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Mechanical regulation of musculoskeletal system development
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ABSTRACT

During embryogenesis, the musculoskeletal system develops while
containing within itself a force generator in the form of the
musculature. This generator becomes functional relatively early in
development, exerting an increasing mechanical load on neighboring
tissues as development proceeds. A growing body of evidence
indicates that such mechanical forces can be translated into signals
that combine with the genetic program of organogenesis. This unique
situation presents both a major challenge and an opportunity to the
other tissues of the musculoskeletal system, namely bones, joints,
tendons, ligaments and the tissues connecting them. Here, we
summarize the involvement of muscle-induced mechanical forces in
the development of various vertebrate musculoskeletal components
and their integration into one functional unit.
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Introduction

The revolution in molecular biology and the identification of signaling
pathways and gene regulatory networks have focused attention mostly
on the role of molecular signals in regulating tissue and organ
development. Yet, in recent years it has become clear that mechanical
forces are capable of activating and controlling key cellular processes
during organogenesis. Many of these mechanoregulation studies have
focused on tensional forces generated by the cytoskeleton (Heer and
Martin, 2017). These forces, which can be translated into biochemical
signals by molecules possessing mechanotransduction capabilities,
are transmitted across transmembrane receptors into the extracellular
matrix (ECM) and can also reach neighboring cells. These discoveries
have resulted in a fresh view of organogenesis as being regulated
through reciprocal interactions between mechanical and chemical cues
(reviewed by Mammoto and Ingber, 2010).

Although there is no doubt about the importance of such cell-
generated mechanical forces in development, this mode of regulation
is only part of the story. During development, tissues and organs can
be subjected to, and regulated by, forces that are generated
exogenously. For example, forces generated by fluid or air flow
regulate numerous developmental processes, such as vasculogenesis
and angiogenic sprouting (Chouinard-Pelletier et al., 2013; Galie
et al., 2014; Kutys and Chen, 2016; Lucitti et al., 2007), lung
branching, alveolar cell differentiation and growth of the airway tree
(Jesudason et al., 2006; Nelson and Gleghorn, 2012; Schittny et al.,
2000), and pronephron morphogenesis in the developing kidney
(Vasilyev et al., 2009).

In the case of musculoskeletal development, exogenous forces
acting on tendons and the skeleton are generated by muscle
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contraction. The importance of mechanical signals in
musculoskeletal development has also been highlighted by studies
linking restricted fetal movement to developmental abnormalities in
humans (see Box 1). The involvement of muscle contraction and
embryonic movement in musculoskeletal development was first
reported over a century ago. In 1901, Curt Herbest wrote: ‘Weber
E.H. found, in a newborn calf which had no spinal cord below the
cervical region, and no muscle in the posterior half of the body, that
the skeletal parts were well developed. Still, the skeletal parts were
only half as heavy as normal, and the joints were ankylosed’
(Herbest, 1901). Following on from this report and subsequent
pioneering work that further established the involvement of
mechanical forces in musculoskeletal development (Fell and Canti,
1934; Hamburger and Waugh, 1940), recent efforts have attempted to
map the full scope of the contribution of these mechanical signals and
discover how they are integrated into the genetic program to regulate
various aspects of musculoskeletal development.

Here, we review these various studies, focusing mainly on the
developing musculoskeleton of the mouse limb — an area in which
much progress has been made in recent years. We first provide an
overview of how the mouse limb musculoskeletal system develops
before highlighting how mechanical forces influence each of its
developing components. We also expand the discussion to include
other examples of musculoskeletal development, from other organs
and other species, in which force plays a role. Finally, we highlight
future avenues of research as well as challenges for the field.

An overview of murine limb musculoskeletal tissue
development

‘The skeleton begins as a continuum, and a continuum it remains all life
long. The things that link bone with bone, cartilage, ligaments,
membranes, are fashioned out of the same primordial tissue, and come
into being pari passu, with the bones themselves. The entire fabric has its
soft parts and its hard, its rigid and its flexible parts; but until we disrupt
and dismember its bony, gristly and fibrous parts, one from another, it
exists simply as a ‘skeleton’, as one integral and individual whole.” (pp.
712-713, Thompson, 1917)

Limb development in mice is initiated as cells from the lateral plate
mesoderm, which later differentiate into bones, joints, tendons,
ligaments and other connective tissues, enter the limb bud (reviewed
by Tickle, 2015). Shortly thereafter, cells from the ventrolateral lip
of the dermomyotome in the somites migrate into the limb bud to
form the limb musculature (reviewed by Comai and Tajbakhsh,
2014). During development, these progenitor cells face two main
challenges. One is to proliferate and differentiate to form the
different tissues composing the musculoskeleton, and the other is to
connect these tissues to form an integrated functional system.
Skeletogenesis in the limb is initiated by condensation of a subset
of mesenchymal cells that differentiate into chondroprogenitors,
which form the cartilaginous anlagen of future limb bones
(reviewed by Berendsen and Olsen, 2015). The transcription
factor SRY-box 9 (SOX9) is an essential regulator of this process
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Box 1. The importance of mechanical signals in
development: links to developmental disorders

In humans, developmental abnormalities that arise due to paucity of fetal
movement underscore the importance of mechanical signals in
musculoskeletal development. A number of factors can contribute to
the restriction of fetal movement, including neuropathic or connective
tissue disorders, muscle abnormalities, or conditions that limit the
intrauterine space (Gordon, 1998). An example of such a developmental
defect is arthrogryposis, a syndrome characterized by congenital joint
contractures. Although early joint development may be normal,
insufficient fetal movement results in the formation of excessive
connective tissue around the joints. This fixates the joints and
aggravates the contractures (Hall, 1985a,b). Mutation in PIEZO2
results in arthrogryposis and Marden-Walker syndrome [MWKS (OMIM
248700)], which is characterized by kyphoscoliosis and joint
contractures (Chesler et al., 2016; Coste et al., 2013; McMillin et al.,
2014), supporting the involvement of Piezo genes in
mechanotransduction. Another example, which is the most common
orthopedic problem in newborn children, is developmental dysplasia of
the hip (DDH). This syndrome, which is characterized by abnormal
positioning of the femoral head within the acetabulum, is mainly the result
of the action of abnormal mechanical forces due to limb position,
pressure from the womb, or ligament laxity (Shefelbine and Carter,
2004). Fetal akinesia deformation sequence [FADS (OMIM 208150)] is
another developmental abnormality caused by restriction of embryonic
mobility. This syndrome is characterized by polyhydramnios, intrauterine
growth retardation, pulmonary hypoplasia, craniofacial and limb
anomalies, multiple joint contractures and short umbilical cord. The
severity of this potentially lethal disease depends on the level of
restriction, further highlighting the importance of movement for proper
development (Hall et al., 1986).

(Bi et al., 1999). As chondrogenesis progresses and the anlagen of
the bone shaft are formed, a secondary wave of differentiating
mesenchymal cells is recruited to form bone eminences,
superstructures that protrude from the bone surface and define the
intricate morphology of each bone (Blitz et al., 2013). Next, a tightly
regulated sequence of chondrocyte proliferation and differentiation
gives rise to growth plates at both the proximal and distal ends of the
anlagen. Subsequently, blood vessels invade the cartilage anlagen,
introducing bone-building cells termed osteoblasts. These cells
deposit bone matrix and ossify the cartilaginous template from the
mid-shaft, pursuing the progression of the growth plates (reviewed
by Kronenberg, 2003).

Immediately after the formation of the rudimentary appendicular
skeleton by chondroprogenitors, the development of synovial joints is
initiated. This process divides the continuous anlagen into segments
corresponding to future bones. The joints that form between the
segments will enable bones to move relative to one another. The first
histological indication for joint formation is the appearance of a
higher cell density domain called the interzone at the site of the
future joint (Mitrovic, 1977). Molecularly, interzone cells lose the
expression of chondrocyte-specific genes such as collagen type 11
(reviewed by Decker et al., 2014). Instead, they express a new set of
genes that includes growth differentiation factor 5 (Gdf3), Wnt4 and
Wnt9a (Guo et al., 2004; Hartmann and Tabin, 2001; Spéter et al.,
2006; Storm et al., 1994).

Limb myogenesis is initiated as myogenic progenitors expressing
paired box 3 (Pax3) delaminate from the somites and migrate into
the limb bud under the regulation of c-Met and hepatocyte growth
factor (HGF). Once they have reached the limb, they proliferate and
start expressing Myf5 and MyoD (Myod1), which are essential for
myogenic determination. Next, under the regulation of myogenic
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regulatory factors (MRFs), myoblast progenitors differentiate into
myocytes that fuse into multinucleated myofibers (reviewed by
Buckingham et al., 2003; Chal and Pourqui¢, 2017; Murphy and
Kardon, 2011). Patterning of the newly formed myofibers into over
40 limb muscles is mediated by a pre-pattern comprising
transcription factor 4 (TCF4)-expressing connective tissue
fibroblasts (Kardon et al., 2003; Mathew et al., 2011). Other
factors, such as TBX3, TBX4 and TBXS, HoxAl1l and HoxD11,
which originate from the limb mesenchyme, also participate in
muscle morphogenesis and individualization (Colasanto et al.,
2016; Hasson et al., 2010; Swinehart et al., 2013). The formation of
functional muscle fibers unfolds in two phases to produce primary
and secondary fibers (Harris et al., 1989). In mice, the first phase
occurs between embryonic day (E) 10.5 and E12.5 and accounts for
~20% of the muscle mass in the newborn. The remaining 80% is
formed during the second phase, which starts at E14.5 and continues
until birth. This stage, termed fetal myogenesis, is characterized by
continuous growth and maturation of myofibers (Biressi et al., 2007;
Stockdale, 1992).

Tendon development is initiated between E11.5 and E12.5 by cells
that express the bHLH transcription factor scleraxis (Scx) (Schweitzer
etal., 2001). In the limb, this process is regulated by TGFf signaling
(Pryce etal., 2009). Scx™ tendon progenitors are patterned in a loosely
organized structure located between differentiating muscles and
corresponding cartilage condensations. By E13.5, these rudiments
aggregate and differentiate into structurally defined and functional
tendons (reviewed by Huang et al., 2015), which are then integrated
into muscle-tendon and tendon-skeleton attachments. The formation
of muscle-tendon attachments, which are known as myotendinous
junctions (MTJs), is mediated primarily by integrins, dystroglycan
and other ECM molecules, which form a specialized ECM that differs
from that of muscle or tendon. The initial stage of MTJ formation
involves secretion of ECM by muscle and tendon cells. Muscles
recognize tendons through multiple signals. In zebrafish,
thrombospondin (Tsp) and integrin-mediated signaling were shown
to mediate tendon-muscle recognition (reviewed by Subramanian and
Schilling, 2015). Later during development, contraction-dependent
expression of FGF4 at the muscle tip is required for MTJ maintenance
and differentiation, whereas tendon cells secrete most of the MTJ
ECM (Edom-Vovard et al., 2002; reviewed by Hasson et al., 2017,
Valdivia et al., 2017). The establishment of tendon-bone attachments,
by contrast, involves a second wave of chondrogenic cells (Blitz et al.,
2013). The unique feature of this cell population is that it expresses
both the chondrogenic marker Sox9 and the tendon marker Scx (Blitz
et al., 2013; Sugimoto et al., 2013). Intriguingly, whereas some of
these cells maintain Sox9 but not Scx expression and form bone
eminences, others maintain Scx expression while downregulating
Sox9 to form tendons. The end result is the in sifu formation of a bone
eminence that is already connected to a tendon, which will eventually
develop into an enthesis.

A clear manifestation of the assembly of these various components
— muscle, bone and tendons — into an early functioning
musculoskeletal system is the ability of the developing embryo to
move. The human fetus starts to move between 8 and 10 weeks of
gestation (de Vries et al., 1982). In chick, embryonic movement is
observed as early as 4-5 days of incubation, whereas in mouse
spontaneous movement is first seen at E12.5. These developmental
stages coincide with the establishment of physical contacts between
motor axons and presumptive muscle cells (Bekoff, 1981; Bennett
et al.,, 1983; Carry et al.,, 1983; Hamburger and Balaban, 1963,
Martin, 1990; Suzue, 1996) and the formation of neuromuscular
junctions (NMJs), which are chemical synapses that form between
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motor neurons and muscle. Muscle innervation is preceded by the
pre-patterning of acetylcholine receptor (AChR) clusters in the
muscle. These clusters ultimately define synapse location and,
following innervation, are positively regulated by agrin that is
secreted from the nerve end. Later, during the first few weeks of life,
the number of innervations is decreased, AChR clusters that have not
been innervated are lost, and each neuron specifically innervates a
single AChR cluster (reviewed by Darabid et al., 2014; Legay and
Mei, 2017; Tintignac et al., 2015).

The involvement of mechanical forces in endochondral bone
formation

Bone morphology can be regulated at different stages of
development, from the patterning of mesenchymal cell
condensations and the establishment of the cartilaginous template,
through to the establishment of the growth plate and its activity, to the
shaping of ossified bone by modeling. As we highlight below, these
various events can be regulated by mechanical forces (summarized in
Fig. 1).

The ability of mechanical signals to regulate chondrocyte
proliferation was initially demonstrated in three-dimensional
cultures of primary chondrocytes (Wu and Chen, 2000; Wu et al.,
2001). In vivo, it was shown that cyclic mechanical stimulation of
rabbit premaxillae can accelerate chondrocyte proliferation above the
normal rate (Wang and Mao, 2002). These effects on chondrocyte
proliferation could be mediated by yes-associated protein 1 (YAP1), a
mechanosensor that is part of the Hippo signaling pathway. Indeed,
changes in YAP cellular localization in chondrocytes were identified
in vitro in response to matrix stiffness (Zhong et al., 2013), and YAP
was shown to regulate bone size, promote chondrocyte proliferation
and inhibit chondrocyte differentiation in vitro and in vivo by
suppressing collagen type X (Deng et al., 2016). Moreover, it was
recently shown that members of the Hippo pathway are
downregulated in muscleless limbs in mice (Rolfe et al., 2014).

In line with these studies, numerous reports have suggested that
mechanical load plays a major role in determining bone size. In
paralyzed chick and mouse embryos, various cartilaginous skeletal
elements are shorter than normal (Gomez et al., 2007; Hall and
Herring, 1990; Hamburger and Waugh, 1940; Hosseini and Hogg,
1991; Nowlan et al., 2008, 2010; Pa and Pai, 1965; Rodriguez et al.,
1992; Rot-Nikcevic et al., 2006). Studies in chick embryos paralyzed
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by decamethonium bromide reported a reduction in the size of the
proliferative zone, as well as in the number of proliferating
chondrocytes (Germiller and Goldstein, 1997; Roddy et al., 2011a).
A recent study in West African dwarf crocodiles and in chicks
reported that movement regulates chondrocyte proliferation but only
in specific growth plates, as the manipulation of movement led to
alterations in the proportions between bones of the same limb (Pollard
et al., 2017). In that study, differential activation of the mTOR
pathway in growth plates was suggested as the underlying molecular
mechanism. Differential effects of mechanical load on individual
growth plates may not only influence limb proportions. Previously, it
was shown that different bones exhibit a specific and unique balance
between proximal and distal growth rates to regulate the relative
position of superstructures along the bone (Stern et al., 2015).
Therefore, modulating the activity of individual growth plates by
mechanical forces can lead to changes in the position of bone
eminences and, thus, affect bone morphology directly.

Other molecular players that may regulate bone size in response
to mechanical cues are Indian hedgehog (IHH) and parathyroid
hormone-related protein [PTHrP; also known as parathyroid
hormone-like peptide (PTHLH)], which form a negative-feedback
loop that regulates chondrocyte proliferation and differentiation
(Vortkamp et al., 1996). The genes encoding these factors were
shown to respond to mechanical load in the growth plate. For
example, IHH expression in chondrocytes is induced by cyclic
mechanical stress, while [hh expression is significantly
downregulated in immobilized fetal jaws (Jahan et al., 2014; Rais
etal.,2015; Wuetal., 2001). The IHH mechanoresponse is thought
to be mediated through primary cilia; in chick, mechanical load was
shown to induce ciliogenesis in growth plate chondrocytes,
resulting in altered activation of the IHH-PTHrP signaling loop
and reduced proliferation (Rais et al., 2015).

In addition to regulating bone length, muscle load was shown to
regulate the development of bone eminences. In the absence of
muscle activity, bone eminences are significantly smaller or
completely lost (Blitz et al., 2009; Gomez et al., 2007,
Hamburger and Waugh, 1940; Nowlan et al., 2010; Pa and Pai,
1965; Rot-Nikcevic et al., 2006). Muscular dysgenesis (mdg) mice,
which have a mutation in Cacnals and lack excitation-contraction
coupling, leading to paralysis (Pa and Pai, 1965), exhibit complete
arrest of chondrocyte proliferation in the ‘mini’ growth plate of

Fig. 1. Mechanical forces involved in endochondral bone
formation. Bone morphology is regulated by mechanical forces at
different levels, as demonstrated by the various developmental and
functional aberrations that arise in the absence of muscle
contraction. (1) Bone elongation is impaired due to reduced
chondrocyte proliferation in the growth plate.

(2) Additionally, the organization of resting chondrocytes into
columns is impaired, which can also affect skeletal elongation. (3)
Bone eminence growth is arrested, resulting in smaller or absent
eminences. (4) Differential appositional growth is lost, resulting in a
circular circumferential shape. (5) Joint formation is impaired during
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embryonic development, leading to joint fusion.
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developing bone eminences, resulting in their loss (Blitz et al.,
2009). Collectively, these studies demonstrate that local changes in
the mechanical environment can induce local changes in
chondrocyte proliferation and, thereby, affect bone morphogenesis.

The organization of resting chondrocytes into columns of discoid
proliferative cells, which facilitates skeletal elongation and
contributes to skeletal morphogenesis, can also be modulated by
mechanical load. Column formation initiates by cell division, where
daughter chondrocytes undergo planar division while establishing a
cell-cell adhesion surface between them. Next, the cells spread and
expand their adhesion surface until they become perpendicular to
each other (Romereim et al., 2014). The end result resembles
convergent extension, a well-studied morphogenetic process
whereby changes in cell organization affect tissue and organ
shape. Studies of craniofacial development in zebrafish mutants
lacking neuromuscular nicotinic receptors (nic, chrnal), myf5/myod
double morphants, in which muscular development is inhibited, or
tricaine-paralyzed embryos identified abnormal chondrocyte
organization due to failed column formation, resulting in aberrant
bone morphology (Shwartz et al., 2012). Interestingly, the effect of
paralysis on column formation in the growth plates of mouse
embryos was less pronounced, perhaps reflecting the complexity of
skeletal morphology in higher vertebrates and suggesting that
additional control levels have emerged during evolution.

The distribution and composition of ECM represents another level
of mechanical control over skeletal morphogenesis and
biomechanical integrity, namely by determining the spacing among
cells. Studies in paralyzed chicks and in chondrocytes cultured under
loading have shown that mechanical forces can regulate both the
content and the dynamics of proteoglycan and collagen production by
these cells (Mikic et al., 2004; Wong et al., 2003). Additionally,
transcriptomic analyses of humeri from muscleless limbs of mouse
embryos revealed that integrins, cadherins and other proteins that
associate with the ECM are downregulated (Rolfe et al., 2014).

Another aspect of skeletal morphology is the width and
circumferential outline of the bone. Bones grow in width by
preferential periosteal growth, which involves repetitive steps of
strut-and-ring construction by mineral deposition. Interestingly,
different sectors of the bone circumference grow at different rates,
resulting in a non-uniform cross-section. Eventually, after endosteal
resorption, each bone acquires its typical circumferential shape
(Sharir et al.,, 2011). Several studies have demonstrated the
involvement of mechanical load in the mineralization processes
that determine bone width and circumference. For example, a study
on curare-paralyzed rat fetuses reported alterations in appositional
growth of the femur, manifested by smaller and rounder cross-
sections (Rodriguez et al., 1992). Myf5/MyoD-deficient mice also
exhibit changes in femoral cross-sections, namely increased width
and cortical thickness that result in a rounder bone (Gomez et al.,
2007). Similar findings are observed in paralyzed mdg mice, where
preferential periosteal growth is lost, resulting in a circular
circumferential shape (Sharir et al., 2011). Interestingly, finite
element analysis showed that bones that had lost the typical
circumferential morphology were also mechanically inferior (Sharir
et al,, 2011), again demonstrating the positive-feedback loop
between muscle force and bone morphology and function during
development. An interesting candidate for mediating this feedback
between mechanical cues and bone modeling is osteopontin (Opn;
also known as Spp1), which is considered to be an inhibitor of bone
mineralization. Opn was shown to be upregulated in response to
mechanical stress in adult mouse teeth (Terai et al., 1999) and
downregulated in muscleless limbs of mouse embryos (Rolfe et al.,
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2014). Additionally, mice lacking Opn do not display a reduction in
bone mass in response to muscle unloading (Ishijima et al., 2002).

While the above-mentioned studies reveal an essential role for
mechanical forces in bone development, the factors that transduce
these forces into biological outcomes are unclear. To date, numerous
candidates have been suggested to transduce mechanical signals
during development (reviewed by Mammoto and Ingber, 2010;
Mammoto et al., 2013). One interesting possibility is presented by the
recent finding of two non-selective mechanosensitive cationic
channels, PIEZO1 and PIEZO2, which are expressed in a variety of
tissue types, including red blood cells, sensory neurons, auditory hair
cells, endothelial and epithelial cells, and also in chondrocytes
(Florez-paz et al., 2016; Lee et al., 2014; reviewed by Parpaite and
Coste, 2017). Their ability to transduce Ca®" signaling upon
mechanical stimulation suggests that they could participate in the
response of cartilage to mechanical signals (Lee et al., 2014).
However, further studies including in vivo animal models are needed
to establish this notion. Another intriguing possibility is that the
sensory system, which innervates the bone surface, is involved in the
transduction of mechanical signals. In mice, sensory TrkA (Ntrk1)-
expressing neurons innervate the developing bone already at the onset
of endochondral ossification and, upon mechanical stimulation,
osteoblasts secrete nerve growth factor (NGF) to activate an unknown
feedback mechanism, which induces bone formation (Tomlinson
et al.,, 2016).

Mechanical control of skeletal configuration

In addition to its involvement in the shaping of individual bones,
muscle-induced mechanical load regulates the 3D organization of
skeletal elements. An interesting example for such a mechanism
comes from birds, in which embryonic muscle activity was shown to
be necessary for the rotation and opposability of digit 1, which is
used for perching. In the absence of muscle contraction, the digit
fails to rotate and acquires a morphology that largely resembles that
of the dinosaur ancestor, which probably lacked the opposable
thumb function (Francisco Botelho et al., 2015).

Another example of regulation of skeletal arrangement that is
affected by muscle load is the patella, also known as the kneecap,
the most well-known and studied sesamoid bone (a bone embedded
in a tendon). Similarly to bone eminences, the patella develops from
a population of Sox9" and Scx* progenitors that is initially located
on the femur, from which it is later separated by joint formation
(Eyal et al., 2015). Similarly to other joints, the patellofemoral joint
is regulated mechanically. In the absence of muscle load, the
cavitation process fails and the patella remains connected to the
femur (Eyal et al., 2015).

The effect of muscle force on skeletal morphology and
organization is not restricted to the extremities. Recently, it was
shown in chick embryos that prolonged rigid paralysis impairs
vertebrae formation, segmentation and spine curvature (Rolfe et al.,
2017). In another study, it was reported that muscles and the
proprioception system that regulates their activity are necessary to
maintain spinal alignment postnatally (Blecher et al., 2017a).
Striated muscles and MTJs contain proprioceptive mechanosensors
termed muscle spindle and Golgi tendon organ (GTO), respectively
(Kokkorogiannis, 2004; Zelena and Soukup, 1983). These organs
sense the biomechanical environment, namely changes in muscle
length or tension, initiate a rapid neural response through
specialized sensory afferent fibers and, ultimately, modulate local
muscle tension, thus forming local monosynaptic reflex arcs (Chen
et al., 2003; Granit, 1975; Maier, 1997; Moore, 1984). Another
example of the involvement of muscles and the proprioceptive
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system in regulating skeletal morphology is the realignment of
fractured long bones. Fractured humeri of mice were shown to
realign spontaneously by movement of the two fracture fragments, a
process termed natural reduction (Rot et al., 2014). In the absence of
either contracting skeletal muscles or functional proprioceptive
mechanosensors, the fractured bones fail to realign (Blecher et al.,
2017b). Together, these findings suggest a new physiological role
for proprioception in non-autonomous regulation of skeletal
morphology.

Muscle forces are also involved in musculoskeletal configuration
by controlling the positioning of muscles during mouse limb
development. In mice, the flexor digitorum superficialis (FDS)
muscles, which control paw motion, are located in the forearm; yet,
during development they initially form in the paw. As development
proceeds, the muscles relocate to their final position in the arm and,
interestingly, it was found that muscle contraction is necessary for
this translocation (Huang et al., 2013).

The effects of mechanical forces on joint development

As in the case of bone development, a number of studies have
revealed that muscle-generated forces can modulate the development
of joints (Fig. 1). Studies of joint development in paralyzed chick
embryos provided the first indications for the involvement of such
forces (Drachman and Sokoloff, 1966; Fell and Canti, 1934;
Hamburger and Waugh, 1940; Hosseini and Hogg, 1991; Kahn
et al., 2009; Lelkes, 1958; Mikic et al., 2000a; Mitrovic, 1982;
Murray and Drachman, 1969; Nowlan et al., 2010; Osborne et al.,
2002; Pai, 1965; Persson, 1983; Rot-Nikcevic et al., 2006; Ruano-Gil
et al., 1978, 1985). These studies revealed that, in the absence of
muscle contraction, multiple joints in the forelimbs and hindlimbs
become fused. This effect was also observed in the back, neck and
head joints. Later, the same effect was demonstrated in mutant mouse
strains in which muscles either fail to form or lack contractility (Kahn
et al., 2009; Nowlan et al., 2010; Pai, 1965; Rot-Nikcevic et al.,
2006). Impaired development of the jaw joint has also been observed
in paralyzed zebrafish embryos (Brunt et al., 2015).

The process of joint development consists of several sequential
steps of specification, interzone formation, cavitation and
morphogenesis. Studies in chick and mouse have shown that
muscle contraction is dispensable for determining the site at which
the joint will form, as well as for the induction of joint-forming
progenitor cell fate, as evidenced by interzone formation in paralyzed
organisms (Drachman and Sokoloff, 1966; Kahn et al., 2009; Mikic
et al., 2000b; Mitrovic, 1982). Thus, the first involvement of muscle
contraction in joint development is most likely immediately after
interzone establishment and before cavitation begins, as muscle
contraction at this stage was shown to be necessary for maintaining
joint progenitor cell fate; in its absence, progenitors lose their fate and
become chondrocytes, eventually resulting in joint loss (Kahn et al.,
2009).

Muscle contraction and fetal movement also play a role during the
stage of joint morphogenesis (Bastow et al., 2005). The shape of
joints has a direct effect on the motility of the organism; thus, the
existence of a positive-feedback loop between motility and joint
morphology during development is an attractive hypothesis, which
might also provide a mechanistic explanation for the adaptation of
articular shape to load throughout life. This hypothesis predicts
that specific modes of movement would result in distinct joint
morphologies. Several studies support this possibility, for example
by demonstrating in silico that a combination of an initial joint
morphology and a specific movement regime will produce a
distinctly shaped joint (Giorgi et al., 2015; Rolfe et al., 2017). This

notion is further supported by experimental data showing that
imbalance in muscle loading may lead to abnormally shaped joints
(Brunt et al., 2016; Ford et al., 2017; Nowlan et al., 2014). A
feedback loop between movement and joint shaping could play a
central role in the evolutionary adaptation of the skeleton. During
evolution, new movement patterns facilitated by morphological
changes may prove advantageous, while existing patterns may
become superfluous. Cetacean evolution provides an example of the
loss of specific muscles and corresponding joints that have become
unnecessary: during the limb-to-fin transition, the tricep muscles
have undergone atrophy and the elbow joint has been lost (Cooper
et al., 2007).

Joint morphogenesis might also be regulated by differential cell
proliferation during cartilage growth. Indeed, changes in the
mechanical environment of the knee joint were shown to lead to
morphological alterations that correlate with regional changes in
proliferation (Roddy et al., 2011a,b). This notion is supported by
mathematical models of stress distribution, which may modulate
growth of'the cartilage anlagen to create congruent articular surfaces
(Heegaard et al., 1999). Recently, it was reported that the interzone
is constantly supplied with new cells, which contribute
differentially to developing joint tissues (Shwartz et al., 2016).
These findings raise the possibility that muscle contraction might
regulate the dynamic behavior of interzone cells.

Interestingly, not all joints are lost in mutant embryos lacking
functional muscles. In mice, for example, the knee and the finger
joints remain intact (Kahn et al., 2009), whereas in paralyzed chicks
the knee joint is lost (Persson, 1983; Roddy et al., 201 1a). Explaining
this variation is not easy. One plausible explanation is that, in some
joints, the lack of muscle-induced signals is compensated for by other
components of the joint development genetic program. Indeed, there
is evidence that different joints are subject to different modes
of regulation. For example, deletion of Tgfbr2 in early limb
mesenchyme results in interphalangeal joint fusion without
affecting other joints, such as the elbow, despite its high and
specific expression in these joints (Seo and Serra, 2007; Spagnoli
et al., 2007). Similarly, although Gdf5 is expressed in all synovial
joints, only a subset of joints, such as carpal, certain phalangeal and
tarsals, are disrupted by Gdf5 null mutations (Storm and Kingsley,
1996). Thus, identifying potential joint-specific mechanisms of
regulation and how these might be differentially regulated by muscle
contraction is key to gaining a better understanding of joint
morphogenesis.

Another key and open issue is the mechanism that responds to
mechanical signals in the joint and translates them into molecular
signals. One attractive candidate is the B-catenin signaling pathway,
the role of which in regulating several aspects of joint development,
including maintenance of joint-forming progenitor cell fate, has
been firmly established (Guo et al., 2004; Hartmann and Tabin,
2001; Spiter et al., 2006). Moreover, studies in Drosophila, mouse
and, more recently, zebrafish have shown that activation of the B-
catenin pathway is dependent on muscle activity (Brunt et al., 2017;
Desprat et al., 2008; Kahn et al., 2009). Another signaling pathway
that is potentially involved is the MAP kinase (MAPK) pathway,
which was shown in chick to be responsive to muscle contraction
(Bastow et al., 2005). Additionally, studies in paralyzed chick and
mouse embryos have identified numerous factors that are markedly
reduced in expression in and around developing joints, including
hyaluronic acid (HA) (Bastow et al., 2005; Osborne et al., 2002),
tenascin C (Tnc) and collagen type XII (Mikic et al., 2000b), as well
as fibroblast growth factor 2 (Fgf2) (Kavanagh et al., 2006), Pthrp,
bone morphogenetic protein 2 (Bmp?2), hyaluronan synthase 2
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(Has2), Cd44, Col2al (Roddy et al., 2011a,b), among others (Kahn
etal., 2009; Roddy et al., 2011a). However, if and how these factors
play a role in contraction-mediated control of joint formation
remains an open question.

Mechanical forces and tendon development

Tendons and ligaments are dense connective tissues that coordinate
muscle contraction and skeletal movement; whereas tendons attach
muscle to skeleton, ligaments attach skeletal elements to each other.
Both tissues are composed of fibroblasts, termed tenocytes or
ligamentocytes, respectively, which are embedded in a specialized
ECM, and both are mechanoresponsive and have the ability to
change their composition and arrangement upon changes in
mechanical load (Birch et al., 2013; Landis and Silver, 2002;
Subramanian and Schilling, 2015; Summers and Koob, 2002;
Takimoto et al., 2015).

Tendon development in the limb is a two-stage process. The first
stage is mechanical load independent and involves progenitor cell
specification, organization and patterning into a densely packed
fibrous tissue with a morphology that ranges from broad sheets to
highly elastic cables. The bHLH transcription factor Scx, which is
the only identified early tendon marker, plays a role in this first step.
Sex™ cells give rise to tendons in mouse, chick and zebrafish (Chen
and Galloway, 2014; Schweitzer et al., 2001), and Scx positively
regulates Collal expression in mouse tendons. However, Scx is not
a master regulator of tendon development, and Scx mutant mice are
viable and mobile (Schweitzer et al., 2001). Nevertheless, in some
tendon groups the progenitors fail to condense upon Scx loss,
suggesting that this transcription factor regulates tendon cell
adhesion, which is required for their differentiation (Schweitzer
et al., 2001; reviewed by Gaut and Duprez, 2016; Schweitzer et al.,
2010). The transcription factor mohawk (Mkx) is also implicated in
tendon differentiation and regulation, and is able to directly regulate
Collal and other tendon structural genes; in postnatal Mkx mutant
mice, collagen fibril growth is dramatically reduced and tendons are
smaller and hypoplastic (Ito et al., 2010; Liu et al., 2010).

By contrast, the second stage of tendon development in the limb,
which involves tendon differentiation, maturation and maintenance,
is mechanical load dependent and requires muscle presence and
contraction (Fig. 2) (reviewed by Gaut and Duprez, 2016; Kardon,
1998; Schweitzer et al., 2001). Studies performed in mouse, chick
and zebrafish embryos have shown that either genetic or surgical
muscle inactivation does not affect initial Scx expression in tendon
progenitors (Chen and Galloway, 2014; reviewed by Gaut and
Duprez, 2016; Havis et al., 2016; Huang et al., 2015; Kardon, 1998;
Schweitzer et al., 2001). However, studies performed in chick
showed that, in muscleless limbs, autopod tendons degenerate and
zeugopod tendons are lost, and under chemical paralysis zeugopod
tendon markers are lost (reviewed by Gaut and Duprez, 2016;
Kardon, 1998). Interestingly, in mouse, autopod tendons are normal
and tendon progenitors are unaffected in muscleless limbs
(reviewed by Huang et al., 2015); however, similar to chick,
zeugopod tendons are lost. In genetically paralyzed mdg mice,
zeugopod tendons are maintained but they are smaller than normal
and express less Scx, suggesting that mechanical load has an
additional role to that of the muscle tissue itself in tendon
development (reviewed by Gaut and Duprez, 2016; Huang et al.,
2015). Similarly, it was recently shown that mechanical load in adult
mice increases the expression levels of Mkx and other tendon-
associated genes in vivo (Kayama et al., 2016).

The TGFR-SMAD2/3 and FGF-MAPK signaling pathways have
also been implicated in tendon mechanotransduction and
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Fig. 2. Forces acting during the formation of tendon, muscle and their
attachments. The proper formation of tendon, muscle and the attachment
between them requires mechanical load. (1) In its absence, mineralized
fibrocartilage in the enthesis is lost, and there is increased osteoclast activity
and bone resorption in the attachment site. (2) Tendon development is arrested
in the absence of muscle, and zeugopod tendons are lost. (3) Proper
maturation and the ECM composition of the MTJ, which are regulated by Scx
expression, are dependent on muscle contraction. (4) Without muscle
contraction, there is a reduction in myotube number, and muscles are smaller
than normal and display a delay in splitting. Muscle contraction is also needed
to maintain a pool of muscle progenitor cells. (5) In the NMJ, muscle
contraction is needed to promote neuronal elimination during development and
to prevent NMJ degeneration. MFC, mineralized fibrocartilage; MTJ,
myotendinous junction; NMJ, neuromuscular junction.

development. Both were shown to positively regulate Scx, Mkx
and other tendon genes in chick and to act independently of one
another; the blockage of MAPK signaling in TGFp gain-of-function
chick limbs does not affect positive Scx regulation (Havis et al.,
2016). Interestingly, FGF signaling was shown to have opposing
effects in chick and mouse models. In chick embryos, FGF
signaling is required for the induction of tendon progenitors in the
limb, and overexpression of FGF4 from muscle ends was shown to
upregulate tenogenesis and Scx expression in response to
mechanical load and to rescue Scx expression in muscleless limbs
(Edom-Vovard et al., 2002; Havis et al., 2016). In mouse, by
contrast, ERK/MAPK inhibition was sufficient to activate Scx in
limb mesodermal progenitors and in mesenchymal stem cells
(Havis et al., 2014, 2016). The canonical TGFp signaling pathway,
acting through SMAD?2/3, is also sufficient to induce Scx expression
in stem cells, mouse and chick tendon progenitors and mouse limbs
(reviewed by Gaut and Duprez, 2016; Havis et al., 2014; Lorda-
Diez et al., 2009; Maeda et al., 2011; Pryce et al., 2009). In the
absence of TGF signaling, tendon progenitors are specified but are
ultimately lost (Pryce et al., 2009). TGFB-SMAD2/3 signaling was
shown to upregulate Scx in an adult tendon culture model in
response to mechanical load, and in adult tendons active TGFB
levels were proportional to the extent of tensile load exerted on the
tendon (Maeda et al., 2011).

There are two hypotheses for TGFp activation in response to
mechanical load. First, it has been suggested that mechanical force
disrupts the structure of the tendon ECM, causing the release of
latent TGFp from the ECM matrix and allowing it to interact with its
receptor (reviewed by Subramanian and Schilling, 2015). This
interaction leads to an increase in tendon ECM proteins and tendon
markers such as Scx, which, in turn, upregulates TGFf expression.
Additionally, TGFp wupregulates matrix metalloproteinases
(MMPs), which allows additional release of TGFf from the ECM.
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Ultimately, a positive-feedback loop forms by which the ECM
adapts to mechanical load (Popov et al., 2015; reviewed by
Schweitzer et al., 2010; Subramanian and Schilling, 2015). An
alternative mechanism is that other mechanosensitive factors
upregulate TGF expression in response to mechanical load. One
such factor is the early growth response 1 (Egrl) transcription
factor, which was identified as a tendon mechanosensitive gene
during the muscle-dependent phase of chick and mouse tendon
development (Lejard et al.,, 2011) and was shown to directly
regulate TGFB gene transcription in adult mouse tendons (Gaut
etal., 2016; Guerquin et al., 2013). In the absence of EGR1, tendon
collagens and matrix proteins are markedly reduced, and EGR1 was
shown to upregulate Scx and tenomodulin (7nmd) in stem cells and
Collal in vivo (Guerquin et al., 2013; Lejard et al., 2011).

Finally, it has been suggested that cell-cell communication might
play a role in transducing mechanical signals during tendon
development. Tenocytes are known to be interconnected via gap
junctions, which are multiprotein complexes that undergo assembly
or disassembly and mediate cell-cell communication. These
junctions are thought to mediate tendon response to mechanical
stimulation. In particular, connexin 43 (also known as gap junction
protein, alpha 1)-containing gap junctions were shown to inhibit
collagen synthesis in response to mechanical load in adult mice, and
non-specific gap junction inhibition was shown to suppress the
upregulation of collagen synthesis, which is expected to increase in
response to mechanical load (Maeda et al., 2012; Waggett et al.,
2000).

Force-mediated control of the development of tendon-bone
attachments

Owing to large differences in the mechanical properties of tendons
and bones, the site at which they attach to one another, termed the
enthesis, is considered a weakness point in the musculoskeletal
system. Indeed, the attachment between the very elastic tendon and
the very rigid bone creates a point of high stress concentration
during force transfer, which could lead to detachment (Liu et al.,
2014; Thomopoulos, 2011). Dissipation of this stress is achieved
either by the formation of fibrous attachments, in which tendon
fibers are inserted into the cortical bone in a structure that resembles
aroot system, or by the formation of a fibrocartilaginous attachment
composed of different layers that gradually change in stiffness
(Benjamin et al., 2006; Schwartz et al., 2012; Zelzer et al., 2014).
Although enthesis development begins in the embryo, the formation
of the unique transitional tissue and its subsequent mineralization
occur postnatally.

Embryonic development of the enthesis is a two-stage process.
First, a specialized pool of cells coexpressing Sox9 and Scx are
specified by TGF signaling between the cartilage anlagen and the
developing tendon (Blitz et al., 2013; Sugimoto et al., 2013). These
progenitors are unaffected by mechanical cues and, ultimately, give
rise to the enthesis and the bone eminence. By contrast, subsequent
development of the bone eminence is regulated by the tendon
and is mechanically sensitive. For example, bone eminence cell
proliferation and growth depend on muscle contraction, as
eminences are lost in both muscleless and paralyzed mice and in
paralyzed chick (Hall and Herring, 1990; Hosseini and Hogg, 1991;
Pa and Pai, 1965; Rot-Nikcevic et al., 2006). However, the
mechanism that transduces the mechanical signal during bone
eminence cell proliferation has not been discovered. Additionally,
an enthesis still forms in the absence of mechanical signals and
eminence formation, although its functionality has not been
determined (Blitz et al., 2009).

It was recently shown that during postnatal enthesis development,
Hedgehog (Hh)-responsive cells, identified by GLI-Kruppel family
member GLI1 (Glil) expression, give rise to the fibrocartilage
enthesis, specifically to its mineralized portion (Dyment et al., 2015;
Schwartz et al., 2015), and that in the absence of Hh signaling in Sex™
cells the mineralized fibrocartilage is severely decreased
(Breidenbach et al., 2015; Dyment et al., 2015; Liu et al., 2013;
Schwartz et al., 2015). Hh signaling is considered a mechanosensitive
pathway (Jahan et al., 2014; Rais etal., 2015; Wuetal., 2001). In line
with this, it has been demonstrated that botox-induced paralysis
results in an increase in Glil"* cells in the fibrocartilage enthesis,
along with reduced mineralized enthesis fibrocartilage, suggesting
that mechanical signals regulate the function of G/iI™ cells (Schwartz
et al., 2015). In several other studies, botox-induced paralysis also
caused increased osteoclast activity and bone resorption, and the
formation of disorganized fibrocartilage in the mouse supraspinatus
enthesis (Thomopoulos, 2011; Thomopoulos et al., 2010).

Postnatal formation of fibrous entheses is also regulated by
PTHtrP. In mice, ablation of Pthrp in Scx™ cells results in abnormal
fibrous enthesis formation (Wang et al., 2013). Additionally, Pthrp
expression was shown to be regulated mechanically in fibrous
entheses (Chen et al., 2007). Muscle unloading results in a dramatic
decrease in PTHrP levels, suggesting a mechanistic explanation for
the ability of muscle load to regulate the development of these
entheses. PTHrP and THH were also shown to co-regulate bone
elongation through the formation of a negative-feedback loop, and
both were shown to be mechanosensitive (Broadus et al., 2007;
Vortkamp et al., 1996; Wu et al., 2001). However, it is still unclear
whether these two factors interact during enthesis development and
mediate the response to mechanical signals, or whether they act
independently or in different types of entheses.

The influence of forces on muscle development

The effect of muscle contraction on the development of muscle itself
has been largely neglected. Nonetheless, some recent studies have
shown that, similar to the development of other musculoskeletal
tissues, the initial specification of myoblasts is independent of
mechanical cues (reviewed by Lemke and Schnorrer, 2017), whereas
during subsequent stages of development mechanical signals
originating from the developing muscle units are needed for proper
muscle formation.

During myofiber formation, the early attachment of myotubes to a
tendon results in passive tension. This tension, which is needed for
the proper assembly and alignment of myotubes during their
formation, is suggested to be maintained through titin, a protein that
resembles a spring extending half the length of the sarcomere
(reviewed by Gautel and Djinovic-Carugo, 2016; Lemke and
Schnorrer, 2017; Valdivia et al., 2017). It has also been shown that,
in Drosophila, mechanical tension and spontaneous muscle
twitching precede the formation of immature muscle fibers
(Weitkunat et al., 2014, 2017).

Subsequently, mechanical signals are needed for muscle
morphogenesis and mechanical adaptation. In the absence of
muscle contraction, muscles are smaller and display a delay in
splitting, whereas exercised muscles become larger (de Lima et al.,
2016; reviewed by Lemke and Schnorrer, 2017). Additionally, in
paralyzed mdg mice, a reduction in myotube number and muscle
striation is observed (Pa and Pai, 1965). Mechanical signals also
regulate the maintenance of embryonic muscle progenitors. It was
previously shown that strain drives the differentiation of mesenchymal
stem cells into myoblasts in vitro (De Lisio et al., 2014; reviewed by
Valdivia et al., 2017) and that muscle contraction is necessary to
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maintain the pool of muscle progenitor cells in chick embryos (de
Lima et al., 2016). The transcription factor YAP1 was suggested to
play a role in this latter context; rigid paralysis in chick reduces the
activity of YAP, which was shown to positively regulate jagged 2
(JAG2), a component of the Notch signaling pathway. Under
immobilization, YAP, and consequently JAG2, are downregulated,
causing a reduction in the number of muscle progenitors and in muscle
size and an increase in muscle differentiation (de Lima et al., 2016).

Mechanical forces and the development of muscle-tendon
attachments

Muscle force is transferred to the tendon through the MTJ, which is
thought to form in a two-stage process. The first stage is independent
of mechanical load. During this stage in zebrafish, myoblasts secrete
an ECM that is rich in integrin ligands such as Tsp and laminin. Tsp
then facilitates the organization of a stable matrix in the MTJ, which is
needed for muscle anchoring and muscle-tendon recognition
(Subramanian and Schilling, 2014). Accordingly, zsp4 depletion in
zebrafish causes muscle detachment upon contraction due to reduced
integrin signaling in the ECM (Subramanian and Schilling, 2014;
reviewed by Subramanian and Schilling, 2015).

During the second stage, mechanical load from myoblasts
triggers Scx expression in tendon progenitor cells through the
regulation of TGFB-SMAD?3 signaling. Scx, in turn, regulates the
expression of collagens in the tendon and in the MTJ ECM, and
facilitates MTJ maturation (Maeda et al., 2011; reviewed by
Subramanian and Schilling, 2015). Both COL22 and COL12 play
important roles in MTJ integrity under tension. Whereas Col22 was
shown to maintain muscle-tendon attachment in zebrafish (Charvet
et al., 2013), it was shown in chick that COL12 interacts with TNC
and decorin (DCN) to crosslink other collagens during fibril
maturation (Veit et al., 2006). Both of these collagens have been
implicated in myopathies and tendinopathies in humans (reviewed
by Subramanian and Schilling, 2015). Additionally, FGF4 secreted
from muscle tips was shown to maintain Scx and 7nc expression in
chick tendons (Edom-Vovard et al., 2002; reviewed by Hasson
etal., 2017). As the MTJ matures, tenocytes secrete most of the MTJ
ECM proteins and adjust its composition. This allows the MTJ to
effectively transfer muscle load and prevent muscle-tendon
detachment (reviewed by Shwartz et al., 2013; Subramanian and
Schilling, 2015).

Mechanical forces and NMJ development

The NMJ is a highly specialized chemical synapse that forms
between a motor neuron and a muscle (Fig. 2). Spinal motor neurons
innervate individual muscles in order to transmit nerve impulses
from neurons to muscle fibers, under the regulation of the central
nervous system (reviewed by Legay and Mei, 2017; Tintignac et al.,
2015), whereas proprioceptive sensory neurons convey information
about the state of the muscle to central neurons through
monosynaptic connections between sensory and motor neurons
(reviewed by Chen et al., 2003). Importantly, impairments and
pathologies that affect NMJs, which can be congenital, autoimmune
or due to toxins, can lead to loss of synapses, nerve degeneration or
impaired myelination of the nerves, eventually resulting in paralysis
or muscle weakness (reviewed by Tintignac et al., 2015).

NMIJ formation consists of two stages. In the first, which is nerve
independent, a postsynaptic domain is formed in the muscle through
a process called pre-patterning. The pre-patterned postsynaptic
domain is composed of synaptic muscle-specific kinase (MuSK),
low density lipoprotein receptor-related protein 4 (LRP4) and
rapsyn proteins, which together form a complex that induces AChR
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clustering (Lin et al., 2001; Yang et al., 2001). In the second, nerve-
dependent stage, agrin secreted from the nerve end binds to LRP4
and MuSK, and mediates further differentiation and maturation of
the synapse (reviewed by Legay and Mei, 2017; Tintignac et al.,
2015).

Numerous pieces of evidence indicate that innervation affects
myotube maturation and muscle development. Innervation can affect
the type of muscle fibers or their contractile properties by regulating
the expression pattern of muscle-specific genes (reviewed by
Tintignac et al, 2015; Washabaugh et al., 1998, 2007).
Additionally, AChRs were shown to be required for the induction of
spontaneous contraction during embryogenesis (Jaramillo et al.,
1988). As for the effect of muscle contraction on NMJ development, it
has previously been shown that temporal disuse and muscle paralysis
cause nerve and NMJ degeneration in adult animals (Fahim, 1989),
and that active muscles are needed for proper neuronal elimination
during chick development (Pittman and Oppenheim, 1979). Paralyzed
mdg mice exhibit excessive intramuscular nerve branching and
increased numbers of ACh and AChR clusters per myofiber; similar
phenotypes are seen in chronically paralyzed mouse embryos
(Oppenheim et al,, 1986; Pingcon-Raymond and Rieger, 1982).
Additionally, muscle contraction was shown to promote expression of
AChRs after denervation (Lemo et al., 1985).

Interesting new candidates for mechanical signal transduction
during NMJ development have recently been discovered. One of
these is YAP, the knockout of which in mouse muscles results in
smaller and more broadly distributed AChR clusters, many of which
are not covered by nerves, unlike in wild-type mice (Zhao et al.,
2017). These mice also displayed a decrease in B-catenin in the
cytoplasm and nucleus, which suggests that YAP regulates, at least
in part, Wnt signaling in the NMJ during its formation. A growing
body of evidence implicates the Wnt signaling pathway in NMJ
formation (Barik et al., 2014) and, more recently, in the mechanical
control of NMJ development. WNT4, WNT9A and WNTI11 were
shown to enhance AChR clustering in cell culture (Zhang et al.,
2012), whereas Wnt4 and Wntl1 initiate muscle pre-patterning in
zebrafish (Gordon et al., 2012). Moreover, it was recently shown
that WNT4 and WNT11 enhance motor axon outgrowth and AChR
clustering in mice (Messéant et al., 2017).

Conclusions

‘We see, dimly perhaps, but yet with all the assurance of conviction, that
between muscle and bone there can be no change in the one but it is
correlated with changes in the other; that through and through they are linked
in indissoluble association; that they are only separate entities in this limited
and subordinate sense, that they are parts of a whole which, when it loses its
composite integrity, ceases to exist.” (pp. 713-714, Thompson, 1917)

In this Review, we have attempted to highlight the main concepts
and recent findings on the mechanobiology of musculoskeletal
development, focusing on the influence of forces exerted by muscle
contraction on neighboring tissues (summarized in Fig. 3). The
evidence cited here clearly establishes that muscle forces regulate
the development of all the components of the musculoskeletal
system. Interestingly, in most cases these forces are not involved in
the initial stages of progenitor specification and early patterning;
yet, their effect is later necessary for progenitor proliferation,
differentiation and for tissue morphogenesis. This muscle-
dependent stage of musculoskeletal development initiates a self-
amplifying positive-feedback loop between the developing tissues
and the mechanical forces. Once the forming tissues become
functional, their coordinated activity generates mechanical forces
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and structured movements that further regulate musculoskeletal
development and assembly, as well as functional adaptation of
coordinated movement. Nevertheless, future studies might still
uncover some form of mechanical regulation during the initial
stages of musculoskeletal development.

Despite the progress that has been made in recent years, a number
of challenges still lie ahead. In particular, we lack information about
the way that mechanical signals are transformed into molecular
signals and biological outputs. This information is crucial not only for
a comprehensive understanding of these developmental processes,
but also for the development of new therapeutic approaches for
treating human diseases related to abnormal musculoskeletal
development. In addition, much of our knowledge has come from
experiments in in vivo models in which muscles were inactivated
either genetically or chemically. Notwithstanding the enormous value
of'this approach, the ‘all-or-nothing’ situation has prevented the study
of specific patterns of movement and force, which might be essential
for proper development.

To tackle these challenges, it will be necessary to increase the
resolution of the analyses. More detailed and accurate mapping of
spatiotemporal patterns of force on the one hand, and gene expression
on the other, will allow for better correlation between the two. This
requires the development of new techniques for manipulating muscle
activity, including temporal or partial inhibition as well as the
inactivation of single muscles. This approach will provide important
information regarding, for example, movement patterns and tissue
deformation. Another potential approach is to generate mutant
animals exhibiting altered movement patterns. Finally, to increase the
resolution of biological outcome assessment of different mechanical
signals, it is necessary to improve methods for data analysis,
including single-cell transcriptome analysis and single-molecule
fluorescent in situ hybridization. Overall, these combined efforts will
hopefully allow us to move towards a more mechanistic
understanding of the forces that operate in the context of
musculoskeletal system development and disease.
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