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ABSTRACT
Bilaterality – the possession of two orthogonal body axes – is the
name-giving trait of all bilaterian animals. These body axes are
established during early embryogenesis and serve as a three-
dimensional coordinate system that provides crucial spatial cues for
developing cells, tissues, organs and appendages. The emergence
of bilaterality was amajor evolutionary transition, as it allowed animals
to evolve more complex body plans. Therefore, how bilaterality
evolved and whether it evolved once or several times independently
is a fundamental issue in evolutionary developmental biology. Recent
findings from non-bilaterian animals, in particular from Cnidaria, the
sister group to Bilateria, have shed new light into the evolutionary
origin of bilaterality. Here, we compare the molecular control of body
axes in radially and bilaterally symmetric cnidarians and bilaterians,
identify the minimal set of traits common for Bilateria, and evaluate
whether bilaterality arose once or more than once during evolution.
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Introduction
Most animals belong to Bilateria (see Glossary, Box 1), a group
encompassing organisms with three germ layers (ectoderm,
endoderm and mesoderm) and two body axes, i.e. an anterior-
posterior axis and a dorsal-ventral (D-V) axis. Body axes can be
thought of as systems of molecular coordinates (Niehrs, 2010),
allowing different parts of the body to develop differently. For
example, the central nervous system develops at the dorsal side of
the vertebrate body, but ventrally in insects and many other animals.
The anterior end is usually characterized by a concentration of
sensory organs, such as eyes and the olfactory system. Bilaterality
also favours the formation of left-right asymmetry in many animals,
including vertebrates. However, among the non-bilaterian Metazoa
(see Glossary, Box 1), other types of symmetry exist (Fig. 1). For
example, sponges (Porifera), although missing a clear body
symmetry in their modular, sessile adult state, have an obvious
radial symmetry as larvae. Comb jellies (Ctenophora) are bi-radially
symmetric, with an oral-aboral axis and two other planes of
symmetry, one going through the bases of the tentacles and the other
through the slit-like mouth. Placozoans are irregularly shaped,
crawling animals that exhibit a dorsal and ventral surface, although
how these surfaces arise is unclear as placozoan embryogenesis is
unknown. These various types of symmetry and body axes raise the
question of how and when bilaterality – a trait that likely contributed
to the diversification of body plans (see Box 2) –might have arisen.
In the debate about the evolutionary origin of bilaterality,

Cnidaria, which are robustly recovered as the phylogenetic sister

group of Bilateria (Cannon et al., 2016; Hejnol et al., 2009; Moroz
et al., 2014; Philippe et al., 2011; Pisani et al., 2015; Whelan et al.,
2015), are of particular interest. Cnidarian morphology does not
permit one to distinguish a dorsal and a ventral side, and no obvious
left-right asymmetry exists. However, while four cnidarian classes
(Hydrozoa, Scyphozoa, Cubozoa and Staurozoa; uniting various
jellyfish and hydroids) are combined into the Medusozoa, which
consist of animals with radial symmetry, members of the fifth
cnidarian class Anthozoa (encompassing hard corals, sea
anemones, soft corals and sea pens) (Collins et al., 2006) are
bilaterally symmetric (Fig. 1); in addition to the oral-aboral axis that
is common to all Cnidaria, anthozoans have a second, so-called
‘directive’, axis running along the slit-like pharynx orthogonally to
the oral-aboral axis. It is therefore particularly interesting to examine
whether the bilaterality of Anthozoa and Bilateria was inherited
from a bilaterally symmetric common ancestor and then lost in the
radially symmetric Medusozoa, or whether it evolved convergently
(Fig. 1). Furthermore, in the case of a homologous origin, we wish
to know which of the cnidarian body axes correspond to the
anterior-posterior and to the D-V body axis of Bilateria. In this
review, we summarize and compare the molecular regulation of
body axes in Bilateria and in cnidarians, as well as in Porifera and
Ctenophora, and evaluate different scenarios of how bilaterality may
have emerged. In order to do so, we first define the sets of features
that are typical for the body axes of bilaterians, cnidarians and the
evolutionary outgroups to the bilaterian-cnidarian clade: the
ctenophores and sponges.

Reconstructing the bilaterian ancestor
Axis formation has been studied most thoroughly in several
vertebrates (i.e. mouse, zebrafish, Xenopus) and especially in the
fruit fly Drosophila, which became the textbook example. In
Drosophila, maternally established gradients of the transcription
factor Bicoid and the RNA-binding protein Nanos define the
anterior and posterior ends, and activate a complex cascade of
gene regulatory interactions that eventually lead to segmentation
and regional specification of the anterior-posterior axis (Gilbert,
2010). However, in other arthropods, such as beetles, centipedes
and spiders, as well as in vertebrates, segmentation involves a
Hairy/Notch/Delta-dependent clock-like oscillation mechanism,
which is initiated and controlled by a gradient of Wnt signalling
(and, in the case of vertebrates, also by FGF signalling) from the
posterior end (Chipman and Akam, 2008; El-Sherif et al., 2012;
Gomez et al., 2008; Janssen et al., 2010; McGregor et al., 2008;
Schönauer et al., 2016; Stollewerk et al., 2003). Strikingly, the
crucial developmental regulator bicoid turned out to be an
evolutionary innovation within Diptera (the insect order that
includes Drosophila) that arose through duplication and
divergence of the hox3 gene homologue zerknüllt (Stauber
et al., 2002). This clearly shows how plastic the crucial aspects
of the regulation of animal development can be, and also
highlights the importance of broad phylogenetic sampling when
defining ancestral molecular features.
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In recent years, careful gene expression studies have shown
stunning similarities in the patterning processes between vertebrates
and invertebrates. The most important similarities are: (1) anterior
expression of the ‘anterior brain genes’ six3/6, foxq2, rx, iroquois
and fgfr (Marlow et al., 2014; Steinmetz et al., 2010; Tosches and
Arendt, 2013; Vopalensky et al., 2012); (2) posterior expression of
caudal and wnt (Gomez et al., 2008; Janssen et al., 2010; Wu and
Lengyel, 1998); (3) oscillating expression of hairy/hes downstream
of Wnt and Delta/Notch signalling in the developing segments
(Gomez et al., 2008; McGregor et al., 2008; Schönauer et al., 2016;
Stollewerk et al., 2003); (4) patterning of the anterior-posterior axis
by the staggered expression of Hox genes (Krumlauf et al., 1993;
Mallo and Alonso, 2013; Montavon and Soshnikova, 2014); (5)
repression of BMP signalling on the side of the D-V axis where the
central nervous system will form (Mizutani et al., 2006; Sasai et al.,
1995; Smith and Harland, 1992); (6) similar expression of the
foregut and hindgut marker genes in the larvae of Deuterostomia
and Protostomia (see Glossary, Box 1) (Arendt et al., 2001); and (7)
similar mediolateral expression of the transcription factor encoding

genes nk2.2, nk6, pax6 and msx, which pattern the ventral nerve
cord of flies and worms, and the dorsal neural tube of vertebrates
(Arendt et al., 2008; Denes et al., 2007; Tessmar-Raible et al.,
2007).

As it does not seem likely that these similarities evolved multiple
times independently, one can reconstruct a relatively complex
hypothetical common ancestor of all Bilateria – the urbilaterian (see
Glossary, Box 1) – resembling an annelid worm: i.e. with an
anterior brain, a central nervous system in the trunk, a segmented
body and a through gut (Tessmar-Raible and Arendt, 2003).
However, this hypothesis (the ‘complex urbilaterian’ hypothesis)
has been challenged in a recent review by Hejnol and Lowe (Hejnol
and Lowe, 2015). The authors argue that the highly complex spatial
expression of the transcription factors known to pattern the nervous
system along the anterior-posterior axis does not necessarily imply
the presence of a morphologically complex central nervous system
in the animal. As an example, they illustrate this with the
hemichordate Saccoglossus kowalewski, which exhibits a simple
nervous system and expression of nervous system-patterning genes
similar to that in Chordata (see Glossary, Box 1; Hejnol and Lowe,
2015). They show that the genes patterning the forebrain (rx, six3,
foxg, nk2-1), midbrain (emx, otx, pax6, lim1/5) and hindbrain (en,
gbx) in chordates are expressed in, respectively, the anterior, middle
and posterior domains in S. kowalewski, yet not in the nervous
system, but throughout the ectoderm. Based on this, they argue that
the initial role of these genes might have been to pattern the
ectoderm, not only the neuroectoderm (Hejnol and Lowe, 2015). It
is difficult, though, to exclude the possibility that the deuterostome
ancestor had a complex central nervous system that was lost at the
base of Ambulacraria (see Glossary, Box 1). The main challenge to
the ‘complex urbilaterian’ hypothesis comes, however, with their
second argument, which we outline below.

Box 1. Glossary
Acoela. A group of animals with a single gut opening previously thought
to be members of flatworms, but now usually placed within the earliest
branching bilaterian lineage Xenacoelomorpha.
Ambulacraria. Besides chordates, one of the two major clades of
Deuterostomia. Ambulacraria includes echinoderms (sea urchins,
starfish, etc.) and hemichordates. In contrast to chordates,
ambulacrarians do not have a centralized nervous system and, similar
to non-deuterostome Bilateria, possess a ventral BMP signalling
minimum.
Amphistomy. The mode of gastrulation in which the lateral lips of the
blastopore fuse in a slit-like fashion leaving two openings: an anterior
mouth and a posterior anus connected by a U-shaped gut.
Bilateria. The phylogenetic group of bilaterally symmetric animals,
consisting of three germ layers. Bilateria are subdivided into
Xenacoelomorpha, Deuterostomia and Protostomia.
Chordata. The second major clade of Deuterostomia, including
cephalochordates (amphioxus), tunicates (ascidians, larvaceans, etc.)
and vertebrates.
Deuterostomia. An animal group consisting of Ambulacraria and
Chordata. The name comes from the fact that their mouth forms
separately from the blastopore.
Ecdysozoa. An animal clade uniting moulting animals (nematodes,
priapulids, arthopods, etc.).
GLWamide-positive neurons. Neurons expressing neuropeptides
carrying GLWamide on the C terminus.
Lophotrochozoa. An animal clade uniting groups with trochophore-like
larvae (molluscs, annelids, ribbon worms, etc.) and lophophorate
animals (bryozoans, brachiopods, etc.). Currently considered as a
subclade within Spiralia, which include also Gnathifera
(gnathostomulids, rotifers, etc.) and Rouphozoa (flatworms,
gastrotrichs), and uniting animals with spiral cleavage.
Mesenteries. Endodermal folds of anthozoans harbouring longitudinal
muscles and gonads.
Metazoa. The clade uniting all animal phyla.
Planula. A type of diploblastic ciliated larva typical for all cnidarian
clades.
Primary polyp. A developmental stage following metamorphosis of the
cnidarian planula. A Nematostella primary polyp has four tentacles. As it
develops, further tentacles will intercalate between the first four.
Protostomia. An animal group well supported by molecular phylogenies
and containing Spiralia and Ecdysozoa. The name comes from the
notion that, in protostomes, the mouth forms directly from the blastopore,
which is not always the case.
Urbilaterian. The last common ancestor of all Bilateria.
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Fig. 1. The distribution of different body symmetries among animals.
Alternative scenarios that can explain the emergence of bilaterality are
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oral-aboral; A-P, anterior-posterior; D-V, dorsal-ventral.

3393

HYPOTHESIS Development (2017) 144, 3392-3404 doi:10.1242/dev.141507

D
E
V
E
LO

P
M

E
N
T



In order to reconstruct ancestral features, one must rely on
phylogenetic trees. During the past 20 years, views on evolutionary
relationships among animals have experienced several major
changes: from the ‘new animal phylogeny’ splitting Bilateria into
Lophotrochozoa (currently, part of a larger clade Spiralia),
Ecdysozoa and Deuterostomia (see Glossary, Box 1) (Adoutte
et al., 2000; Aguinaldo et al., 1997; Halanych et al., 1995; Struck
et al., 2014), up to the recent disputed placement of Ctenophora as
the earliest branching animal group (Cannon et al., 2016; Dunn
et al., 2008; Hejnol et al., 2009; Moroz et al., 2014; Philippe et al.,
2011; Pisani et al., 2015; Simion et al., 2017; Whelan et al., 2015).
One other such major change was the proposed placement of the
Acoela (see Glossary, Box 1), previously nested within the spiralian
phylum Platyhelminthes (flatworms), as a sister to all other Bilateria
(Cannon et al., 2016; Hejnol et al., 2009; Ruiz-Trillo et al., 1999). In
all recent trees (Cannon et al., 2016; Hejnol et al., 2009; Philippe
et al., 2011; Pisani et al., 2015; Struck et al., 2014; Whelan et al.,
2015), annelids occupy a position within Spiralia, and several
spiralian clades encompassing unsegmented animals with non-
centralized trunk nervous systems diverged earlier than annelids
(Struck et al., 2014). This would imply multiple independent losses
of segmentation and multiple independent decentralizations of the
trunk nervous system outside annelids, arthropods and chordates
(Hejnol and Lowe, 2015) – an event arguably as improbable as
the independent emergence of the similarities in the patterning

mechanisms we mentioned above. Moreover, if we accept that
Xenacoelomorpha (acoels, nemertodermatids and xenoturbellids)
represent a sister group to all remaining Bilateria, and that the
absence of a through gut in them is not a result of a secondary
reduction, the urbilaterian might have looked quite different. This
unsegmented ‘simple urbilaterian’ with a non-centralized nervous
system in the trunk might have had a blind gut and resembled an
acoel worm (Hejnol and Martindale, 2008a; Srivastava et al., 2014).
In future, it will be essential to establish whether some traces of the
complex genetic regulation suggested for the ‘complex urbilaterian’
are recognizable in the unsegmented members of Ecdysozoa and
Spiralia with non-centralized nervous systems (Hejnol and Lowe,
2015).

Regardless of which of the two hypotheses may be correct,
comparison of the ‘complex urbilaterian’ and the ‘simple
urbilaterian’ hypotheses allows us to define a minimal set of
ancestral bilaterian characters, which we use in the cnidarian-
bilaterian comparison below. This comparison suggests that an
urbilaterian seems to have been a worm-like animal with an
anteriorly localized neural plexus or brain, which expressed apical
organ/forebrain genes such as Wnt antagonists, six3/6, foxq2,
iroquois. It had a posterior-to-anterior gradient ofWnt signalling. Its
anterior-posterior axis was patterned by staggered Hox gene
expression, and its D-V axis was regulated by a gradient of BMP
signalling. Whether it had a through or a blind gut is uncertain, and
we thus address both possibilities separately, when comparing the
relation between the cnidarian and bilaterian body axes below.

The bilaterally symmetric non-bilaterian
Owing to their sister relationship to Bilateria, the Cnidaria are highly
informative for addressing the question of how bilaterality might
have arisen. All cnidarians have a main body axis, termed the oral-
aboral axis, which in medusozoans (Hydrozoa, Cubozoa,
Scyphozoa, Staurozoa) is also the only body axis. All molecular
evidence from Hydra, Hydractinia, Clytia and Nematostella
suggests that the oral-aboral body axis is patterned by Wnt/β-
catenin signalling (Kraus et al., 2016; Lapébie et al., 2014; Lee
et al., 2007; Momose et al., 2008; Momose and Houliston, 2007;
Röttinger et al., 2012; Wikramanayake et al., 2003). Suppressing
Wnt/β-catenin signalling results in the failure to gastrulate and form
an oral-aboral axis both in the hydroid Clytia and in the anthozoan
Nematostella (Lecler̀e et al., 2016; Momose et al., 2008; Momose
and Houliston, 2007; Wikramanayake et al., 2003). In line with this,
ectopic activation of Wnt/β-catenin signalling results in the
formation of ectopic heads in the hydroids Hydra and
Hydractinia, as well as in Nematostella (Broun et al., 2005;
Guder et al., 2006; Kraus et al., 2016; Plickert et al., 2006). In terms
of embryonic axial patterning, the best-studied cnidarian models are
the radially symmetric hydroid Clytia hemisphaerica and the
bilaterally symmetric sea anemone Nematostella vectensis. As
mentioned above, anthozoans have an additional, second body axis
perpendicular to the oral-aboral axis, and thus are particularly
informative when examining the evolution of bilaterality. We
therefore concentrate on the anthozoan Nematostella (Fig. 2) and
provide a brief overview of the establishment and molecular control
of its body axes.

Formation of the oral-aboral body axis in Nematostella
In Bilateria, gastrulation generally takes place at the vegetal pole of
the embryo, where yolk-rich blastomeres give rise to the
endodermal lineage (Brusca et al., 1997). Strikingly, with the few
exceptions when endoderm is formed in an axial position-

Box 2. Bilaterality and the diversification of body plans
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coordinate system of six positional values along the oral-aboral (O-A)
body axis and four positional values from the centre line to the periphery,
then a radially symmetric organism has 24 unique arbitrary coordinates
(top). By contrast, a bilaterally symmetric organism with similarly spaced
positional values has six positional values along the anterior-posterior
(A-P) axis, seven along the dorsal-ventral (D-V) axis and four along the
left-right (L-R) axis, which makes 168 unique coordinates (bottom).
Hence, the emergence of bilaterality has likely contributed to the
diversification of body plans among Bilateria, which make up the vast
majority of the described animal phyla.
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independent manner, cnidarians, including Nematostella, gastrulate
from the animal pole (Byrum and Martindale, 2004; Fritzenwanker
et al., 2007; Lee et al., 2007; Tardent, 1978) and their animal
blastomeres form the endoderm. Gastrulation from the animal pole
is also a feature of the earlier branching phylum Ctenophora. It has
been postulated that an animal-vegetal axis inversion leading to
gastrulation from the vegetal pole is likely to have happened at the
base of Bilateria (Martindale and Hejnol, 2009). This notion is
supported by similar developmental capacities of the cnidarian
animal and bilaterian vegetal hemisphere material. Bisection
experiments of cleaving or gastrulating Nematostella embryos
(Fritzenwanker et al., 2007; Lee et al., 2007) showed that fragments
of the embryo containing animal hemisphere material are capable of
forming normal, although proportionally smaller, primary polyps
(see Glossary, Box 1; Fig. 3A), whereas fragments containing only
vegetal hemisphere material develop, in most cases, into ciliated
spheres of aboral tissue without any obvious polarity. The same
experiment (Fig. 3B) performed with sea urchin embryos yields
similar results; however, it is the vegetal halves of the embryo that
are capable of giving rise to larvae, while the animal halves, like the
vegetal halves in Nematostella, give rise to ciliated spheres
(Hörstadius, 1939). Body axis inversions, like the suggested D-V
axis inversion at the base of chordates (Arendt and Nübler-Jung,
1994; Geoffroy St.-Hilarie, 1822), further complicate the concept of
the body axes homology. However, we consider cnidarian and
bilaterian gastrulation poles to be homologous based on: (1) their
similar developmental capacity to form endomesoderm; (2) similar
morphogenetic movements necessary for gastrulation (Tardent,
1978); and (3) similar regulatory events leading to the specification
of the endomesodermal territory (Henry et al., 2008; Lee et al.,
2007; Logan et al., 1999; Schneider et al., 1996; Wikramanayake
et al., 2003) and driving gastrulation (Arendt et al., 2001;
Kumburegama et al., 2011; Lee et al., 2007; Tada and Smith, 2000).

The axial organizer in Nematostella
The bisection experiments discussed above suggest the presence of
a signalling centre in the animal hemisphere of the Nematostella
embryo capable of instructing naïve cells in the vegetal hemisphere.
Transplantation of minute fragments from different parts of
the Nematostella mid-gastrula into the aboral ectoderm showed
that only the blastopore lip implants (Fig. 3C), but not the pre-

endodermal plate or the aboral ectoderm implants, are able to induce
the formation of an ectopic body axis in the recipient (Kraus et al.,
2007). Similar to the situation in the famous Mangold-Spemann
experiment (Spemann and Mangold, 1924), this twin new body is
mainly built by recipient cells, and only the tip of the axis contains
donor cells (Kraus et al., 2007).

Molecularly, the capacity of the animal hemisphere material to
drive the development of the oral-aboral axis relies on Wnt/β-
catenin signalling components. Dishevelled protein is localized at
the animal pole of the unfertilized Nematostella egg and then
forms a gradient in the animal half of the blastula (Lee et al., 2007).
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Fig. 3. β-Catenin signalling-dependent axial organizer capacity.
(A,B) Bisection experiments inNematostella (A) and sea urchin (B) demonstrate
the presence of axial determinants in the cytoplasm inherited by cells giving
rise to the gastrulation pole. For both Nematostella and the sea urchin, a
primary polyp (A) or a pluteus larva (B) with normal body axes develops
from only the half of the embryo where gastrulation would normally take place.
(C,D) Transplantations of the blastopore lip of Nematostella, just like
transplantations of the amphibian Nieuwkoop centre (D) or Spemann-Mangold
organizer (E) into a ventral position, result in the formation of the Siamese twin
embryos. An, animal pole; Veg, vegetal pole; D, dorsal; V, ventral.
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Fig. 2. The life cycle of Nematostella. The life cycle of Nematostella
vectensis is shown (not to scale). The cleaving egg and early gastrula exhibit
radial symmetry, which is then broken at late gastrula stage.
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β-Catenin is stabilized in the animal hemisphere nuclei from the 32-
cell stage onwards and marks the gastrulation site (Wikramanayake
et al., 2003). Sequestering β-catenin or knocking it down
completely blocks gastrulation, and the embryo remains a perfect
sphere without any trace of body axes (Lecler̀e et al., 2016;
Wikramanayake et al., 2003). However, besides its role in
gastrulation, Wnt signalling is also involved in patterning the
oral-aboral axis ofNematostella. Eleven out of 12NematostellaWnt
genes are expressed orally in staggered domains along the oral-
aboral axis of the embryo and larva, while the genes encoding the
Wnt antagonists Dickkopf1/2/4 and SFRP1 are expressed at the
aboral pole (Kusserow et al., 2005; Lee et al., 2006; Lecler̀e et al.,
2016; Marlow et al., 2013; Sinigaglia et al., 2015). Recent work has
shown that the axis-inducing capacity of the blastopore lip of
Nematostella gastrulae is conveyed by two Wnt ligands: Wnt1 and
Wnt3 (Kraus et al., 2016). Moreover, co-expressing these two Wnt
ligands in any region of the gastrula ectoderm is sufficient to
transform it into an axial organizer (Kraus et al., 2016). The
existence of a Wnt/β-catenin-dependent axial organizer associated
with the blastopore (Fig. 3C-E) appears to be a conserved feature
found in cnidarians, vertebrates (Nieuwkoop centre functioning as
an axial organizer and inducing the Spemann-Mangold organizer)
(De Robertis et al., 2000; Gimlich, 1985; Heasman et al., 1994) and
sea urchins (Logan et al., 1999; Ransick and Davidson, 1993), but
possibly also in protostomes (Itow et al., 1991; Nakamoto et al.,
2011), although the molecular underpinnings of the axial organizer
capacity in protostomes are still understudied. Taken together, these
studies highlight that the definitive oral-aboral axis of the
Nematostella embryo corresponds to the animal-vegetal axis of
the egg, and that its development is Wnt/β-catenin signalling
dependent.

Formation of a second body axis in Nematostella
Strikingly reminiscent of the situation in bilaterians, the second
directive body axis in anthozoans is regulated by BMP signalling.
However, in contrast to Bilateria, where definitive anterior-posterior
and D-V body axes are usually established simultaneously and early
in development, the directive axis in Nematostellamanifests itself at
the end of gastrulation, downstream of the maternally established
oral-aboral axis. At this time, the initial, radially symmetric
expression of the bmp4 orthologue dpp and of the BMP
antagonist chordin, which is established by β-catenin signalling
(Kraus et al., 2016), shifts to one side of the directive axis (Rentzsch
et al., 2006) in a BMP signalling-dependent symmetry break (Saina
et al., 2009) (Fig. 4A). We are just beginning to understand how the
regulatory systems of the two cnidarian body axes are wired and
coordinated (Wijesena et al., 2017); however, some interesting
details are already known. Owing to differences in the wiring of the
gene regulatory network in Nematostella, dpp and chordin are
expressed on the same side of the body axis, unlike inDrosophila or
frog (Genikhovich et al., 2015; Rentzsch et al., 2006). Once the
directive axis is established, the expression of dpp and chordin
becomes independent of the β-catenin input (Kraus et al., 2016).
Under the control of BMP signalling, two signalling centres are then
established on opposite sides of the directive axis (Fig. 4A), each
expressing its own set of BMPs (Dpp and BMP5-8, on one side; and
GDF5-like, on the other) and BMP antagonists (Chordin on one side
and Gremlin on the other). The interaction of these secreted factors
facilitates and shapes a gradient of BMP signalling along the
directive axis (Genikhovich et al., 2015; Lecler̀e and Rentzsch,
2014). As in Bilateria (Mizutani et al., 2005), Chordin likely shuttles
BMP ligands away from the chordin-expressing side, creating a

BMP signalling maximum on the opposite side of the directive axis
(Genikhovich et al., 2015; Lecler̀e and Rentzsch, 2014).
Suppression of BMP signalling leads to the disappearance of the
directive axis and the radialization of the embryo both at the
molecular and morphological level: the eight endodermal folds,
termed mesenteries (see Glossary, Box 1, Fig. 4B,C), fail to form
and the endoderm remains uncompartmentalized (Genikhovich
et al., 2015; Lecler̀e and Rentzsch, 2014).

Loss-of-function experiments have allowed the BMP signalling
network that maintains the directive axis in the early planula (see
Glossary, Box 1) of Nematostella to be deciphered. Topologically,
this network resembles the BMP signalling network that patterns the
D-V axis in Xenopus. However, strikingly, homologous molecules
occupy different nodes, and different BMP signalling modulators
are used in Nematostella and the frog to fine-tune the BMP
signalling gradient (Genikhovich et al., 2015). This can either mean
that the BMP signalling networks in vertebrates and Nematostella
evolved independently, but using the same molecular components,
or that patterning of the second axis by BMP signalling was a feature
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of the cnidarian-bilaterian ancestor, but the networks became
significantly diverged. Currently, it is impossible to choose
confidently between these two scenarios. Nonetheless, this work
highlights the importance of identifying which parameters of
signalling networks are strongly constrained and which are not.
Computer simulations using a ligand-shuttling model that describes
the situation inDrosophila, Xenopus and Nematostella equally well
(Genikhovich et al., 2015; Mizutani et al., 2005), demonstrate that if
BMP ligand shuttling by Chordin is at work, the area of active BMP
signalling is solely defined by the Chordin expression domain,
while the precise location of the BMP expression domain is
irrelevant (Genikhovich et al., 2015). Previously, experiments of
Wang and Ferguson, who expressed dpp under the control of the
even skipped stripe 2 enhancer in a dpp-null background in
Drosophila, yielded exactly the same result (Wang and Ferguson,
2005). Hence, if there is no constraint on the spatial expression of
BMPs, and as long as Chordin expression is confined, the BMP
expression domain is expected to vary freely between different
animal groups. In other words, similar or dissimilar expression
patterns of BMPs in relation to chordin between different organisms
carry little phylogenetic information. This observation is
particularly relevant, as comparison of gene expression domains
is routinely used to infer homologies in the evolutionary
developmental biology (EvoDevo) field.
One important issue, which is still understudied, is the

relationship between BMP signalling and the differentiation of the
nervous system in Nematostella. In bilaterians with centralized
nervous systems, the placement of the CNS is linked to the BMP
signalling minimum (De Robertis, 2008), although BMP signalling
is required for the differentiation of epidermal sensory neurons (Lu
et al., 2012). Nematostella has a radially symmetric diffuse nervous
system in which neurons accumulate in certain regions. Unlike in
Bilateria, neurogenesis in Nematostella begins at the blastula stage
and then continues both in the ectoderm and in the endoderm
(Nakanishi et al., 2012). Expression studies on proneural genes
suggest that certain neuronal subpopulations may originate in
distinct locations along the oral-aboral axis, either directly or
indirectly affected byWnt/β-catenin signalling (reviewed by Kelava
et al., 2015; Watanabe et al., 2014a) independent of their position
along the directive axis. The only known exception to this rule are
the GLWamide-positive neurons (see Glossary, Box 1), which
appear originally on the BMP signalling minimum side regulated by
atonal-related protein 6, but later spread throughout the body of the
animal (Watanabe et al., 2014a). However, the evolutionary
relevance of this finding, as well as the proposed similarity of the
molecular signature of the bilaterian CNS and the oral domain of the
nervous system of Nematostella (Watanabe et al., 2014a), require
further analyses. Currently, the most parsimonious explanation is
that the common ancestor of Cnidaria and Bilateria developed its
nervous system in a BMP signalling-independent way.

Nematostella Hox genes
The co-linearity and homeotic function of Hox genes along the
anterior-posterior axis in many bilaterians became a paradigm for
the conservation of developmental mechanisms in animals
(McGinnis and Krumlauf, 1992). Indeed, this feature was
enthusiastically suggested to be a molecular hallmark of being an
animal in the ‘Zootype’ concept (Slack et al., 1993). Interestingly,
staggered expression of the Hox genes along the anterior-posterior
axis is conserved even if the Hox cluster is atomized, as in the
urochordate Oikopleura (Seo et al., 2004). However, early
branching metazoans, such as sponges and ctenophores, lack Hox

genes altogether (Larroux et al., 2007; Moroz et al., 2014; Ryan
et al., 2010, 2013; Srivastava et al., 2010), and only a single Hox/
ParaHox gene has been reported in placozoans (Jakob et al., 2004).

Cnidarians are the only non-bilaterian animals with multiple Hox
genes, hence the expression patterns of these genes in relation to the
body axes are of particular interest. In Nematostella, two Hox genes
are expressed at the pharynx and the aboral pole, respectively, while
others are expressed in the body wall endoderm, leading to the
hypothesis that Hox genes pattern the oral-aboral axis in a manner
that is homologous to that patterning the anterior-posterior axis of
Bilateria (Finnerty et al., 2004). However, except for the two
aforementioned orally and aborally expressed Hox genes, all
Nematostella Hox genes as well as a non-Hox homeobox gene,
gbx, are expressed in staggered domains along the directive axis.
Furthermore, their expression domains correspond to distinct
numbers of mesenterial chambers (Fig. 4D) (Ryan et al., 2007),
suggesting a role in positioning the mesenteries. In line with this,
knockdown experiments with components of the BMP signalling
network showed that BMP signalling is crucial for the formation of
the eight endodermal mesenteries in Nematostella (Genikhovich
et al., 2015). Surprisingly, these experiments also showed that,
unlike in Bilateria, the staggered hox and gbx expression in
Nematostella is dependent on BMP signalling (Genikhovich et al.,
2015).

Regulation of Hox gene expression by BMP signalling, although
not common, is not unknown in Bilateria. It has been suggested that
early temporally co-linear Hox expression in the non-organizer
mesoderm of the frog late gastrula is BMP and Wnt dependent (In
der Rieden et al., 2010;Wacker et al., 2004). Others have shown that
BMP signalling activates Wnt expression, which, in turn, initiates
Hox gene and cdx expression during hematopoiesis in mouse and
zebrafish (Lengerke et al., 2008). Therefore, the possibility cannot
be excluded that BMP-dependent mesodermal expression of Hox
genes in vertebrates represents a remnant of the endomesodermal
expression of Hox genes in the cnidarian-bilaterian ancestor, while
Wnt- and Cdx-dependent staggered expression along the anterior-
posterior axis is a bilaterian novelty. However, the orthology of the
cnidarian Hox genes is uncertain (Chourrout et al., 2006; Ryan
et al., 2007; Thomas-Chollier et al., 2010). Cnidarian Hox genes do
not appear to fall cleanly into the paralog groups as we know them
from Bilateria. Instead there appears to have been cnidarian-specific
diversification of the ‘anterior’ and ‘non-anterior’ (Chourrout et al.,
2006) or ‘anterior’ and ‘central’ (Hudry et al., 2014; Thomas-
Chollier et al., 2010) Hox genes. Overall, the unexpected mode of
regulation of the staggered Hox gene expression in Nematostella as
well as the unclear orthology of the cnidarian and bilaterian Hox
genes raise the possibility of the independent involvement of Hox
genes in patterning of body axes in Cnidaria and Bilateria
(Genikhovich et al., 2015).

BMP signalling components in radially symmetric cnidarians
The section above has summarized the important role of the BMP
signalling gradient in patterning the D-V body axis of Bilateria and
the directive axis of anthozoans. Yet, all medusozoan classes of
cnidarians (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa) are radially
symmetric, hence lack the directive axis. As mentioned above, their
only body axis, the oral-aboral axis, is regulated by Wnt/β-catenin
signalling, as in Anthozoa. However, searches of publicly available
transcriptomes and of the Hydra genome (Chapman et al., 2010)
reveal the presence of BMP ligands and secreted antagonists,
Tolloid proteases, BMP receptors and intracellular members of the
BMP pathway in Medusozoa. The function of BMP signalling in
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Medusozoa has not been elucidated: no information on where BMP
signalling is active is currently available, and very few expression
patterns of BMP signalling components in Medusozoa have been
published. In the solitary polyp Hydra, a bmp5-8 gene is expressed
in a radially symmetric domain in the tentacle-formation zone and in
the budding zone, as well as during head regeneration (Reinhardt
et al., 2004), and a bmp2/4 gene was suggested to be present
(Watanabe et al., 2014a). However, whetherHydraBMP2/4, as well
BMP2/4 from a colonial hydroid Clytia hemisphaerica, are highly
derived BMP2/4 proteins or some other type of TGFβ molecules is
unclear. Our phylogenetic analyses (Fig. S1A and S2) show that
there is very weak support for hydrozoan BMP2/4 homologues.
Hydra also has a chordin-like (HyChdl) molecule, which is
expressed in a radially symmetric domain in the endoderm of
regenerating heads and during budding, and its expression is
downregulated in the steady state (Rentzsch et al., 2007). At its
N-terminal end, the predicted HyChdl protein is missing the first
cysteine-rich chordin domain present in other chordin molecules but
instead has an insulin-like growth factor-binding protein (IGFBP)
domain and a follistatin domain. Injection of HyChdl mRNA into
zebrafish leads to dose-dependent dorsalization of the embryo,
showing that HyChdl can antagonize BMP signalling. The
dorsalizing effect was twice as weak when mRNA encoding
HyChdl that lacked the IGFBP and follistatin domains was injected
(Rentzsch et al., 2007). Interestingly, HyChdl might be either a very
derived Chordin or not a bona fide Chordin at all. Phylogenetic
analysis of Chordin molecules shows that, unlike Nematostella
Chordin, which groups together with bilaterian Chordin/Sog
proteins, HvChdl forms an outgroup to Chordin/Sog and Kielin
molecules (Fig. S1B). No Chordin orthologue has been found in

Clytia; however, wewere able to identify a true Chordin molecule in
the transcriptome of a scyphozoan Aurelia (Brekhman et al., 2015).
In contrast, while having a clear BMP5-8, Aurelia appears to have
lost a BMP2/4 homologue. Finally, our comprehensive search of
publicly available cnidarian genomic and transcriptomic datasets
for the presence of Chordin, BMP2/4 and BMP5-8 (NCBI, www.
compagen.org, reefgenomics.org) shows that Anthozoa appear to
universally possess all three of these molecules; however,
medusozoans seem always to lack some of them (Fig. 5).

Computer simulations and experimental data suggest that
Chordin, BMP2/4, BMP5-8 and Tolloid form the core of the
BMP signalling network necessary for ligand shuttling
(Genikhovich et al., 2015; Mizutani et al., 2005), although there
are rare examples in which Chordin was lost in Bilateria without
deleterious effects to the D-V axis (Kuo and Weisblat, 2011; Özüak
et al., 2014). It is, nonetheless, tempting to speculate that loss of the
functionality of one of these proteins might have caused the loss of
bilaterality in Medusozoa. To test this hypothesis, sequencing
additional genomes followed by a comprehensive analysis of the
complement, time of expression and function of BMP signalling
components across the whole range of Medusozoa, and an
experimental test of whether Hydra chordin-like and Aurelia
Chordin are capable of shuttling BMPs will be necessary. If it
turns out that some of the BMP signalling components crucial for
ligand shuttling are missing in all Medusozoa, it will be a strong
indication, although by no means proof, for the bilaterality of the
cnidarian-bilaterian ancestor. As the BMP signalling gradient along
the directive axis also is required for the staggered expression of
Hox genes in Nematostella, it is interesting to look at Hox gene
expression in radially symmetric Medusozoa. Notably, until now,
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staggered axial expression of Hox genes has not been reported in
any medusozoan (Chiori et al., 2009; Gauchat et al., 2000; Kamm
et al., 2006; Reddy et al., 2015; Yanze et al., 2001).

Axis regulation in comb jellies and sponges
In the outgroups to the cnidarian-bilaterian clade, the biradially
symmetric Ctenophora and the radially symmetric Porifera, Wnt/β-
catenin signalling components are expressed at distinct positions
(Adamska et al., 2007; Borisenko et al., 2016; Leininger et al., 2014;
Pang et al., 2010), suggesting a gradient of Wnt/β-catenin signalling
along the body axis of the embryo and larva. Searches in the two
published ctenophore genomes (Moroz et al., 2014; Ryan et al., 2013)
and a sponge genome (Srivastava et al., 2010), as well as in the
available sponge transcriptomes (http://www.compagen.org), show
that comb jellies and sponges also have components of BMP and
TGFβ signalling; however, they are expressed at distinct positions
along the single body axis in a radially or biradially symmetricmanner
(Adamska et al., 2007; Leininger et al., 2014; Pang et al., 2011). We
do not find support for any true sponge or ctenophore BMPs (Fig. S2).
Notably, neither the ctenophores nor the sponges have a chordin
orthologue or Hox genes (Fig. 4C) (Larroux et al., 2007; Moroz et al.,
2014; Ryan et al., 2010, 2013; Srivastava et al., 2010). Taken together,
these finding suggest that, among non-bilaterians, only anthozoan
Cnidaria have bilateral symmetry, and there is no evidence for the
presence of bilaterality in the earlier branching clades, in contrast to an
earlier hypothesis (Jägersten, 1955).

The cnidarian-bilaterian ancestor
A phylogenetic comparison of the characteristic traits of bilaterians,
cnidarians, sponges and ctenophores (Fig. 5) allows us to propose that
the last common ancestor of cnidarians and bilaterians had a number
of key features. It gastrulated from the animal pole at the location
where Wnt/β-catenin signalling was activated (Adamska et al., 2007;
Borisenko et al., 2016; Henry et al., 2008; Lee et al., 2007; Leininger
et al., 2014; Logan et al., 1999; Pang et al., 2010; Schneider et al.,
1996; Wikramanayake et al., 2003). It had an axial organizer
associated with the blastopore (Kraus et al., 2016). Around the
blastopore, it expressed a set of conserved genes such as brachyury,
goosecoid and foxa (Broun et al., 1999; Fritzenwanker et al., 2004;
Martindale et al., 2004; Technau and Bode, 1999; Technau and
Scholz, 2003). The gut wasmost likely blind, as bilaterian foregut and
hindgut marker genes are co-expressed around the cnidarian
blastopore (Arendt et al., 2001; Fritzenwanker et al., 2004;
Martindale et al., 2004; Scholz and Technau, 2003; Technau and
Scholz, 2003). At the aboral end, it had an apical plate expressingWnt
antagonists and the bilaterian brain markers six3, foxq2 and irx
(Chevalier et al., 2006; Lee et al., 2006; Marlow et al., 2014;
Sinigaglia et al., 2013, 2015). Comparisons of anthozoans and
Bilateria indicate that it also had BMPs and a complete set of
intracellularmolecules required for transducing aBMP signal, aswell
as Tolloid and Chordin (Genikhovich et al., 2015; Lecler̀e and
Rentzsch, 2014; Matus et al., 2006a, b; Rentzsch et al., 2006; Saina
et al., 2009). It also had gbx and, considering the cnidarian-specific
and bilaterian-specific diversification of the anterior and non-anterior
Hox genes, a small Hox cluster probably consisting of a single
anterior and a single non-anterior Hox gene (Chourrout et al., 2006;
Ryan et al., 2007).
The fact that the last common ancestor of cnidarians and

bilaterians had all BMP signalling components including Chordin
does not automatically imply that it was bilaterally symmetric. Even
if all medusozoans prove to lack some of the crucial components of
the BMP ligand shuttling machinery, this can only serve as

circumstantial evidence against the independent emergence of the
two orthogonal body axes regulated by Wnt/β-catenin and BMP
signalling in anthozoan Cnidaria and Bilateria. Moreover, BMP
signalling networks differ significantly between cnidarians and
bilaterians (Genikhovich et al., 2015), and recent mathematical
modelling has shown that the formation of two orthogonal body
axes from an initial state when Wnt and BMP signalling networks
act along the same axis can occur easily (Meinhardt, 2015); it
requires the BMP signalling network to contain a negative-feedback
loop regulating chordin expression, and to be under control of the
Wnt signalling network (Meinhardt, 2015). If this was the case, the
formation of the ur-bilaterian, as well as of the ur-anthozoan, was
accompanied by the uncoupling of the initially collinear Wnt and
BMP signalling gradients.

The relationship between cnidarian and bilaterian body axes
If the last common ancestor of cnidarians and bilaterians was
radially symmetric, and bilaterian and anthozoan bilateralities
emerged independently, it does not seem possible to homologize the
cnidarian oral-aboral axis with any of the bilaterian body axes,
except with the inverted animal-vegetal axis. However, if the last
common cnidarian-bilaterian ancestor was bilaterally symmetric
with two body axes, one regulated by Wnt and the other by BMP
signalling, the definitive cnidarian and bilaterian body axes can be
compared. Answers to two questions are crucial for this comparison.
First, did the urbilaterian have a blind gut or a through gut? Second,
to what extent does the regulation of two body axes in extant
anthozoans represent the ancestral mode typical for the cnidarian-
bilaterian ancestor?

Comparative embryology data show that a cnidarian is, in
essence, a ‘stretched gastrula’, where the main body axis
corresponds exactly to the animal-vegetal axis of the egg. The
body plan of the bilaterian early gastrulae is very comparable.
Therefore, we argue below that the body plan of the bilaterally
symmetric early planula of Nematostella can be used as a proxy for
the body plan of the hypothetical bilaterally symmetric cnidarian-
bilaterian ancestor, considering the ‘blind gut’ and the ‘through gut’
urbilaterian hypotheses separately.

What if an urbilaterian had a blind gut?
If the phylogenetic position of Xenacoelomorpha as a sister group to
Bilateria (Cannon et al., 2016; Hejnol et al., 2009; Ruiz-Trillo et al.,
1999) is true, and their blind gut represents an ancestral bilaterian
trait (Beklemishev, 1944; Hejnol and Martindale, 2008a,b; Hyman,
1951; Ivanov and Mamkaev, 1973; von Graff, 1891; von Salvini-
Plawen, 1968), the comparison seems to be relatively
straightforward. According to acoel phylogeny (Jondelius et al.,
2011), the earliest branching acoel group Diopisthoporidae has a
terminal mouth at the posterior end. Although a description of
gastrulation and mouth development in these animals has not yet, to
our knowledge, been reported, a terminal posterior mouth directly
deriving from the blastopore might represent an ancestral
xenacoelomorph trait. Based on the directions of the Wnt and
BMP signalling gradients, it seems likely that the cnidarian oral-
aboral (O-A) axis may be homologous to the posterior-anterior (P-
A) axis, and the directive axis may be homologous to the D-V axis
of the ‘simple’ urbilaterian (Fig. 6A). The BMP signalling
maximum in this animal must have been located on the dorsal
side, as in extant protostomes, ambulacrarian deuterostomes and,
likely, acoels (Hejnol and Martindale, 2008b; Lambert et al., 2016;
Lapraz et al., 2009; Lowe et al., 2006; Mizutani et al., 2005;
Srivastava et al., 2014). Later in evolution, the mouth could have
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become displaced to or formed de novo at the anterior/ventral
position, as occurs in the development of Acoela and many
Protostomia (Hejnol and Martindale, 2008b; Martín-Durán et al.,
2016). If this scenario is correct, it is likely that Hox gene expression
staggered along a body axis evolved independently in anthozoans
and bilaterians, which appears plausible considering their unclear
orthology (Chourrout et al., 2006; Ryan et al., 2007; Thomas-
Chollier et al., 2010) and the different modes of regulation
(Genikhovich et al., 2015) of the anthozoan and bilaterian Hox
genes.

What if an urbilaterian had a through gut?
If the Xenacoelomorpha are not the earliest branching bilaterian
clade, or if their blind gut is a result of the secondary reduction of a
through gut, the comparison of the cnidarian and bilaterian body
axes becomes more complicated. Three scenarios of direct
correspondence of the anthozoan and bilaterian body axes can be
envisaged: (1) oral-aboral=anterior-posterior (O-A=A-P); (2) oral-
aboral=posterior-anterior (O-A=P-A); and (3) directive=anterior-
posterior (directive=A-P).

In the first (O-A=A-P) scenario (Finnerty et al., 2004; Martindale
and Hejnol, 2009), a new anus forms at the aboral position and the
existing mouth is kept as a mouth in a bilaterian (Fig. 6B). The
anthozoan directive axis would then correspond to the bilaterian
D-V axis. Although plausible at the time it was suggested (Finnerty
et al., 2004), this scenario now appears to be less likely in the light of
new data. Most importantly, it has been shown that a posterior
maximum of Wnt/β-catenin signalling is clearly ancestral for
Bilateria (Gomez et al., 2008; Janssen et al., 2010; Srivastava et al.,
2014), while in cnidarians Wnt/β-catenin signalling has a maximum
at the oral end (Lee et al., 2007; Momose et al., 2008; Momose and
Houliston, 2007; Wikramanayake et al., 2003). If the cnidarian O-A
axis corresponded to the A-P axis of the urbilaterian with a through
gut, one would need to explain the inversion in the direction of the
Wnt signalling gradient and the relocation of the apical plate from
the aboralmost/posterior to the oralmost/anterior position (Fig. 6B).

The second possibility (O-A=P-A, Fig. 6C) is that the oral-aboral
axis of the Nematostella planula-like cnidarian-bilaterian ancestor
gave rise to the posterior-anterior axis of the primitive bilaterian
(Meinhardt, 2008) with the blastopore forming the anus. In this
scenario, a newmouth forms in the vicinity of the apical plate on the
ventral side, where BMP signalling intensity is lower. The reported
circumblastoporal expression of Wnt genes (Kusserow et al., 2005;
Lee et al., 2006) and aboral expression of bilaterian brain markers
(Sinigaglia et al., 2013) in Nematostella support this scenario. The
directions of the Wnt and BMP signalling gradients in this case also
fit the situation in Nematostella. The only clearly discrepant fact is
the direction of the staggered Hox gene expression in Cnidaria and
Bilateria, although this may be explained by independent
involvement of Hox genes in axial patterning in these lineages.

The third possibility is that the cnidarian directive axis
corresponds to the bilaterian A-P axis (directive=A-P). In this
scenario, the blastopore closes in a slit-like fashion in the middle
and produces both mouth and anus connected by a through gut
(Fig. 6D) (Jägersten, 1955; Remane, 1950). In this appealing
scenario called amphistomy (Arendt et al., 2015, 2016; see
Glossary, Box 1), the hox/gbx-free region of the directive axis in
the Nematostella planula corresponds to the bilaterian head, and
the rest makes up the trunk subdivided by staggered hox and gbx
expression into coelomic pouches derived from mesenterial
chambers (Fig. 6D). This scenario assumes that the orthology of
cnidarian and bilaterian Hox genes, and their involvement in axial
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hox(n/a), non-anterior Hox gene]; (E) modified amphistomy scenario.

3400

HYPOTHESIS Development (2017) 144, 3392-3404 doi:10.1242/dev.141507

D
E
V
E
LO

P
M

E
N
T



patterning, is a feature of the cnidarian-bilaterian ancestor, which,
considering the single anterior and single non-anterior Hox gene
hypothesis (Chourrout et al., 2006), would have had six
mesenterial chambers (Fig. 6D′). It is not clear, however,
whether these assumptions are correct, given the unusual BMP-
dependent expression of the anthozoan Hox genes. Importantly,
this scenario does not account for the direction of the BMP and
Wnt/β-catenin signalling gradients in Bilateria and Nematostella,
which would both be required to ‘switch places’ to generate a
posterior-to-anterior Wnt gradient and a dorsal-to-ventral BMP
gradient (Fig. 6D). Thus, an alternative amphistomic scenario
(Fig. 6E) can be envisaged, involving the coordinated rotation of
the orthogonally oriented Wnt and BMP gradients concomitant
with the shift of the apical plate towards the future anterior end,
generating a ventral BMP signalling minimum typical for all
Bilateria except chordates. Thus, the Wnt gradient becomes
oriented from posterior to anterior and the BMP gradient becomes
oriented from dorsal to ventral. If Hox genes in the cnidarian-
bilaterian ancestor were under control of BMP signalling, as in
Nematostella, the shift in the orientation of the BMP signalling
gradient would lead to them being expressed in staggered domains
from the ventral to the dorsal side. This does not fit the pattern
observed in Bilateria, but can be explained by the independent
involvement of Hox genes in axial patterning in Cnidaria and
Bilateria. The requirement for the shift of the Wnt and BMP
gradients leads us to conclude that in this scenario (Fig. 6E)
neither of the definitive cnidarian body axes would directly
correspond to any of the definitive bilaterian ones.
Overall, none of the scenarios described above can adequately

explain the development of Bilateria from a bilaterally symmetric
Nematostella planula-like ancestor without contradiction, although
based on the direction of the Wnt and BMP signalling gradients,
three scenarios (i.e. those depicted in Fig. 6A,C,E) seem more
likely. Scenarios A and E gain further support due to the co-
expression of the bilaterian foregut and hindgut marker genes
around the cnidarian and acoel blastopore (Arendt et al., 2001;
Fritzenwanker et al., 2004; Hejnol and Martindale, 2008b;
Martindale et al., 2004; Scholz and Technau, 2003; Technau and
Scholz, 2003). Notably, none of these three plausible scenarios
account for the staggered expression of Hox genes along the
directive axis of Nematostella under the control of the BMP
signalling, which favours their independent involvement in axial
patterning in Bilateria and Anthozoa.

Outlook
We are only beginning to appreciate the evolvability of the complex
signalling and regulatory systems involved in body axis evolution.
The question of the origin of bilaterality still remains unanswered;
however, new molecular data from Cnidaria and other early
branching metazoan clades allow us to formulate key questions
(Box 3), which will bring us closer to finding a solution to this
complex issue. Here, we showed that several scenarios of the
correspondence of the anthozoan and bilaterian body axes are
plausible; however, the independent evolution of bilaterality in
Cnidaria and Bilateria cannot be excluded. Currently, taxonomic
sampling is becoming broader, making phylogenetic trees more
robust. In addition, not only the expression but also the function of
genes can now be assayed in an ever-broader range of animal
models, including early-branching metazoan phyla. Together, these
approaches will provide us with a thorough understanding of the
regulatory and morphological consequences of changes in the
activity of genes responsible for the establishment and patterning of

the body axes. Once we have this information, thinking in terms of
regulatory networks rather than individual genes is bound to bring
major new advances in our understanding of how bilaterality
evolved.
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