possible explanation for the saturation of the NSC decline
is that the fraction of quiescent NSCs that becomes activated per
time unit increases during aging. As activation is associated with
maintenance or expansion of the NSC pool, increasing activation
could counteract the NSC decline in old age. The increasing
activation scenario is implemented with

r ¼ rðtÞ ¼ rmin þ art:

However, comparing the above mechanism with our population
level data shows that an increase of activation fails to explain the
saturation of NSC decline (Fig. 4F).

Model selection
In conclusion, the only biologically plausible scenario reached by
visually comparing the model fit to the data is that of a decreasing
depletion rate. To also evaluate each of the above model modifications
from a statistical perspective, we compute for each scenario the
corresponding Akaike information criterion (AIC) score. This model
selection score quantifies the trade off between the complexity of a
model, i.e. number of parameters, and the goodness of fit to the
data (Burnham and Anderson, 2002). Using this score, the only
considerable mechanisms besides the decreasing depletion mechanism
are the scenario of increasing self-renewal and the existence of a

Fig. 3. Comparison of the proposed model with the clonal data of Bonaguidi et al. (2011). Results are obtained by simulating 100 NSC clones 1000 times.
Simulation data are represented as mean (solid black line) and a band containing 95% (gray) of all simulated trajectories. Black error bars correspond to the
clonal data. Estimated parameters are displayed in Table 1. (A) Simulation of the stochastic counterpart of model (2.1) using the parameters of the population-level
fit displayed in Fig. 2. (B) Fit of the stochastic counterpart of model (2.1) by estimating model parameters.
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population of resilient NSCs (seeMaterials andMethods). However, as
outlined previously, the former scenario contradicts the observation of
a decline of NSCs and downstream cell types in old age (Walter et al.,
2011), whereas the latter contradicts the observation of a constant
fraction of BrdU-incorporating NSCs up to 20 months of age (Encinas
et al., 2011). These considerations lead to the conclusion that, among

the contemplated mechanisms, the decreasing depletion scenario is the
only plausible explanation for the saturation pattern of theNSCdecline.

Biological interpretation
Only a decreased depletion rate of NSCs can reproduce these data
without making biologically implausible predictions. A further

Fig. 4. Evaluation of different scenarios to explain the saturation
of the stem cell decline. Model fit to the population-level data of
Fig. 2, assuming (A) a decreasing NSC depletion rate during aging,
(B) an additional population of resilient NSCs, (C) age-related
lengthening of the cell cycle of NSC, (D) that stem cells increase
their self-renewal during aging, (E) that stem cells stay progressively
longer in quiescence during aging and (F) that the fraction of
activated stem cells increases during aging.
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quantification of this scenario suggests that aged stem cells stay
longer in the quiescent stage (Fig. 5A), but also have a higher
probability of reactivation (Fig. 5B). Although the two statements
may seem contradictory, our model assumes that leaving quiescence
can be achieved through activation or depletion. Thus, the latter
assertion merely states that the probability of exiting the quiescent
stage through activation versus depletion increases during aging.

Stem cell depletion is driven by astrocytic transformation
and apoptosis
In order to explain the decline of NSC numbers during aging,
Encinas et al. (2011) suggested that NSCs deplete by transforming
into astrocytes. To test this theory, we counted the total number of
astrocytes during aging to see whether astrocytes accumulate in the
DG due to stem cell depletion. We also checked whether newborn
astrocytes migrate away from the granule cell layer and escape
counting. To achieve this, we used sparse labeling of Nestin-YFP
reporter mice that exclusively marked NSCs and their progeny upon
tamoxifen injection within the subgranular zone. We did not
observe any YFP-positive cells outside the dentate gyrus 90 days
after the last tamoxifen injection. As we find an increasing
progression of the astrocyte count (Fig. 6), we use our model to
test whether the increase in astrocyte numbers corresponds to the
observed stem cell decline. For this, we take model (2.1) together
with our best explanation of the saturation of the NSC decline (2.2)
and add a new compartment, c2, of astrocytes satisfying

d

dt
c2ðtÞ ¼ uqðtÞc0ðtÞ þ ð1� kÞ2ð1� aÞpc1ðtÞ: (2.3)

Here, θ∈[0, 1] is the fraction of NSC depletion events where
depletion occurs via astrocytic transformation. Although the first
term in the above sum accounts for transformation of stem cells into
astrocytes, the second term models the number of astrocytes being
produced from stem cells through asymmetric divisions. Both
parameters, θ and κ, are estimated by fitting the astrocyte data
displayed in Fig. 6 and wild-type neurogenesis data of a Dkk1
knockout study (Fig. 7B) laid out in the next section.
Estimating the transforming fraction θ yields θ=0.473. Thus,

modeling reveals that astrocytic transformation only partially
contributes to about half of the stem cell decline. If every NSC
(100%) depletes through transformation into astrocytes, the final
astrocytic yield would be much higher than what is observed
(Fig. 6). The remaining 53% of the NSC decline are likely a result of
apoptosis and further modeling laid out in the supplementary
information (section: Astrocytic transformation) shows that NSC
apoptosis is almost non-detectable due to rapid phagocytosis by
microglia (Sierra et al., 2010).
It is also possible that the accumulation of astrocyte numbers can

be explained with a higher transformation probability, θ, if

additionally astrocytes are allowed to undergo apoptosis, thus
counteracting the total astrocytic yield. We also analyzed this
scenario in the supplementary information (section: Astrocytic
transformation) and find that apoptosis cannot account for a higher
transformation probability.

Upon Dkk1 deletion, stem cells spend longer in quiescence
but are more likely to become re-activated
We apply our quantified model of NSC dynamics to the study of
Seib et al. (2013), in which the Wnt antagonist dickkopf 1 (Dkk1)
was deleted in NSCs. The deletion led to a larger NSC pool that
even counteracted the age-related decline (Seib et al., 2013). In view
of published studies (Qu et al., 2010; Munji et al., 2011), we
previously hypothesized that NSC numbers expand by increasing
the fraction of self-renewal in response to increased Wnt activity.
Now, we used the developed model to identify the most likely
change in cellular dynamics that explains Wnt-induced expansion
of the pool of NSCs.

First, we extend our stem cell model (2.1), including aging effects
(2.2) and astrocytic transformation (2.3), by adding all cell types
necessary to simulate hippocampal neurogenesis. In particular, we
assume that: (1) NSCs generate progenitors and astrocytes via
asymmetric divisions (Bonaguidi et al., 2011); (2) progenitors
perform a sequence of symmetric divisions followed by
differentiation into neuroblasts (Encinas et al., 2011); and (3)
neuroblasts undergo apoptosis as well as neuronal differentiation
(Sierra et al., 2010). Thus, the full model of wild-type neurogenesis
is given by the set of equations:

d

dt
stemQðtÞ ¼ �ðr þ qmaxe

�bqtÞstemQðtÞ þ 2apstemstemAðtÞ;
d

dt
stemAðtÞ ¼ r stemQðtÞ � pstem stemAðtÞ;

d

dt
progN ðtÞ ¼ �pprogprogN ðtÞ þ k2ð1� aÞpstemstemAðtÞ;

d

dt
progkðtÞ ¼ 2pprogprogkþ1ðtÞ � pprogprogkðtÞ;

d

dt
nblastðtÞ ¼ 2pprogprog0ðtÞ � ðd þ f ÞnblastðtÞ;

d

dt
nblastAðtÞ ¼ dnblastAðtÞ � dphagnblast

AðtÞ;
d

dt
neuronðtÞ ¼ f nblastðtÞ;

d

dt
astroðtÞ ¼ uqmaxe

�bqtstemQðtÞ þ ð1� kÞ2ð1� aÞpstemstemAðtÞ;
(2.4)

Fig. 5. Predicted age-related changes.
(A) The average time a stem cell stays in the
quiescent phase and (B) the probability a
stem cell becomes activated rather than
depleted from the quiescent phase.
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where stemQ denotes quiescent stem cells, stemA active (cycling)
stem cells, progi indicates progenitors with i remaining divisions
(1≤i≤N ), nblast indicates neuroblasts, nblastA indicates apoptotic
neuroblasts, neuron indicates mature neurons and astro indicates
astrocytes.
Next, we used the full model to simulate the protocol of the Dkk1

study (Fig. 7A). In the experiment, adult mice were injected with
tamoxifen (TAM) to induce deletion of Dkk1. Following a 5-week
period, BrdU was administered and chased for 24 h and 4 weeks.
The number of BrdU-labeled cells among the different populations
following Dkk1 deletion was quantified and compared with
numbers in wild-type animals.
In order to explain the effects of Dkk1 deletion, we first

reproduced thewild-type part of the data using our model. As can be
seen from Fig. 7B, the model displays a very good fit to the wild-
type data. Interestingly, a prediction of this fit is that 38% of the
neuroblasts mature into neurons and about 62% undergo apoptosis.
This finding is consistent with experimental observations stating
that the major part of immature neurogenic progenitors undergoes
apoptosis rather than differentiating into neurons (Sierra et al.,
2010), thus further supporting our modeling approach.
We then focus on explaining the effects of Dkk1 knockout (KO).

To model the effects of Dkk1 deletion, we introduced additional
parameters into the wild-type model (2.4). As Dkk1 was selectively
deleted in NSCs, we assume that knockout effects were the result of
changes in the value of stem cell parameters. We thus consider the
parameters a, pstem, qmax and r as possible candidates for being
changed upon Dkk1 deletion. In addition, the data indicate an
increased death rate d of neuroblasts after the knockout. For each
candidate parameter

p [ fa; pstem; qmax; r; dg;
we introduce a change Δp such that the corresponding wild-type and
knockout parameters are related via

pKO ¼ ð1þ DpÞpWT:

Hence, Δp denotes the relative change of the wild-type parameter
p. Moreover, as the model fit to the wild-type part of the data is not
perfect, instead of considering the KO data we consider KO effects,
defined as the ratio of the KO data to the corresponding wild-type
(WT) data, i.e. KO effect = (KO data)/(WT data).

We then apply statistical measures to analyze different combinations
of the candidate parameters for their plausibility of being altered
simultaneously by Dkk1 deletion using AIC scores. We find that the
most plausible explanation of the observed changes is a decreased
depletion rate qmax in combinationwith increased neuroblast apoptosis d
(Fig. 7C). In contrast, statistical analysis shows that alternative scenarios
such as increased NSC self-renewal (Fig. 7D) can be discarded as
explanation of the KO data (see Materials and Methods). To quantify
the above mentioned explanation of decreased NSC depletion rate qmax
and increased neuroblast apoptosis rate d, we calculate the average time
a stem cell remains quiescent (Fig. 7E) and the probability that leaving
quiescence is driven by activation, i.e. cell cycle entry, rather than
depletion (Fig. 7F). In young individuals, stem cells remain quiescent
for about 10 days longer and have a 20 percentage points increased
activation probability in the case of Dkk1 deletion, whereas those
differences diminish during aging. Moreover, Dkk1 knockout increases
the probability that neuroblasts undergo apoptosis rather than neuronal
differentiation from about 60% to about 80% (Fig. 7G). Interestingly,
Dkk1 deletion impacts the production rate of new neurons (Fig. 7H). In
young individuals, neuron production is decreased due to increased
NSC quiescence. The latter leads to increased NSC numbers in old
individuals that, in turn, results in increased neuron production.

DISCUSSION
To obtain insights into the control mechanisms of stem cell dynamics
and age-related effects during hippocampal neurogenesis, we have
applied an interdisciplinary approach based on mathematical
modeling and experimental data. This approach allows
investigating normal and perturbed neurogenesis by quantifying
cell dynamics that cannot be measured experimentally.

Our stem cell model (2.1) was motivated by the experimental
observations of Bonaguidi et al. (2011) and subsequently extended
combining data on NSCs cell cycle properties (Brandt et al., 2012),
astrocytic transformation (newly generated), progenitor dynamics
(Encinas et al., 2011) as well as neuroblast dynamics and
phagocytosis (Sierra et al., 2010). Thus, our modeling framework
integrates data describing neurogenesis on different levels in a
coherent manner.

Although the original stem cell model (2.1) can reproduce the
available population-level and clonal data, it should be noted that
both data sets reflect different dynamics corresponding to different
cell parameters. There might be several reasons for such
discrepancy. Different morphological and genetic features used to
define NSCs may correspond to distinct subpopulations of stem
cells or, conversely, to slightly different differentiation stages within
a continuum between a stem cell and a neural progenitor. In
addition, the clonal data account for relatively few cells collected
from multiple individuals. Thus, averaged clonal data, as in the case
of Bonaguidi et al. (2011), could be biased due to biological
variability among animals or due to certain cell fate choices that
stochastically dominate due to the paucity of analyzed clones.

We next addressed possible mechanisms that can explain the
saturation pattern of the age-related decline in NSC numbers – an
observation that confirms previous data by Encinas et al. (2011).
After evaluating several stem-cell features, the only explanation left
is that stem cells spend progressively longer in quiescence during
aging. At the same time, a greater fraction of aged NSCs becomes
re-activated from the stem cell pool rather than being depleted. Our
reasoning is coherent from a modeling perspective, as we have ruled
out several alternative scenarios.

Another issue related to age-related changes during hippocampal
neurogenesis is that of the mechanism leading to the decline of NSC

Fig. 6. Age-related accumulation of astrocyte numbers. Dashed line
represents expected number of astrocytes, assuming that 100% of the NSC
decline is caused by astrocytic transformation. Solid line results from fitting the
fraction of transformation events to the data, indicating that about half of the
NSC decline is caused by astrocytic transformation.
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numbers. Here, we were able to partially confirm the astrocytic
transformation hypothesis of Encinas et al. (2011) by observing an
age-related accumulation of astrocyte numbers. Mathematical

modeling revealed that these transformation events account for
about half of the NSC decline. Interestingly, our calculations
showed that even if the remaining half of the decline is caused by

Fig. 7. Evaluation of the Dkk1 knockout study of Seib et al. (2013). (A) The experimental protocol. (B) Comparison of the wild-type part of the data and the
mathematical model. (C) Observed KO effects versus model, assuming decreased NSC depletion rate. KO effects are defined as ratio of the KO data to the
corresponding wild-type data, i.e. KOeffect=(KOdata)/(WTdata). (D) Observed KO effects versus the model, assuming increased NSC self-renewal. (E) Mean
time of a stem cell to remain in the quiescent stage. In the case of Dkk1 deletion, this time is increased. (F) Age-dependent activation probability of stem cells. In
the KO case, NSCs have a higher activation probability. (G) Probability of a neuroblast dying rather than maturing into a neuron. In the case of Dkk1 knockout, a
higher fraction of neuroblasts die. (H) Production rate of new neurons. Dkk1 deletion alters the number of newborn neurons and results in higher neuron production
in old age.
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NSC apoptosis, detection of apoptotic cells is not possible due to
rapid phagocytosis (Sierra et al., 2010). Similarly high estimates of
apoptosis have been obtained in a modeling study of neurogenesis
based on a stochastic branching process approach (Li et al., 2017).
One of the main aims of mathematical modeling is to develop

model-based predictions that can be tested experimentally. Such
model validation is an important step within the scientific method
(Popper, 1959). We thus applied our model to the study of Seib et al.
(2013), in which the Wnt inhibitor Dkk1 was deleted. The very
good fit to the wild-type data, which results from accurate
simulation of the experimental protocol, confirms that our model
accounts for key aspects of hippocampal neurogenesis. Moreover,
the fitting procedure has led to the prediction that the majority of
neuroblasts undergoes apoptosis instead of neuronal differentiation,
a prediction that has already been validated (Sierra et al., 2010).
Moreover, we have analyzed multiple scenarios to reveal the effects
of Dkk1 deletion. Originally, Seib et al. (2013) hypothesized that
Dkk1 knockout increases the self-renewal of NSCs. This reasoning
was based on previous studies showing that Wnt signaling induces
self-renewal of radial glia progenitors in the embryonic brain (Munji
et al., 2011) and that Wnt ligands were reported to increase the
proliferation and self-renewal of NSCs (Gao et al., 2007; Lie et al.,
2005; Michaelidis and Lie, 2008; Qu et al., 2010). Importantly, the
self-renewal and its regulation has been also suggested by
mathematical models in context of clonal competition, selection
and emergence of resistance in cancer cell populations (see Stiehl
and Marciniak-Czochra, 2017). However, our calibrated models of
neurogenesis suggest that the only considerable scenario is that of an
increased NSC quiescence in conjunction with an increased
probability to exit the quiescent phase through activation rather
than depletion. In contrast, increased self-renewal of NSCs can not
explain the effects upon Dkk1 knockout. The reason for this is that
increasing the self-renewal of NSCs would increase the fraction of
quiescent NSCs present in the NSC pool, as our model assumes
NSCs return to quiescence after division (Bonaguidi et al., 2011).
Together with this, a decreased fraction of BrdU-positive
downstream cell compartments would be observed. Taken
together, our results indicate that regulating the rate of activation
versus depletion into astrocytes seems to represent a central hub to
fine-tune neurogenesis.
Our study shows that mathematical modeling is a powerful tool to

investigate complex cell systems such as the neurogenic niche of the
hippocampus. It is possible to describe the dynamics of stem cell
systems using both deterministic (Enderling et al., 2007; Marciniak-
Czochra et al., 2009; Stiehl and Marciniak-Czochra, 2011; Stiehl
et al., 2014; Weekes et al., 2014) and stochastic models (Klein et al.,
2010; Doupé et al., 2012; Chabab et al., 2016). Although the former
usually have the form of linear or nonlinear differential equations,
the latter are of at least two possible kinds. One is the system of
master equations (Chapman–Kolmogorov forward equations if the
model is Markovian), which allow computing probability
distributions of the state variables as a function of time (Frede
et al., 2016). If it is desirable to obtain longitudinal information, i.e.
information concerning the possible time trajectories of the process,
the most common practical solution is simulation. A fusion of
deterministic and stochastic simulation approaches, as conducted in
this study by employing the Gillespie algorithm (Gillespie, 1977), is
very effective at integrating population-level and single cell-level
data. The initial deterministic stem cell model consists of linear
differential equations featuring constant rates. Such linear models
have been successfully applied before to processes close to
homeostasis (Busch et al., 2015) or uncontrolled growth in cancer

(Michor et al., 2005; Weekes et al., 2014). In our case, using a linear
model allowed the identification of time-dependent parameters that
are necessary to explain age-related changes during neurogenesis.
This, in turn, suggests which parameters are subject to a nonlinear
regulation.

Following a parsimonious approach to modeling in which
comprehensive models are better understood in view of simpler
models, we have always departed from a minimal set of the
processes and extended the models upon their verification using
different independent data sets. In this way we have learnt which
assumptions are needed to explain different observations. Certainly,
there exist different aspects of neurogenesis that have not been
considered in the model so far. Among others, our model does not
explicitly include the historically verified population of Sox2+ early
intermediate progenitor cells (eIPCs; e.g. Encinas et al., 2006; Suh
et al., 2007) as a separate component. The minimum set of
assumptions that were used to build the present model include the
population of eIPCs that are nestin, Sox2 and Tbr2 positive (type 2b
only) with the type2a of nestin/Sox2-positive and Tbr2-negative
cells included within the NSC population. A model including all
these subpopulations as separate compartments will be much more
complicated. Another limitation of the present model is that it
divides stem cells into two compartments, quiescent and active,
whereas in reality a continuous spectrum of stem cell activity might
be present. Extensions of the model to account for heterogeneity of
different cell subpopulations will increase the degree of freedom
(number of parameters). Testing such models will require more
resolution of the quantitative data and specific hypotheses
concerning the impact of the inter-population heterogeneity on the
observed dynamics of the whole system.

MATERIALS AND METHODS
Animals
GFAP-CreERT2-YFP and Nestin-CreERT2-YFP reporter mice were housed
in the animal facilities of the German Cancer Research Center (DKFZ) in a
12 h dark/light cycle with free access to food and water. All animal
experiments were performed in accordance with the institutional guidelines
of the DKFZ and were approved by the Regierungspräsidium Karlsruhe,
Germany.

Tamoxifen and BrdU administration
GFAP-CreERT2-YFP mice received an intraperitoneal (i.p.) tamoxifen
(Sigma; T5648) injection (40 mg/kg) twice a day (morning and evening) for
five consecutive days. Two days after tamoxifen treatment, a single shot of
BrdU (Sigma; B5002; 150 mg/kg) was injected intraperitoneally and mice
were sacrificed 2 h later.

Long-term tracing of NSC-derived astrocytes
Nestin-CreERT2-YFP reporter mice received tamoxifen injections as
described above and were sacrificed 90 days after the last injection.
Thereafter, the presence of YFP-labeled cells outside the hippocampal
region was examined. We did not find any YFP-positive cells outside the
DG granule cell layer.

Tissue preparation and staining
Animals were perfused with 1× Hanks’ Balanced Salt Solution (HBSS)
(Gibco; 14170-088) and 4% paraformaldehyde (PFA) (Carl Roth; P087.1).
Subsequently, the brain was fixed overnight in 4% PFA and coronal brain
slices were cut at 50 μm using a Leica VT 1200S vibratome.

Immunohistochemistry
For each animal, six 50 μm coronal brain sections (250 μm between
sections) were washed four times, for 10 min in Tris-buffered saline pH 7.4
(TBS) at room temperature, blocked for 1 h in TBS containing 3% horse
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serum (Millipore; S9135) and 0.3% Triton X-100 (Sigma; 9002-93-1) at
room temperature, followed by an overnight staining at 4°C in TBS
containing 3% horse serum and 0.3% Triton X-100 with the following
primary antibodies: rat anti-BrdU (Abcam, ab6326; 1/200), chicken anti-
GFP (Aves, GFP-1020; 1/500), mouse anti-S100β (Abcam, ab66028;
1/100) and rabbit anti-Tbr2 (Abcam, ab23345; 1/300). The next day, brain
sections were washed four times for 10 min in TBS at room temperature,
blocked for 30 min TBS containing 3% horse serum and 0.3% Triton X-100
at room temperature, and stained for 2 h in TBS containing 3% horse serum
and 0.3% Triton X-100 at room temperature with the following secondary
antibodies: donkey anti-rat 405 (Abcam, ab175670; 1/400), donkey anti-
chicken 488 (Jackson ImmunoResearch, 703-545-155; 1/400), donkey
anti-mouse 549 (Jackson ImmunoResearch, 715-507-003; 1/400) and
donkey anti-rabbit 647 (Jackson ImmunoResearch, 711-605-152; 1/400).
Afterwards, sections were washed four times for 10 min in TBS at room
temperature and mounted on glass slides.

Imaging and quantification
For each dentate gyrus, confocal z-stacks (2 μm between images) were
acquired with a Leica TCS-SP5 confocal microscope with a 20× oil
immersion objective and a resolution of 1024×1024 at 100 Hz. Obtained
images were analyzed using the ImageJ Cell Counter Plugin to manually
count and mark single cells of different cell types. Different cell populations
were defined using the following marker combinations: neural stem cells
(YFP+/S100β−/Tbr2–), astrocytes (S100β+/Tbr2–) and cycling cells that
gained the marker BrdU by retaining their markers described above.
Determined cell numbers were quantified as number of cells per mm3 in the
DG granule cell layer. The DG volume was calculated by the area of the DG
on the central image of the z-stack (measured with ImageJ) multiplied with
the z-stack size.

Mathematical modeling
Quantification
The stem cell model (2.1) contains four parameters: p, q, r and a. The value
of the proliferation rate p can be inferred from the literature (Brandt et al.,
2012), as the length of the cell cycle of NSCs was measured as

Tc ¼ 22:8 h

and we can interpret this value as the doubling-time of an exponential
growth process, leading to

p ¼ logð2Þ=Tc:
To establish a regime of admissible values of the fraction of self-renewal a,
we notice that in our model the probability of a symmetric cell division is
equal to 2a−1 and the probability of an asymmetric cell division is 2(1−a)
(as denoted on the arrows in Fig. 1) (Ziebell et al., 2014).

To show it, we introduce a new variable s denoting the probability of a
symmetric cell division. Hence, the probability of an asymmetric cell
division is equal to 1−s. Probability of a progeny cell to have the same fate
as the parent cell can be calculated as a=s+((1−s)/2), i.e. the probability that
there is a symmetric cell division smultiplied by the probability (equal to 1)
that a cell arising in such a division is a stem cell, plus the probability that
there is an asymmetric cell division 1−s multiplied by the probability that a
cell arising at such division is a stem cell. The latter is equal to 1/2, because it
is one out of two cells arising from an asymmetric cell division. Hence, we
obtain a=s+((1−s)/2)=((1+s)/2). Inverting this formula, we obtain s=2a−1.
Consequently, the probability of an asymmetric cell division is equal to
1−s=2(1−a).

Following the suggestion of Bonaguidi et al. (2011) that the fraction of
symmetric NSC divisions is relatively small, we assume 2a−1=5%, which
yields a=0.525 to be an upper limit for the fraction of symmetric NSC
divisions. Numerical simulations indicate that increasing values of a up to
a=0.6 (corresponding to 20% of NSC symmetric divisions) do not affect
model conclusions (see the supplementary information, section: Sensitivity
analysis; Table S1).

The remaining two free parameters q and r are estimated from the
population-level data of the total number of stem cells (Fig. 2E) and
the fraction of BrdU-incorporating stem cells (Fig. 2F). To fit the BrdU

incorporation data, we assume that the fraction of BrdU-incorporating
NSCs is the product of the fraction of cycling NSCs out of all NSCs
multiplied by the relative length of the S-phase in the cell cycle, Ts/Tc,
with Ts ¼ 9:7h (Brandt et al., 2012). The reason is that the thymidine
analog BrdU can only be incorporated in cells that are at the stage of DNA
synthesis.

In the case of estimating q and r from the clonal data (Fig. 3), the
model was converted into a corresponding stochastic processes using the
Gillespie method (Gillespie, 1977). Afterwards, 104 NSC clones were
simulated and the resulting mean fraction of quiescent, activated and
depleted clones was fitted to the clonal data. The Gillespie method
allows the simulation of stochastic trajectories of the system with
mean values at each time step satisfying the corresponding differential
equation. Accordingly, the set of reactions used to simulate the clonal data is
given by

Q�!r A;

Q�!q ;;

A �!pð2a�1Þ
2� Q;

A �!p2ð1�aÞ
Qþ X ;

where Q denotes quiescent stem cells, A active stem cells, ; denotes
depletion of stem cells from the stem cell pool and X denotes a non-stem cell
(Fig. 1). To incorporate resilient NSCs into this model, we assume that a
fraction ρ of all simulated quiescent NSCs does not change, whereas only a
fraction, 1−ρ, of those cells is subject to the first two reactions.

Model fitting was carried out using the NonlinearModelFit procedure of
Mathematica 9 (Wolfram Research) to numerically minimize the weighted
sum of squared residuals. Weights were chosen as inverse squares of the
s.e.m. of the data points according to the Mathematica documentation for
fitting data with measurement errors. Estimated parameters for the stem cell
model are summarized in Table 1.

The full neurogenesis model (2.4) contains 12 parameters, of which eight
are already estimated or taken from the literature (Table 2). In particular, the
parameters corresponding to progenitor cells were fitted to a time course of
BrdU-labeled progenitors (Figs S4, S5). The parameters κ, d and f are not
known prior to the Dkk1 experiment and need to be inferred from fitting the
full model to the astrocyte accumulation data (Fig. 6) and the wild-type part
of the Dkk1 data (Fig. 7B).

Table 2. Parameter values of system (2.4), which is used to model the
Dkk1 experiment of Seib et al. (2013)

Parameter Value Source

pstem log(2)/(22.8 h) Brandt et al. (2012)
qmax 0.0431 d−1 Table 4
r 0.0198 d−1 Table 4
βq 0.00921 d−1 Table 4
a 0.525 Bonaguidi et al. (2011)
pprog log(2)/(15.6 h) Fig. S6
N 2 Fig. S6
δphag 0.66 h–1 Sierra et al. (2010)

Table 1. Estimated parameters of model (2.1)

Data type Parameters

Population level q=0.021 d−1

r=0.021 d−1

ρ=0
Clonal q=0.0057 d−1

r=0.047 d−1

ρ=0.11

Data type indicates whether the model was fitted to the population-level data
(Fig. 2E,F) or the clonal data (Fig. 3).
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Estimating the unknown parameters θ, κ, d and f leads to the values
displayed in Table 3. As previously stated, the resulting fraction of surviving
neuroblasts,

f

d þ f
� 38%;

is consistent with experimental findings (Sierra et al., 2010).

Model selection
To assess the plausibility of the different scenarios to explain the saturation
of the NSC decline, we make use of model selection theory. For each
scenario, we compute its corresponding AIC value and compare the
resulting Akaike weights Δ (Table 4), which penalize overly complex
models. The recommendation is that the level of empirical support of a
certain model is substantial if 0≤Δ≤2, considerably less if 4≤Δ≤7 and
essentially none if Δ>10 holds (Burnham and Anderson, 2002). Thus, the
only considerable mechanisms besides the decreasing depletion mechanism
are the scenario of increasing self-renewal and the existence of a population
of resilient NSCs (Table 4). However, as outlined previously, the former
scenario contradicts the observation of a decline in NSCs and downstream
cell types in old age (Walter et al., 2011), whereas the latter contradicts the
observation of a constant fraction of BrdU-incorporating NSCs up to
20 months of age (Encinas et al., 2011).

To find the best explanation for the effects upon Dkk1 KO, we employ a
nested approach by considering simple, i.e. few parameter-involving,
explanations as well as more-complex scenarios (Table 5). At first, we
assume that only one of the stem cell parameters a, pstem, qmax or r and, in
addition, the neuroblast death rate d changes. The best fit to the data is
achieved by a decrease of the depletion rate qmax or an increase of the
activation rate r. In contrast, the scenario of increased self-renewal a displays
a considerably worse fit. The decreased depletion and increased activation
scenario both lead to a shift of the balance between NSC activation and

depletion towards a higher fraction of activation events. We thus also
consider a scenario in which both parameters qmax and r change
simultaneously and find that it improves the fit. It is also possible that all
NSC parameters change, resulting in an even better fit.

Although the fit improves with an increasing number of parameters, we
again computed AIC values to assess whether the increased goodness of fit
justifies the additional complexity of the model. Applying the previously
mentioned recommendation of 0≤Δ≤2, scenarios leading to the discussed
shift of the balance between NSC activation and depletion towards a higher
fraction of activation events should be considered first (Table 5). Moreover,
the originally suggested increased self-renewal (Seib et al., 2013) of NSCs
can be disregarded to explain the effects of Dkk1 deletion.
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