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ABSTRACT
Here, we unravel the mechanism of action of the Ikaros family zinc
finger protein Helios (He) during the development of striatal medium
spiny neurons (MSNs). He regulates the second wave of striatal
neurogenesis involved in the generation of striatopallidal neurons,
which express dopamine 2 receptor and enkephalin. To exert this
effect, He is expressed in neural progenitor cells (NPCs) keeping
them in the G1/G0 phase of the cell cycle. Thus, a lack of He results in
an increase of S-phase entry and S-phase length of NPCs, which in
turn impairs striatal neurogenesis and produces an accumulation of
the number of cycling NPCs in the germinal zone (GZ), which end up
dying at postnatal stages. Therefore, He−/− mice show a reduction in
the number of dorso-medial striatal MSNs in the adult that produces

deficits in motor skills acquisition. In addition, overexpression ofHe in
NPCs induces misexpression of DARPP-32 when transplanted in
mouse striatum. These findings demonstrate that He is involved in the
correct development of a subset of striatopallidal MSNs and reveal
new cellular mechanisms for neuronal development.
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INTRODUCTION
The mammalian striatum controls body movements through a
sophisticated neuronal network that is dependent on the
neurogenesis of two major classes of striatal neurons: the striatal
projection neurons (or medium spiny neurons; MSNs) and the
interneurons. MSNs are subdivided into two subpopulations:
neurons that constitute the direct (or striatonigral) pathway and
preferentially express substance P (SP) and D1R (dopamine
receptor 1; DRD1), and neurons of the indirect (or striatopallidal)
pathway, which mainly express enkephalin (ENK) and D2R
(dopamine receptor 2; DRD2) (Gerfen, 1992). These two
populations are differentially distributed within the striatal
compartments. Striatal patches or striosomes mainly contain SP+

MSNs, but both MSN subpopulations, SP+ and ENK+, are located
in the matrix (Gerfen, 1992).

During embryonic development, radial glial cells (RGCs)
from the ventricle wall of the lateral ganglionic eminence (LGE)
undergo successive divisions to expand the pool of neural
progenitor cells (NPCs), thereby increasing the volume of the
germinal zone (subventricular zone; SVZ) (for reviews, see
Götz and Barde, 2005; Merkle and Alvarez-Buylla, 2006). At
certain developmental stages, NPCs differentiate into immature
neurons that migrate radially to the mantle zone (MZ) (Götz and
Barde, 2005; Merkle and Alvarez-Buylla, 2006; Mérot et al.,
2009). Two waves of striatal neurogenesis segregate MSNs into
two principal compartments: the patches, generated during the
first neurogenic wave [starting at embryonic day (E) 12.5 in
mouse]; and the matrix, developed during late striatal
neurogenesis (starting at E14.5 in mouse) (Gerfen, 1992;
Mason et al., 2005).

Within the LGE, transcription factors such as Gsx1 and Gsx2
(formerly named Gsh1 and Gsh2), Ascl1 (formerly named Mash1)
and members of the Dlx family display specific patterns of
expression within the GZ and the MZ, and they have been
implicated in LGE patterning and/or differentiation (Eisenstat et al.,
1999; Rallu et al., 2002; Waclaw et al., 2009; Yun et al., 2002). In
addition, the transcription factors Ebf1, Isl1, Ctip2 (also known as
Bcl11b), and Ikaros family members are mainly expressed in the
MZ of the LGE where they regulate terminal differentiation ofReceived 5 April 2016; Accepted 3 March 2017
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striatal projection neurons (Arlotta et al., 2008; Ehrman et al., 2013;
Garcia-Dominguez et al., 2003; Garel et al., 1999; Lobo et al., 2006,
2008; Martín-Ibáñez et al., 2010).
Ikaros family members are transcription factors that play essential

roles during lymphocyte development (Cobb and Smale, 2005;
Georgopoulos, 2002; Yoshida and Georgopoulos, 2014). Ikaros is
the founder member of this family of DNA-binding proteins, which
consists of Ikaros, Helios (He), Aiolos, Eos and Pegasus (Ikzf1-5,
respectively – Mouse Genome Informatics) (John et al., 2009;
Rebollo and Schmitt, 2003; Yoshida and Georgopoulos, 2014). In
addition, Ikaros has been implicated in CNS development (Agoston
et al., 2007; Alsiö et al., 2013; Martín-Ibáñez et al., 2010). We have
recently described that He is also implicated in striatal development
(Martín-Ibáñez et al., 2012). Within the LGE, He is expressed from
E14.5 to postnatal day (P) 15 in both the GZ and the MZ, and its
expression is downstream of Gsx2 and Dlx1/2 (Martín-Ibáñez et al.,
2012). However, little is known about mechanisms of action of He
during this developmental process.
Here, we demonstrate thatHe is expressed by NPCs at the G0/G1-

phase of the cell cycle and induces neuronal differentiation by
decreasing the levels of cyclin E and blocking the progression of
these NPCs into S phase. Consequently, in the absence of He,
proliferating NPCs accumulate in the GZ and the number of Ctip2+

and DARPP-32 (PPP1R1B)+ MSNs is reduced in the striatum
resulting in disturbance of motor skill learning.

RESULTS
He loss induces aberrant striatal neurogenesis
accompanied by de-regulation of NPC proliferation
Here, we demonstrated that He is expressed from E12.5 in scattered
cells (Fig. S1) until P15 peaking at E18.5 (Martín-Ibáñez et al.,
2012). He showed preferential expression in D2R-eGFP neurons
(mean±s.e.m.: 46.69±8.37% of He+ cells co-labeled with D2R;
Fig. 1A; Fig. S2B) and Penk (preproenkephalin)+ MSNs (89.05
±5.77% of He+ cells co-labeled with Penk; Fig. S3). In contrast, few
D1R-eGFP+ neurons and Tac1 (tachykinin A, also known as
tachykinin 1)+ neurons co-expressed He (3.94±2.53% and 18.20
±2.1% of He+ cells co-labeled with D1R and Tac1, respectively;
Fig. 1A; Fig. S2A; Fig. S3B,C). We next examined striatal birth-
dating in He knockout (He−/−) and wild-type (wt) mice at different
embryonic developmental stages (Fig. 1B-E). The first wave of
striatal birthdating at E12.5 was not altered, as no differences were
found in the total number of bromodeoxyuridine (BrdU)+ cells
betweenHe−/− and wt mice (Fig. 1C). However, lack ofHe induced
a significant reduction in the second wave of striatal birthdating at
E14.5 (Fig. 1D). No significant differences were found between
genotypes at E16.5 (Fig. 1E). This striatal birthdating impairment
disturbed MSN generation as the density and total number of Ctip2-
positive cells was decreased inHe−/−mice comparedwithwtmice at
E18.5 (Fig. 1F,G), suggesting a defect in the second neurogenic
wave. In agreement, we observed that He+ cells were mainly
generated during the second wave of striatal neurogenesis (Fig. S4),
between E14.5 (Figs. S4E-G) and E16.5 (Figs. S4H-J). Only a few
cells were observed to be born at earlier stages (E13.5; Figs. S4B-D).
To assess whether He was expressed by proliferative cells in the

LGE, we performed double staining for He and Ki67 (Mki67) at
E16.5, BrdU or phospho-histone H3 (PH3) at E14.5. Our results
showed that He+ and Ki67+ areas were mainly coincident at the GZ-
MZ border at E16.5 (Fig. 2A).Within this area, Hewas expressed by
NPCs expressing a low level of Ki67 (Fig. 2B,C) but not by cells
expressing a high level of Ki67+ (Fig. 2D; see Fig. S5 for
quantification details). However, there was a lack of colocalization

between He and short-pulsed BrdU NPCs (Fig. 2E,F), and He and
PH3+ NPCs (Fig. 2G,H). Interestingly, He only colocalized with
Ki67-expressing cells during the neurogenic period as we could not
observe colocalization from E18.5 onwards (Fig. S6).

Fig. 1. He is necessary for the second wave of striatal neurogenesis.
(A) Double immunohistochemistry against He and GFP in the D1R-eGFPmice
and in the D2R-eGFPmice (images showDLS and VLS, respectively). Unfilled
arrowheads show single-labeled cells and filled arrowheads show double-
positive cells. Scale bars: 15 μm. (B) Schematic timeline of birthdating
experiments performed inHe−/− or wtmice. (C) No differences in neurogenesis
were detected at E12.5 between He−/− and wt mice. (D) He−/− mice exhibited
lower levels of neurogenesis than wt mice at E14.5. (E) No differences in
neurogenesis were detected at E16.5 between He−/− and wt mice.
(F) Representative images of Ctip2+ neurons in the E18.5 (mid-striatal
primordium is shown). Scale bar: 120 µm. (G) Quantification of the density and
total number of Ctip2+ cells in thewhole striatal primordium reveals a significant
reduction in He−/− mice compare with wt mice. Results represent the mean±
s.e.m. of 4-5 mice per condition. Statistical analysis was performed using
Student’s t-test; *P<0.05, **P<0.005.
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Analysis of the number of cycling cells at different
developmental stages in He−/− and wt mice (Fig. 2I-L) showed
that the total number of proliferating cells in the GZ was
significantly increased from E14.5 to P3 (Fig. 2I-K), inducing
an enlargement of the proliferative area stained with Ki67 (Fig.
S7). Interestingly, this feature reverted at P7, when the number of
proliferating cells in He−/− mice decreased with respect to wt
mice (Fig. 2L; Fig. S8). To analyze whether a specific
subpopulation of progenitors was more compromised than
others, we counted the percentage of PH3+ basal, subapical and
apical progenitors as described by Pilz et al. (2013) (Fig. S9A,B).
No differences were found between He−/− and wt mice (Fig. S9B).
We also analyzed by QPCR the expression of striatal progenitor
markers at E16.5. No differences were found in the levels of
mRNA for these markers in He−/− compared with wt mice
(Fig. S9C).

To elucidate further the role of He in NPC proliferation, we
performed loss-of-function (LOF) and gain-of-function (GOF)
in vitro studies using a neurosphere assay (Fig. S10). There was
an increase in the number of proliferating cells in the absence
of He (Fig. S10A,C,E,F). Accordingly, He overexpression
significantly reduced the number of proliferating NPCs with
respect to the control eGFP overexpressing NPCs (Fig. S10B,D).
In addition, in the absence of He, NPCs were less prone to
differentiate to β-III-tubulin+ neurons (Fig. S10H). In contrast, an
increase in the number of neurons was observed after He
overexpression (Fig. S10I-K). Interestingly, He did not exert any
change in the percentage of GFAP+ cells in the LOF or in the GOF
experiments (Fig. S10H,I). Consequently, He−/− mice did not
present any defects in astrocyte differentiation compared with wt
mice (Fig. S11A-D). In fact, we did not observe colocalization
between He and GFAP (Fig. S11E).

Fig. 2. He is expressed in NPCs at G1 cell cycle phase and regulates their proliferation. (A) E16.5 striatal primordium, double stained against Ki67 and He.
He+ and Ki67+ cells are coincident at the GZ-MZ border. Scale bar: 200 µm. (B) Highmagnification image of Ki67-He double immunohistochemistry at the dorsal
striatal primordium shows that some cells are double positive at the GZ-MZ border. Filled arrows indicate double-positive cells and unfilled arrows point to Ki67
single-labeled cells. Scale bar: 50 µm. (C,D) At the GZ-MZ border, cells expressing a low level of Ki67 (Kilow) express He (C), whereas cells expressing a high
level of Ki67 (Kihigh) do not express He (D). Scale bars: 20 µm. (E,F) Double staining for BrdU and He shows that cells in S phase are not positive for He at E14.5
in the dorsomedial LGE. (E) Highmagnification picture shows that although He+ and BrdU+ cells are located in the same area, they do not colocalize. (F) Unfilled
arrowheads indicate BrdU+ cells that have recently entered S phase as shown by the appearance of transcription units; filled arrowheads indicate cells that
incorporated BrdU at more advanced cell cycle stages. Scale bars: 50 µm. (G,H) There is no coincidence between He-expressing cells and cells in M phase as
detected by PH3 staining; low (G) and high (H) magnification images of DMS are shown. Scale bars: 50 µm. (I-L) Quantification of the total number of
proliferating cells in the whole GZ show that lack of He induces a significant increase at E14.5 (I), E16.5 (J) and P3 (K) and a significant decrease at P7
(L) compared with wt mice. Results represent the mean±s.e.m. of 5-7 mice per condition. Statistical analysis was performed using Student’s t-test; *P<0.05,
***P<0.001.
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He controls proliferation through regulation of the G1-S
checkpoint
To understand the cellular mechanism by which He regulates NPC
proliferation and neurogenesis, we next analyzed the cell cycle. We
observed that lack of He induced a significant increase in NPC S-
phase length that, in turn, increased cell cycle length as measured by
an accumulative exposure to BrdU (see Materials and Methods;
Lange et al., 2009) (Fig. 3A,C). However, no differences were
observed between the length of the G2/M phases in NPCs derived
from He−/− compared with wt mice, as determined by analysis of
the mitotic BrdU labeling index as described previously (Takahashi
et al., 1995) (Fig. 3B,C; Fig. S12). Representation of the percentage
of cell cycle phases respect to the total cell cycle length clearly
demonstrated an elongation of S-phase length when He was
knocked down (Fig. 3C). Consistently,He overexpression induced a
severe reduction of S-phase length (GOF; Fig. 3D). Our results also
showed that in the absence of He more NPCs entered S phase
(punctate BrdU+/EdU+; Fig. 3E-H) but the number of cells exiting S
phase was not altered (BrdU+/EdU−; see ‘S-phase analysis’ in
Materials and Methods; Lange et al., 2009) (Fig. 3E,F). In addition,
no differences were found in the number of cells exiting the cell
cycle (BrdU+/Ki67−; see ‘Cell cycle index’ in Materials and
Methods; Urbán et al., 2010) in LOF (Fig. S13A,B,D) or GOF (Fig.
S13C) experiments.
In order to demonstrate the mechanism by which He controls S-

phase entry, we next analyzed the protein levels of cyclin E (Fig. 4),
a key regulator of the transition from G1 to S phase (Ohtsubo et al.,
1995). NPCs derived fromHe−/−mice presented increased levels of
PCNA, a marker of cell proliferation, and cyclin E (Fig. 4A-D).
Accordingly, He overexpression (Fig. 4E-H) produced a reduction
of PCNA and cyclin E protein levels (Fig. 4E-H), and a drastic

reduction of cyclin E mRNA levels (Fig. 4J). Similarly, in vivo
analysis showed that an increased number of NPCs had entered into
S phase in the GZ ofHe−/− compared with wt mice (Fig. 4K), which
was accompanied by increased protein levels of cyclin E in the
LGE (Fig. 4L,M). Chromatin immunoprecipitation experiments
performed by Kim and co-workers (Kim et al., 2015) demonstrated
that He binds the cyclin E gene (Ccne1) promoter site and another
site downstream of the gene (Fig. 4N). However, no changes of the
two cyclin E regulators E2F1 and retinoblastoma (Rb; Rb1)
(Harbour, 2000; Ohtani et al., 1995) were observed in NPCs derived
from He−/− mice (Fig. S14). Altogether, these results suggest
that He might control cell cycle progression through regulation of
cyclin E expression.

Postnatal cell death is increased in He−/− mice
We next investigated whether cell death was altered in the
absence of He during embryonic and postnatal stages. Cleaved
caspase-3 immunohistochemistry did not reveal any differences
between He−/− and wt mice at embryonic stages (E14.5, E16.5 and
E18.5; data not shown). However, a significant increase in the
number of apoptotic cells was detected in the GZ and the MZ at P3
in He−/− mice (Fig. 5A-D), which normalizes at P7 (Fig. 5E,F). To
check whether cell death is related to a delay in the differentiation of
NPCs, we applied an ethynyl deoxyuridine (EdU) pulse at E18.5
and double staining for EdU and cleaved caspase-3 (Fig. 5G) or
neural markers (Fig. S15) at P3. EdU+ apoptotic cells were found in
the MZ of He−/− mice (Fig. 5H-K) and they were positive for
the neuronal marker NeuN (Rbfox3) (71.3±7.10% of cleaved
caspase-3+ cells co-labeled with NeuN; Fig. S15). These results
suggest that in the absence ofHe there is a delayed differentiation of
NPCs, which subsequently die.

Fig. 3. He is necessary for cell cycle S-phase
regulation. (A) He−/− mice-derived neurospheres
exhibited an increase in the length of S phase and cell
cycle compared with wt mice-derived neurospheres.
(B) Mitotic BrdU labeling index, which is used to
calculate G2/M phase length, was the same in both wt
andHe−/−mice-derived neurospheres. (C,D) Schematic
of the percentages of the length of the cell cycle phases
with respect to the total cell cycle duration obtained from
LOF (C) and GOF (D) experiments. (E) Schematic
timeline of S-phase entry/exit experiments performed
with a double pulse of BrdU and EdU in wt and He−/−

mice-derived neurospheres. (F) A higher number of
NPCs entered S phase in He−/− mice-derived
neurospheres compared with wt mice-derived ones,
whereas no differences were observed between both
cultures in the number of cells that exit S phase.
(G,H) Representative images of BrdU and EdU double
staining performed in wt and He−/− mice-derived
neurospheres. Arrows indicate double-positive cells.
Scale bar: 50 µm. Results represent the mean±s.e.m. of
4-5 LGE-derived neurosphere cultures. Statistical
analysis was performed using Student’s t-test; *P<0.05,
**P<0.005.
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He is necessary for MSN development
We next characterized the striatum of He−/− adult mice. First, we
studied brain hemisphere volume and detected a slight decrease in
He−/−mice compared with wt mice (Fig. S16A,C; 8.36% decrease).
Interestingly, characterization of striatal volume revealed a larger
and significant reduction in He−/− compared with wt mice (Fig.
S16B,C; 20.17% decrease). The ratio of striatal versus hemisphere
volume showed that striatal volume is selectively disturbed inHe−/−

mice (wt, 18.23±0.79%; He−/−, 15.45±0.60%), showing a 15.24%
reduction of relative striatal volume. Stereological analysis of
calbindin+ and DARPP-32+ neurons revealed a significant decrease
in the density (Fig. S16D,E,H,I) and total number of MSNs in the
striatum of He−/− compared with wt mice (Fig. 6A,B). We also
analyzed the density of DARPP-32+ neurons in different striatal
areas including the dorso-medial striatum (DMS), dorso-lateral
striatum (DLS), ventro-medial striatum (VMS) and ventro-lateral
striatum (VLS) (Fig. 6K). These experiments demonstrated a
significant decrease only in the DMS in He−/− mice compared with
wt mice (Fig. 6E-H). Interestingly, a specific alteration of the ENK+

population was also observed in the DMS in the absence of
He (Fig. 6I). However, no differences were found for the SP+

population in He−/− mice compared with wt mice (Fig. 6J). In
addition, no differences were observed between genotypes in the

cholinergic and parvalbumin+ striatal interneurons (Fig. S16F,G;
Fig. 6C,D).

In order to study the direct involvement of He in the acquisition
of a mature MSN phenotype, we transplanted eGFP or He-
overexpressing NPCs into the mouse neonatal forebrain (Fig. 7A).
Compared with control cells, He-overexpressing cells displayed
more robust branching 2weeks post-transplantation (total neurite tree
length per neuron: GFP 168.13± 21.92 µm, He 413.66±98.84 µm,
P=0.0046; number of branches per neuron: GFP 14.43±1.68, He
24.89±4.08, P=0.0089; Fig. 7B-E) and DARPP-32 expression was
observed in few scattered cells adjacent to the striatum (Fig. 7G,H).
Four weeks post-transplantation, several He-overexpressing cells
displayed DARPP-32 expression (Fig. 7J-L), in contrast to control
cells, which were all DARPP-32 negative (Fig. 7I). Quantification of
DARPP-32+ neurons in GFP transplanted cells demonstrated a 150-
fold increase in the number of double-stained cells in He-expressing
cells compared with controls. In addition, He overexpression in
striatal primary cultures significantly increased the number of
calbindin+, DARPP-32+ and ENK+ cells (Fig. S17).

He loss disturbs the acquisition of motor skills
To analyze the functional implication of He loss, we assessed the
performance of motor tasks in wt and He−/− mice (Fig. 8). In the

Fig. 4. He regulates cyclin E expression. (A-D) PCNA (A,C) and cyclin E (Cy.E; B,D) protein quantification show a significant increase in the levels of both
proteins in He−/−-derived neurospheres compared with wt neurospheres. Representative blots are shown for PCNA (C) and cyclin E (D). (E-H) By contrast, He
overexpression induces a significant decrease in PCNA (E,G) and cyclin E (F,H) protein levels compared with the control eGFP. Representative blots are shown
for PCNA (G) and cyclin E (H). (I) mRNA expression of He in neurosphere cultures overexpressing He or the control eGFP. (J) Cyclin E mRNA levels are
downregulated in He overexpressing neurospheres compared with the control eGFP. (K) In vivo analysis shows an increased percentage of cells entering into S
phase inHe−/− LGEs compared with wt at E14.5. (L,M) Quantification ofHe−/− and wt E14.5 LGEs indicates significantly increased protein expression of cyclin E
in the absence ofHe. (M) Representative blots are shown for cyclin E in LOF in vivo experiments. (N) Cumulative counts peak graph from the chip-Seq analysis of
He interaction. The cyclin E (Ccne1) gene region shows two prominent hits one within the proximal promoter region, and one downstream of the gene. Tubulin
(Tub) was used as loading control for western blots. For in vitro studies, results represent the mean±s.e.m. of 4-5 LGE-derived neurosphere cultures. RT-PCR
results represent the mean±s.e.m. of 4-5 independent samples and are expressed relative to control eGFP, considered as 100%. For in vivo studies, results
represent the mean±s.e.m. of 4-5 LGEs. Statistical analysis was performed using Student’s t-test; *P<0.05, **P<0.005.
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simple swimming test, He−/− mice displayed significant
abnormalities compared with wt mice in their swimming latency
in the first testing trial (genotype: F2,162=4.08, P<0.05; post-hoc
trial 1: P<0.01), but these disappeared over subsequent trials
(Fig. 8A).
In addition, wt and He−/− mice progressively improved their

performance in the balance beam along four trials (trial:
F3,112=14.66, P<0.001). However, He

−/− mice fell off more times
than controls during the first trials (genotype: F2,112=13.52, P<0.01;
post-hoc trial 1: P<0.001; post-hoc trial 2: P<0.01; Fig. 8B).
In the rotarod test, all mice reached a stable level of performance

within six trials (Fig. 8C), as measured by a decrease in the number

of falls in 60 s per mouse (testing trial F5,138=15.87, P<0.01).
However, acquisition on the rotarod task was significantly delayed
in He−/− compared with wt mice (genotype F2,138=21.03, P<0.01).

DISCUSSION
Striatal MSNs are generated from NPCs located at the GZ of the
LGE. Here, we show that He regulates late striatal neurogenesis that
gives rise to D2R+ ENK neurons. He is expressed by NPCs in the
G1/G0 cell cycle phase at the GZ, impairing the G1-S transition by
the regulation of cyclin E, which in turn induces neuronal
differentiation. Consequently, lack of He produces an extended S
phase and cell cycle length that increases the number of proliferating
NPCs at the GZ. At the beginning of the postnatal period, the
number of these NPCs is reduced due to their late aberrant
neurogenesis that results in cell death. These abnormalities of
embryonic development in He−/− mice produce a reduction of a
specific subset of striatopallidal neurons of the dorsomedial striatum
that control motor skill learning.

He is necessary for striatopallidal neurogenesis
NPCs located at the GZ of the LGE become postmitotic and migrate
into the MZ to acquire the MSN phenotype (Brazel et al., 2003). We
have previously proposed a model for the development of striatal
subpopulations in which Ikaros and He are involved in the
development of striatopallidal ENK+ matrix MSNs (Martín-
Ibáñez et al., 2012). This hypothesis is reinforced by the
localization of He in ENK+ neurons that co-express D2R (present
results). Besides the apparent similar function between He and
Ikaros on ENK+ neurogenesis, there is much evidence that they
determine different ENK+ subpopulations. They are expressed by
different cells (Martín-Ibáñez et al., 2012), and their expression is
not modified in the reciprocal knockout mice (Martín-Ibáñez et al.,
2010, 2012). These results are contrary to the role of Ikaros family
members in the hematopoietic system where they directly interact
(Hahm et al., 1998; John et al., 2009), suggesting specific
mechanisms of action in each system.

He regulates neurogenesis through the control of the G1-S
phase checkpoint
Gsx2+ radial glial cells constitute the first NPCs that appear during
LGE ontogeny, which differentiate with the onset of the
neurogenesis from the neuroephithelial cells (for a review, see
Dimou and Götz, 2014).He-expressing cells are derived from radial
glial cells, as its expression disappears in Gsx2 knockout mice
(Martín-Ibáñez et al., 2012). However,He loss does not compromise
the number of the radial glial cell subtypes described elsewhere (Pilz
et al., 2013). Radial glial cells generate the large MSNs output by a
series of intermediate NPCs to amplify specific lineages, although
these striatal NPCs are still poorly characterized. He is expressed by
a small number of NPCs distributed in deep SVZ. Although the
localization ofHe is mainly at the dorsal areas, it does not seem to be
defining a specific SVZ domain as it has been described for other
transcription factors in the VZ (Flames et al., 2007).

Some of the NPCs that expressHe at the GZ co-express low levels
of Ki67. Considering that Ki67 labels cells during all phases of the
cell cycle except G0 (Kanthan et al., 2010; Scholzen and Gerdes,
2000) and that G1 is the cell cycle phase with lower Ki67 expression
levels (Lopez et al., 1991), we hypothesized thatHe is expressed in a
subset of NPCs during G1 and G0 phases. The lack of colocalization
between He and BrdU or PH3 reinforces the idea that He is not
expressed by cells at S or M phases, respectively. Within G1 phase
He impairs S-phase entry, reducing S-phase length and arresting

Fig. 5. He knockout mice exhibit increased programmed cell death at
postnatal stages. (A,B) Representative photomicrographs corresponding to
P3 striatal coronal sections from wt (A) and He−/− (B) mice immunostained for
cleaved caspase 3. Scale bars: 200 µm. Ctx, cortex. (C) Lack of He induces a
significant increase in the total number of cleaved caspase-3 (C-Casp3)+ cells
in the GZ at P3. (D) He−/− mice exhibited an increase in the total number of
C-Casp3+ cells in the MZ at P3 compared with wt mice. (E,F) No differences in
the total number of C-Casp3+ cells were observed between genotypes in the
GZ (E) or in the MZ at P7 (F). (G) Injection of EdU at E18.5 and recovery of the
He−/− pups at P3 permitted the examination of whether cells that exit the
cell cycle after E18.5 and migrate to the striatum MZ are positive for C-Casp3.
(H-K) Representative photomicrographs of striatal coronal ventral section
showing colocalization of EdU and C-Casp3. Scale bar: 30 µm. Results
represent the mean±s.e.m. of 4-5 mice per condition. Statistical analysis was
performed using Student’s t-test; *P<0.05, **P<0.005.

1571

RESEARCH ARTICLE Development (2017) 144, 1566-1577 doi:10.1242/dev.138248

D
E
V
E
LO

P
M

E
N
T



NPCs at G1/G0 phase to facilitate neuronal differentiation.
Consequently, He−/− mice NPCs increase S-phase entry and
continue proliferating in the striatal GZ impairing neurogenesis
(see Fig. S18 for a representative scheme). Similarly, Lacomme and
co-workers demonstrated that Ngn2 regulates G1-S phase transition,
blocking S-phase entry and increasing the number of NPCs at G1/G0

phase (Lacomme et al., 2012). In addition, NPCs shorten S phase on
commitment to neuron production (Arai et al., 2011; Turrero García
et al., 2015). Thus, cell cycle length and G1-S phase transition are
crucial processes for neurogenesis and both are regulated by He. We
hypothesize that He arrests LGE-derived NPCs into phases G1/G0 to
allow the accumulation of the protein machinery necessary for their
differentiation to specific striatal neurons. In fact, crucial aspects of
neural commitment are acquired in the final division cycle of NPCs.
For example, the cortical laminar fate of NPC is acquired during the
final progenitor cell division (Bohner et al., 1997; Edlund and
Jessell, 1999; McConnell and Kaznowski, 1991). Similarly, during
motor neuron development, NPCs become sonic hedgehog (Shh)
dependent late in their final progenitor cell cycle (Ericson et al.,

1996), which commits them to a motor neuronal fate (Tanabe et al.,
1998).

G1-S phase transition is regulated by Cdk2 and cyclin E, which
form a complex that participates in G1-S phase checkpoint
(reviewed by Hardwick and Philpott, 2014; Ohtsubo and Roberts,
1993). Our results suggest that cyclin E is a key factor regulated by
He that correlates with the G1-S phase transition impairment
observed in the He−/− mice. In fact, the cyclin E gene (Ccne1) has
two very strong He-binding domains (Kim et al., 2015) suggesting a
direct regulation. Similar to our results, Pilaz and colleagues
described that overexpression of cyclin E in cortical NPCs promotes
a proliferation increase whereas downregulation of cyclin E led to a
decrease in progenitor proliferation (Pilaz et al., 2009). In addition, a
direct correlation between cyclin E and S-phase entry was proposed
by ectopic expression of cyclin E, which shortens the G1 interval
and increases the length of S phase by advancing G1-S phase
transition (Resnitzky et al., 1994). Furthermore, ectopic expression
of cyclin E can drive G1 cells into S phase under conditions in which
Rb is not phosphorylated and E2F is not activated (Leng et al., 1997;
Lukas et al., 1997). This is in agreement with our results, as we
observed an increase in cyclin E but no alterations in
phosphorylated RB or E2F in He−/− mice.

He loss increases postnatal cell death
The homeostasis of NPCs in the striatum is a regulated process in
which neurogenesis precedes astro-gliogenesis during development
(Alvarez-Buylla et al., 2001; Ninkovic and Götz, 2013). However,
contrary to the increase of astro-gliogenesis observed in Ikaros−/−

mice (Martín-Ibáñez et al., 2010), we could not detect any effects
on glial cells in He−/− mice. The role of He in neurogenesis
through cyclin E-mediated G1-S transition without modifying
astro-gliogenesis coincides with the effect of deferoxamine, a G1/
S-phase blocker, which increases neuronal but not astrocytic NPC
differentiation (Kim et al., 2006; Misumi et al., 2008).

The reduction of NPCs in He−/− mice at postnatal stages can be
related to the increase in cell death during this period. Naturally
occurring cell death is a crucial step in re-defining the final size of
specific neuronal populations (Burek and Oppenheim, 1996;
Kristiansen and Ham, 2014), which directly correlates with the
time of prior exit from cell cycle and position during neuronal
development (Gould et al., 1999). Our results point to the idea that
the cell death observed in He−/− mice is a consequence of the delay
in NPCs exiting cell cycle around E18.5, then migrating into theMZ
where they become neurons and die. Therefore, lack of He produces
a dysfunction in the time and position of late-generated neurons in
the MZ. Dual effects have also been described for Isl1 and Ebf1,
which promote differentiation of striatonigral neurons and in their
absence striatal cell death is observed (Garel et al., 1999; Lu et al.,
2014). Taken together, all these results indicate that He loss causes
aberrant neurogenesis, which in turn induces neuronal cell death
compromising striatal development.

Heparticipates in the differentiation of a subset ofMSNs that
is involved in early motor learning
He-mediated regulation of the NPC cell cycle correlates with the
determination of a subset of striatopallidal MSNs. The events
occurring during striatal development of He−/− mice cause a
specific reduction of striatal MSNs in the DMS in the adulthood.
Taken together, our present findings demonstrate that He plays a
direct role in the commitment of NPCs to MSNs. Accordingly, He
overexpression is sufficient to differentiate NPCs transplanted into
the striatum in MSNs expressing DARPP-32.

Fig. 6. Lack of He during development alters the number of mature MSNs
in adult He−/− mice. (A-J) Stereological cell counts of neuronal striatal
populations in wt and He−/− mice striatum. (A) The total number of striatal
calbindin+ cells is reduced in He−/− adult mice compared with wt adult mice.
(B) The total number of striatal DARPP-32+ cells is reduced inHe−/− adult mice
compared with wt adult mice. (C,D) The total number of striatal ChAT+ (C) or
parvalbumin+ (D) cells is not altered between wt and He−/− adult mice.
(E-H) The total number of striatal DARPP-32+ cells is specifically reduced in
the DMS (E) in He−/− adult mice compared with wt adult mice. No differences
are found in the DLS (F), VMS (G) and VLS (H) between both genotypes.
(I) The total number of ENK+ cells is reduced in the DMS of He−/− compared
with wt mice. (J) The total number of SP+ cells is not altered in the DMS
between wt and He−/− mice. (K) Schematic showing the division of a coronal
striatal section into DMS, DLS, VMS and VLS regions. Results represent the
mean±s.e.m. of 4-5 mice per condition. Statistical analysis was performed by
using Student’s t-test; *P<0.05, **P<0.005.
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Previously published works and reviews suggest that striatal
motor function is involved with habit formation (Yin and Knowlton,
2006) and procedural learning (Kreitzer, 2009), which fits with
what we see in our He−/− mice. The striatum has been classically
divided into dorsal and ventral areas, the dorsal being the most
involved in motor behavior (Durieux et al., 2012). Accumulating
evidence shows anatomical and functional differences in the
striatum between the external DLS and the internal DMS
(Durieux et al., 2012; Graybiel, 2008; Voorn et al., 2004).
Interestingly, the DMS is involved in the initial stages of motor
skill learning (Jueptner andWeiller, 1998; Luft and Buitrago, 2005),
whereas the DLS is required for progressive skill automatization and
habit learning (Miyachi et al., 2002; Yin et al., 2004). In addition, it
has been shown that the loss of D2R+ neurons in the DMS produces
early motor learning impairment but the animals can improve
their performances to reach control levels (Durieux et al., 2012). As

He−/− mice show impairments in the acquisition of motor skills, it
seems plausible that He is involved in the generation of a specific
subpopulation of striatopallidal D2R+ MSNs in the DMS. The
cerebellum is also involved in fine-tuning the motor agility found in
procedural skills. Cerebellar lesions or dysfunctions produce
permanent deficits in motor tasks. However, diseased animals
never perform motor tasks as well as their control or wt littermates
(Sausbier et al., 2004; Stroobants et al., 2013; Vinueza Veloz et al.,
2012). As He−/− mice show problems in the acquisition but not the
execution of motor skills it seems that an association with cerebellar
deficits is not likely.

Conclusion
In conclusion, our results demonstrate a novel mechanism for He in
the development of striatopallidal MSNs of the DMS that controls
motor skills learning. He exerts its main effects on the commitment

Fig. 7. He induces an MSN phenotype in
vivo. (A) Schematic of the transplantation of
eGFP and He-overexpressing NPCs into
the mouse neonatal forebrain.
(B-H) Representative images of forebrain
coronal sections containing grafted cells
2 weeks post-transplantation,
immunostained for GFP and DARPP-32.
Compared with control cells (B,D), He
overexpressing cells display more robust
branching (C,E) and a few of them start to
express DARPP-32 (G,H).
(I-L) Representative images of grafted cells
4 weeks post-transplantation, labeled for
GFP and DARPP-32. In contrast to control
cells (I), several He overexpressing cells
display DARPP-32 expression (J-L),
indicative of the acquisition of a striatal MSN
fate. Scale bars: 50 µm (B,C); 20 µm
(D-G,I,J); 10 µm (H,K,L).

1573

RESEARCH ARTICLE Development (2017) 144, 1566-1577 doi:10.1242/dev.138248

D
E
V
E
LO

P
M

E
N
T



of NPCs to MSNs through the regulation of the G1-S phase
transition and arrests NPCs at G1 phase to induce neuronal
differentiation. The alterations of this mechanism observed in
He−/− mice produce aberrant neurogenesis leading to the cell death
of late-generated neurons.

MATERIALS AND METHODS
Animals
B6CBAwild-type (wt) mice (from Charles River Laboratories, Les Oncins,
France),He knockout mice (He−/−) (Cai et al., 2009), pCAGs-eGFP (Okabe
et al., 1997), D1R-eGFP and D2R-eGFP generated by GENSAT (Gong
et al., 2003) were used. For further details of mice strains and genotyping,
see the supplementary Materials and Methods.

Birthdating, proliferation and tracking experiments in vivo
Birthdating experiments were performed as described elsewhere (Fig. 1B;
Martín-Ibáñez et al., 2010). To study the generation of He+ cells, injections
of EdU (50 mg/kg) at E13.5 or E14.5, or BrdU at E16.5 into wt pregnant
mice were performed and allowed to develop until E18.5, when embryos
were processed for He and BrdU immunohistochemistry or EdU detection
(Life Technologies) (Fig. S4A).

To analyze in vivo proliferation in the GZ, E14.5 pregnant mice received a
single dose of EdU (50 mg/kg). The proliferation analysis of E16.5, P3 and
P7 was performed by Ki67 immunohistochemistry.

In order to track the origin of dead cells in the MZ, a pulse of
EdU (50 mg/kg) was performed at E18.5, and immunohistochemistry was
performed at P3 against EdU and cleaved caspase 3 (Cell Signaling
Technology), nestin, GFAP or NeuN (Fig. 5G).

To study whether the lack of He could alter the cells entering the S phase
of the cell cycle, we performed in vivo experiments with He−/− and wt mice
as previously described (Lange et al., 2009) (Fig. 4K).

For further details of these methods, see the supplementary Materials and
Methods.

Production of viral particles and cell transduction
To overexpress He, NPCs were transduced with the pLV-HE-IRES-eGFP
plasmid or the pLV-IRES-eGFP plasmid, which encode human HE and
eGFP or eGFP alone, respectively. For further details of viral particle
production, see the supplementary Materials and Methods.

Neurosphere assay
LGEs from E14.5 wt or He−/− mice were dissected out and mechanically
disaggregated to culture as neurosphere and differentiate to neural cells as
described previously (Martín-Ibáñez et al., 2010). For further details of
neurosphere cultures, see the supplementary Materials and Methods.

Loss-of-function (LOF) experiments were performed with neurospheres
derived fromHe−/−micewhereas gain-of-function (GOF) experiments were
performed by overexpressing He. The number of neurons (β-III-tubulin+)
and astrocytes (GFAP+) were analyzed after 6 days of differentiation.

Cell cycle analysis in vitro
Proliferation assays
BrdU incorporation assays were performed in wt and He−/− mice-derived
neurospheres (LOF) and neurospheres overexpressing He (GOF) as

described elsewhere (Urbán et al., 2010). The number of Ki67+ cells was
also analyzed in wt and He−/− mice-derived neurospheres (LOF) and
neurospheres overexpressing He (GOF).

Cell cycle length
An accumulative exposure to 1 µM BrdU over 36 h was performed in wt
and He−/− mice-derived neurospheres (LOF) and in neurospheres
overexpressing He (GOF) after 2 DIV in proliferation. Cells were fixed at
different time points after 1 µMBrdU exposure (1, 3, 6, 12, 24 and 36 h) and
processed for BrdU immunocytochemistry. Following regression analysis
as previously described by Takahashi et al. (1992, 1995), the length of the
cell cycle and the length of the S phase were calculated for the NPCs.

S-phase analysis
To study the cells entering and exiting the S phase of the cell cycle, we
performed in vitro experiments with neurospheres derived from He−/− and
wt mice as described previously (Lange et al., 2009) (Fig. 3E-H).

G2/M phase labeling
To study the combined length of the G2/M phases, an accumulative
exposure to 1 µM BrdU over 5 h was performed after 2 DIV in proliferation
to analyze the mitotic BrdU labeling index as described previously
(Takahashi et al., 1995).

Cell cycle index
We analyzed cell cycle index as the number of cells that incorporate BrdU
but leave the cell cycle (i.e. abandoned the G1-S-G2/M phases and entered
into G0) as previously described (Urbán et al., 2010) (Fig. S13).

Discerning high and low Ki67-expressing cells
We detected cells expressing high and low levels of Ki67 using the
automatic intensity detection of the Cell Profiler software.

For further details of cell cycle analyses, see the supplementary Materials
and Methods.

Analysis of He-binding sites at the Ccne1 promoter
We obtained and analyzed the Big Wig file deposited in Gene Expression
Omnibus by Kim et al. (2015), and visualized it in the Integrative Genome
Viewerwith the files provided aligned to the EnsemblMouseGenome.Details
of database used can be found in the supplementary Materials and Methods.

Western blots
We performed western blot analyses for cyclin E and PCNA as described
elsewhere (Canals et al., 2004) in wt and He−/− mice-derived neurospheres
(LOF) and neurospheres overexpressing He (GOF). E2F1 and
retinoblastoma (Rb) were detected in LOF experiments. For further details
of western blot procedure, see the supplementary Materials and Methods.

In situ hybridization
To assess which striatal subpopulation of MSNs express He, we performed
double in situ hybridization for ENK or tachykinin A (Tac1, a precursor of
SP), the precursor of SP, and immunohistochemistry for He as described
previously (Martín-Ibáñez et al., 2010). For further details of in situ
procedures, see the supplementary Materials and Methods.

Fig. 8. The acquisition of new motor skills is
impaired in He−/− mice. (A-C) Motor coordination and
balance were analyzed in wt and He−/− mice by
performing the simple swimming test (A), the balance
beam (B) and the rotarod task (C). Values are expressed
as mean±s.e.m. of 7-8 mice per condition. Data were
analyzed by two-way ANOVA and Bonferroni’s post-hoc
test. *P<0.05, **P<0.005, ***P<0.001.
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Immunolabeling
For histological preparations, embryonic or postnatal brains were removed
at specific developmental stages and were frozen in dry ice-cooled
methylbutane or cryoprotected depending on the procedure.
Immunolabeling was performed according to the protocols described by
Bosch et al. (2004) and Canals et al. (2004). For further details of the
antibodies used and immunostaining procedures, see the supplementary
Materials and Methods.

Measurement of volumes and in vivo cell counts
The volumes of certain brain regions were measured using ImageJ v1.33 as
described previously (Canals et al., 2004). All cell counts [EdU and Ki67 for
GZ proliferation; BrdU for birthdating experiments; cleaved caspase 3 for
cell death; Ctip2, calbindin, DARPP-32, choline acetyl transferase (ChAT)
and parvalbumin for striatal cell population] were performed blind to
genotype. Unbiased stereological counts were performed for all striatal areas
for each animal. DMS, DLS, VMS and VLS were specifically counted for
DARPP-32-, ENK- and SP-positive cells.

The distribution of mitosis inHe−/− andwt striatum at E16.5was analyzed
as described by Pilz et al. (2013) and counted using CAST software.

Automated quantification of branches, and neurite length was performed
using Cell Profiler v2.8 software.

For further details of cell counts, see the supplementary Materials and
Methods.

Q-PCR
Gene expression was evaluated by Q-PCR assays as previously described by
Martín-Ibáñez et al. (2010). For further details of the probes used and PCR
procedures, see the supplementary Materials and Methods.

Primary striatal culture and transfection
E14.5 fetal LGEs were dissected and cultured as previously described
(Martín-Ibáñez et al., 2010). For He overexpression studies, cells were
transfected with the MSCV-He-IRES-eGFP plasmid, or with the MSCV-
IRES-eGFP plasmid as a control (Zhang et al., 2007). We counted the
number of He or eGFP overexpressing cells that colocalized with calbindin,
DARPP-32 or ENK. For further details of primary culture methods, see the
supplementary Materials and Methods.

Cell transplants
Unilateral striatal injections of He-overexpressing cells were performed
using a stereotaxic apparatus (Davis Kopf Instruments, Tujunga, CA, USA);
coordinates (mm): AP, +2.3, L, +1.4 from lambda and DV, −1.8 from dura.
For further details of cell transplants, see the supplementary Materials and
Methods.

Mouse behavior
Swimming task
The mice were placed at the end of a transparent perspex extended
swimming tank facing away from a visible escape platform at one end of the
tank and the time taken to reach the platform was recorded.

Balance beam
Animals were allowed to walk along a horizontally placed beam of a long
steel cylinder (50 cm) with 15 mm diameter. Latency to fall and number of
falls were measured.

Rotarod
Acquisition of a motor coordination task was further evaluated on the
rotarod apparatus (24 rpm). Latency to fall and the number of falls during
60 s was recorded.

For further details of mouse behavior analyses, see the supplementary
Materials and Methods.

Statistical analysis
All results are expressed as the mean of independent experiments±s.e.m.
Results were analyzed using Student’s t-test or one-way or two-way
ANOVA, followed by the Bonferroni post-hoc test.

Acknowledgements
The authors are very grateful to Dr Phil Sanders for critical reading of themanuscript,
Dr David Vanneste for project managing and Ana López for technical assistance.We
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