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ABSTRACT

The study of genes mutated in human disease often leads to new
insights into biology as well as disease mechanisms. One such gene
is Wilms’ tumour 1 (WTT), which plays multiple roles in development,
tissue homeostasis and disease. In this Primer, | summarise how this
multifaceted gene functions in various mammalian tissues and
organs, including the kidney, gonads, heart and nervous system.
This is followed by a discussion of our current understanding of the
molecular mechanisms by which WT1 and its two major isoforms
regulate these processes at the transcriptional and post-
transcriptional levels.
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Introduction
The Wilms’ tumour 1 (WTT) gene was first identified in 1990 as a
strong candidate predisposition gene for Wilms’ tumour (Call et al.,
1990; Gessler et al., 1990), which is a paediatric kidney cancer that
affects 1 in 10,000 children (Charlton and Pritchard-Jones, 2016).
Since then, numerous studies have confirmed that W71, which maps
to chromosome 11p13, is mutated in the germline or somatically in
~15% of Wilms’ tumour cases (Charlton and Pritchard-Jones, 2016).
Wilms’ tumour has fascinated pathologists for over a century as it is
one of the classic examples of how cancer arises through
development gone awry (Hastie, 1994). WTI behaves as an
archetypal tumour suppressor gene, as both alleles need to be
deleted or inactivated for tumours to develop (Knudson and Strong,
1972). However, it is not as simple as this because the majority of
tumours with WT1 mutation also have gain-of-function mutations in
the B-catenin (CTNNB]I) gene and a proportion have a double dose of
IGF2 through chromosome 11 loss of heterozygosity (Huang et al.,
2016). Moreover, WT1 is expressed in a wide range of adult tumour
types, including those derived from epithelial, mesenchymal,
haematopoietic and neuronal tissue, even though it is not expressed
in the corresponding healthy tissue, and this has led to the proposition
that WT1 functions as an oncogene in these tumours. At present,
there is scant evidence to support this concept. However, this
widespread tumour expression has led to WT1 being the number one
target for cancer immune therapy (Nishida and Sugiyama, 2016).
Although our understanding of the molecular and cellular
mechanisms by which tumours arise through W7/ mutation is
incomplete, studies of the W71 gene over the past 25 years have led
to broad insights into a number of phenomena. These include:
(1) the mechanisms underpinning the development, homeostasis
and disease of tissues arising from the intermediate and lateral plate
mesoderm; (2) cellular switching events during development,
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particularly those involving mesenchyme-to-epithelial transitions
(MET) and the reverse process, epithelial-to-mesenchyme transition
(EMT); (3) the cellular origins of mesenchymal progenitors for a
variety of tissue types, pinpointing the key role of the mesothelium;
and (4) fundamental aspects of transcription and epigenetic
regulation. WT1 is also an example of how protein isoforms
differing by just a few amino acids may have profoundly different
functions. Here, 1 provide an overview of the WTI gene,
highlighting how it functions in the development and homeostasis
of various organs and tissues, and how its mutation can lead to
disease.

WT1 structure, evolution and isoforms

The mammalian WT1 gene is ~50 kb in length, encoding proteins
from as many as ten exons. There are at least 36 potential
mammalian WT1 isoforms, the diversity created through a
combination of alternative transcription start sites, translation start
sites, splicing and RNA editing (Fig. 1A). All isoforms include four
C2H2 Kruppel-like zinc fingers similar to those found in the SP1
family of transcription factors. All non-mammalian vertebrates
express only two isoforms, which differ by just three amino acids
(lysine, threonine and serine; KTS) inserted by an alternative splice
between zinc fingers 3 and 4 (Fig. 1B). Outside the vertebrates, there
appears to be a WT1 orthologue in amphioxus but it is not clear
whether invertebrates encode WT1 orthologues other than proteins
with zinc fingers similar to those in the SP1 family.

Although the functional relevance of the many WT1 isoforms is
unclear, the importance of the +KTS and —KTS isoforms has been
highlighted by the identification of splice site mutations in patients
with Frasier syndrome (Barbaux et al., 1997). These individuals
have male-to-female sex reversal and suffer from focal segmental
glomerulosclerosis (FSGS; i.e. scarring of the glomeruli) of the
kidney. The dominant W71 mutations create one allele that only
produces the —KTS isoforms, leading to a reduced +KTS/—KTS
isoform ratio. This suggests that both isoforms are essential and
have different functions. Further support for this notion came from a
study in which mice expressing only the +KTS or —KTS isoforms
were created through gene targeting (Hammes et al., 2001). Mice
lacking either of these isoforms die neonatally through incomplete
kidney development, although the lack of —KTS isoforms leads to a
more severe developmental phenotype than loss of +KTS isoforms
(Hammes et al., 2001). By contrast, mice that specifically lack a
mammalian-specific 17 amino acid insertion encoded by an
alternative exon 5 exhibit no observable phenotype (Natoli et al.,
2002). This is surprising, as the 17 amino acid domain acts as a
transcriptional activator through interaction with the prostate
apoptosis response factor PAR4 (PAWR) (Richard et al., 2001),
and a mutation in this domain has been identified in a Wilms’
tumour (Schumacher et al., 1997), attesting to its importance in
humans at least. Similarly, no phenotype is observed in mice lacking
the extended isoforms of WT1, i.e. the isoforms produced via the
use of a mammalian-specific alternative translation start site (Miles
et al., 2003).
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Fig. 1. Structure of the WT1 gene and the multiple isoforms it encodes. (A) Variant transcriptional and translational start sites, alternative splices and RNA
editing sites within the mammalian WT1 gene are depicted in red; these can give rise to at least 36 potential mammalian WT1 isoforms. int 5, intron 5. (B) In non-
mammalian vertebrates only two isoforms exist: one that includes the lysine, threonine and serine (KTS) insert and one that does not.

Diseases arising through germline WT1 mutations

Germline WT1 mutations may lead not only to the eponymous
tumour but also to glomerulosclerosis of the kidney, gonadal
dysgenesis and, in rare cases, congenital diaphragmatic hernia
(CDH) and heart disease. There are several human syndromes
resulting from WT1 hemizygosity or mutation and these have been
very revealing about WTI gene function. For example, deletions
associated with  WAGR syndrome (Wilms’ tumour, aniridia,
genitourinary anomalies and retardation), which result in WTI
haploinsufficiency, lead to Wilms’ tumour in 70% of cases and a
range of gonadal anomalies, most frequently undescended testes in
males and streak gonads and bicornate uterus in females (Riccardi
et al., 1978). On the other hand, heterozygous WTI point
mutations, predominantly in the zinc finger domain, lead to the
more extreme phenotypes found in Denys-Drash syndrome
(DDS) (Pelletier et al., 1991). Children with DDS often develop
Wilms’ tumour and always suffer from mesangial sclerosis of the
glomerulus, resulting in end-stage renal disease. Males with DDS
have incompletely formed, ambiguous or female external
genitalia; the testes may be normal, malformed, undescended or
ambiguous. There is evidence to support the notion that the DDS
mutations act in a dominant-negative mode, with the mutant WT1
protein dimerising with the wild-type protein, thus explaining the
more severe phenotype compared with haploinsufficiency (Little
et al., 1995). Patients with Frasier syndrome, which arises through an
imbalance of the —KTS/+KTS WT1 isoforms (see above), have
FSGS, and XY males with this condition exhibit female external
genitalia and streak gonads (Barbaux et al., 1997). A fourth, less clear
syndrome, and one that overlaps with DDS, is Meacham syndrome,
which is characterised by CDH, ambiguous genitalia and complex

congenital heart defects but no renal abnormalities. Surprisingly, two
patients with Meacham syndrome have exactly the same W71
missense mutations as seen in two cases of DDS with a different
spectrum of anomalies (Suri et al., 2007).

The spectrum of phenotypic anomalies that result from W71
mutations maps well onto the developmental expression domains
of WTI. In mice, expression of WT1 is first detected in the
proliferating coelomic epithelium and intermediate mesoderm at
E9. Expression continues in the derivatives of the coelomic
epithelium, the diaphragm, gonads and mesothelial lining of
organs and in the kidney, which derives from the intermediate
mesoderm (Armstrong et al., 1993). The phenotypes reported for
the mouse Wl knockout are dramatic and concord well with the
disease spectrum. Indeed, W/ null mice have no kidneys or gonads,
exhibit CDH, and die at ~E13.5, presumably due to cardiac
problems (Kreidberg et al., 1993). The mutant mice also suffer from
hypoplastic lungs and have been shown to lack a spleen (Herzer
etal., 1999) and adrenal glands (Moore et al., 1999; Bandiera et al.,
2013).

WT1 function in kidney development, homeostasis and
disease

The kidney diseases arising through W71 mutation reflect the
function of this gene at multiple stages of kidney development and
tissue homeostasis (Fig. 2). Hence Wilms’ tumours involving W71
mutations are likely to arise from the undifferentiated metanephric
mesenchyme — a tissue that gives rise to the kidney — whereas W71
mutations that give rise to glomerulosclerosis reflect a role for WT1
in the differentiation and maintenance of a fascinating specialised
kidney cell type, the podocyte.
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Fig. 2. The role of WT1 at different stages of kidney development. The various stages of kidney development are shown. WT1 expression is depicted in red. In
the first stage, the ureteric bud invades the metanephric mesenchyme. WT1 is expressed at low levels and is required for mesenchyme maintenance. Key
transcriptional target genes of WT1 at this stage are indicated. In the second stage, the mesenchyme condenses around the bud and the levels of WT1 and its
target WNT4 increase. The next key stage involves MET, which is driven by WNT4 and requires WT1. The nephron then forms through several intermediate
structures, including the comma-shaped and S-shaped bodies. WT1 expression becomes restricted to the proximal region of these structures, which will form the
glomerulus. The highest level of expression is in the presumptive, differentiating and mature podocytes. In line with this, WT1 is required for podocyte
differentiation, structure, function and maintenance through the activation of numerous podocyte-specific genes. The proximal portions of the developing nephron

develop into tubular structures that do not express WT1.

The kidneys develop from two interacting and cross-signalling
components, namely the metanephric mesenchyme and the ureteric
buds, both of which are derived from the intermediate mesoderm.
These two components develop into nephrons (the functional units
of the kidney) and branching ureters (the ductal system of the
kidney), respectively. A crucial factor here is the activation in the
mesenchyme of the master regulator WNT4, which is necessary and
sufficient to induce the MET that precedes the formation of
nephrons from so-called cap mesenchyme (Stark et al., 1994).
Formation of the segmented nephron then involves several
intermediate stages including the comma-shaped and S-shaped
bodies (Fig. 2). The final nephron is composed of the glomerulus,
the proximal and distal tubules and the loop of Henle.

WTI levels vary throughout this process of kidney development.
WTI1 is first expressed at low but detectable levels in the
undifferentiated mesenchyme, and levels increase dramatically as
the mesenchyme condenses around the bud prior to MET. Levels
then stay high throughout nephrogenesis, becoming restricted to the
proximal half of the S-shaped body and eventually the podocyte
cells derived from this structure (Fig. 2). These expression levels
correlate with a functional requirement for WT1 during kidney
development; in WtI knockout mice the bud fails to invade the
mesenchyme, which degenerates through apoptosis (Kreidberg
et al., 1993). To explore the mechanism by which WT1 ensures
mesenchyme maintenance, chromatin immunoprecipitation (ChIP)
coupled to mouse promoter microarrays (ChIP-chip) was used to
identify WT1 target genes using embryonic kidney extracts
(Hartwig et al., 2010). Among the 1600 potential WT1 target
genes were several known to be essential for kidney development
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within the mesenchyme (Fig. 2). These included Pax2, Sall and
Bmp?7, the expression of which was shown to depend on WT1 in
nephrogenic organ culture (Hartwig et al., 2010). In an elegant
study, it was further shown that WTT1 is essential for mesenchyme
survival and proliferation through direct transcriptional regulation
of two cross-talking signalling pathways (Motamedi et al., 2014).
WTT1 transcriptionally activates the expression of several FGFs that
are essential for mesenchyme proliferation, while repressing BMP/
SMAD signalling, which induces an apoptotic response in the
mesenchyme (Fig. 2). In line with this, it was shown that
recombinant FGFs can rescue the survival of Wtl null
mesenchyme and suppress an apoptotic response induced by
BMPs (Motamedi et al., 2014).

Key roles for WTI1 during subsequent stages of kidney
development can explain its function with respect to Wilms’
tumour and glomerulosclerosis. There are several subtypes of
Wilms’ tumour, classified according to their pathology. The most
common form is known as triphasic, comprising blastemal,
epithelial and stromal elements. These tumours exhibit an
architecture remarkably similar to that of the developing kidney.
Wilms’ tumours arising through W71 mutation, on the other hand,
are mainly stromal and may often contain elements of heterotypic
tissue, most commonly muscle but, more rarely, cartilage, bone and
fat (Schumacher et al., 2003). WTT1 is essential for the MET that
underlies nephron differentiation, partly through transcriptional
activation of Wnt4 (Sim et al., 2002; Davies et al., 2004; Essafi et al.,
2011). Furthermore, if Wt is deleted just prior to MET, the aberrant
kidneys formed express a transcriptome similar to that observed in
human Wilms’ tumours arising through W71 mutation (Berry et al.,
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2015). It has therefore been hypothesised that WT1 mutant tumours
arise through defective MET. However, this does not seem to equate
with the stromal-predominant nature of the tumours. To address this,
the origin of Wilms’ tumours was investigated by developing a
series of mouse Wilms’ tumour models (Huang et al., 2016) using
different Cre lines to delete ¢! while simultaneously activating
oncogenic Ctnnbl or increasing the dose of IGF2, either in the
nephron progenitors or the stroma. This approach revealed that
tumours only develop when these genetic manipulations occur in
the mesenchymal nephron progenitors, not in the stroma. Although
tumour histology in these mice does not necessarily recapitulate that
seen in humans with the same genetic alterations, tumours arising
through Wt1 loss and increased IGF2 dose do express high levels of
undifferentiated mesenchyme markers. Furthermore, deletion of
Wtl in the mesenchyme leads to activation of myogenic markers,
providing a molecular explanation for the formation of ectopic
muscle in Wilms’ tumours with W71 mutation (Berry et al., 2015).
By contrast, glomerulosclerosis, for example that seen in children
with DDS and Frasier syndrome, is due to abnormalities of kidney
podocytes — specialised cells that form a filtration barrier with
endothelial cells. It is now clear from several studies that WT1 is
essential both for podocyte differentiation and podocyte maintenance
throughout adult life (Moore et al., 1999; Hammes et al., 2001; Chau
etal., 2011; Berry etal., 2015; Gebeshuber et al., 2013). Recent ChIP-
seq studies have shown that WT'1 binds to the promoters and enhancers
of around half'the 200 podocyte-specific genes identified (Kann et al.,
2015a; Lefebvre et al., 2015; Dong et al., 2015). A subset of these
target genes was shown to be downregulated upon Wt/ deletion, 11 of
these specifically in mice lacking +KTS isoforms. Remarkably, WT1
bound to 18 of the 31 genes mutated in human podocyte disease,
including Nphsl, Nphs2 and Actn4. Through bioinformatics analysis,
it was proposed that WTT1 is part of a podocyte transcription network
that includes WT1, FOX-class transcription factors, LMX1B and
TCF21 (Kann et al., 2015a; Lefebvre et al., 2015; Dong et al., 2015).
Targets of this network include the Hippo signalling system,
implicating this pathway in podocyte development or maintenance.

WT1 and the adrenal-gonad axis

As is the case for the kidney, WT1 plays roles at different stages
during the development and homeostasis of the gonads and adrenal
glands (Bandiera et al., 2015). These two steroidogenic organs
develop from a common adrenogonadal primordium (AGP) arising
from the coelomic epithelium. As discussed above, humans with
WTI mutations have a range of gonadal abnormalities but no
adrenal anomalies to this author’s knowledge. Wt/ null mice
completely lack gonads and adrenal glands, pointing to a crucial
role in the formation/survival of the AGP. A vital factor for AGP
survival is the steroidogenic factor SF1 (NR5A1), which is a WT1
transcriptional target (Wilhelm and Englert, 2002). Hence, the
reduction of SF1 levels in W1 knockout mice is likely to be a major
contributory factor to adrenal/gonad agenesis. It will be interesting
to see ifa WT1-regulated FGF/SMAD loop also functions to protect
AGP survival, as in the kidney (Motamedi et al., 2014).

The gonadal anomalies in male patients with W7/ mutation can
be attributed to the role of WTI1 in the differentiation and
maintenance of Sertoli cells — the somatic cells that support germ
cells during their development. The key factor in determining
maleness and Sertoli cell development is the SRY gene on the Y
chromosome. Expression of SRY is restricted to pre-Sertoli cells
over a brief time window, and it has been shown that WTI1
cooperates with GATA 4 to transcriptionally activate SRY
(Miyamoto et al., 2008). In particular, the +KTS isoforms appear

to be more efficient in activating the SRY promoter in cooperation
with GATA4 (Miyamoto et al., 2008), perhaps providing an
explanation for the sex reversal observed in Frasier syndrome and in
mice deficient for +KTS isoforms (Barbaux et al., 1997; Hammes
et al., 2001). There are other striking similarities between the gonad
and kidney that might involve WT1. Embryonic Sertoli cells must
go through MET and polarisation prior to cord formation. Although
WTI has not yet been shown to be directly required for this process,
it is one of the five factors, along with SF1, DMRT1, SOX9 and
GATAA4, that can cooperate to induce fibroblasts to a mature Sertoli
cell fate via MET (Buganim et al., 2012). In addition, WT1 not only
promotes Sertoli cell differentiation but suppresses the formation of
Leydig cells — another specialised cell type in the gonad that
produces testosterone in the presence of luteinizing hormone.
Indeed, WT1 ablation in the testis leads to the transdifferentiation of
Sertoli cells into foetal-like Leydig cells (Zhang et al., 2015).

The adrenal gland comprises two major components: the outer
cortex, which arises from the AGP, and the inner medulla, which
arises from neural crest ectoderm. The cortex houses steroidogenic
cells that produce corticosteroids and aldosterone. At E9.75, AGP
cells arising in the genital ridge are still bipotential, expressing
WT1, GATA4 and SF1. As the gonadal and adrenal primordium
split away from each other, WT1 and GATA 4 are downregulated in
the precursors of the cortical steroidogenic cells, which still express
and require SF1. Downregulation of WT1 was shown to be essential
for development of the steroidogenic cells, as ectopic expression of
a —KTS, but not a +KTS, WTI1 isoform in the SFIl-expressing
progenitors blocks the differentiation of steroidogenic cells,
maintaining the cells in a progenitor state (Bandiera et al., 2013).
Hence, in both the developing gonad and adrenal gland, WT1
represses the differentiation of steroidogenic cells.

WT1 function in EMT: implications for heart and diaphragm
development

Whereas WT1 plays key roles in MET during kidney and gonad
development (as discussed above), in the developing heart and
diaphragm it is required for EMT.

In the developing heart, WT1 expression is mainly restricted to its
mesothelial lining, the epicardium. ¢/ knockout mice have smaller
ventricles, a thinner epicardium and have a much reduced coronary
vascular system (Kreidberg et al., 1993). Cell fate analysis has shown
that the epicardium is the source of coronary vascular progenitors,
particularly for the smooth muscle component of the vasculature but
also for 20% of the embryonic endothelial cells (Cano et al., 2013).
These progenitors, or epicardium-derived cells (EPDCs), arise from
the epicardium via EMT, or perhaps more accurately mesothelial-
mesenchyme transition (MMT). When %/ is inactivated specifically
in the epicardium, embryos die at E16.5 and the coronary vasculature
is severely depleted; although the epicardium remains mostly intact,
there is a dramatic reduction in EMT and in the resultant production of
EPDCs (Martinez-Estrada et al., 2010). Mechanistically, it was shown
that WT1 is required for EMT/ MMT in part through transcriptional
activation of Snail, an EMT inducer, and repression of the key
epithelial component E-cadherin (Cdhl). In another study using Wt/
null mice, it was shown WTT1 also regulates EMT through its action,
direct or indirect, on the WNT and retinoic acid (RA) signalling
pathways (von Gise et al., 2011). There is much evidence of cross-talk
between the developing epicardium and myocardium, the former
producing factors required for myocardial growth. One of these factors
is RA, the synthesis of which is reduced in Wt/-deleted epicardium
(Guadix et al., 2011). This can be explained by the finding that WT1 is
required for full transcriptional activation of the gene encoding
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RALDH?2 (ALDH1A?2), a key component of the RA synthetic pathway
(Guadix et al.,, 2011). WT1 also represses, directly and indirectly
through IRF7, the inhibitory chemokines CXCL10 and CCLS that
inhibit epicardial cell migration and myocardial proliferation,
respectively (Velecela et al., 2013). Another key upstream factor in
coronary vascular development is the neurotrophin receptor TRKB
(NTRK?2), which appears to be a direct WT1 transcriptional target in the
epicardium (Wagner et al., 2005a).

As mentioned above, WTI mutations can also lead to CDH,
which is perhaps the most common serious birth defect, affecting 1
in 3000 births. CDH is characterised by incomplete formation or
muscularisation of the diaphragm, which leads to herniation of the
stomach, spleen, liver or intestines into the pulmonary cavities. The
most prevalent form, observed in 90% of cases, is known as
Bochdalek-type CDH and is characterised by a defect in the
posterolateral area of the diaphragm, which is mostly lateralised to
the left side. New insight into the mechanisms underpinning CDH
has come from a recent study in which Wt/ was deleted in the
mesenchyme of the septum transversum (the tissue that gives rise to
the diaphragm) of mice (Carmona et al., 2017). These mutant mice
develop CDH with characteristics of the Bochdalek form. Using
lineage tracing, it was shown that the post-hepatic plate coelomic
epithelium normally gives rise to mesenchyme that populates the
pleuroperitoneal folds, thus isolating the pleural cavities prior to the
migration of the somatic myoblasts. However, when Wt/ is deleted
from this region this process fails, seemingly owing to defective
EMT. It has been known for some time that normal diaphragm
development requires RA and that a deficit of RA can lead to CDH
(Sugimoto et al., 2008). The recent Carmona et al. (2017) study
showed that, as with the epicardium, the levels of RALDH?2 are
reduced specifically in the post-hepatic mesenchymal plate of the
mutant mice. Importantly, supplementation of the maternal diet with
RA can partially rescue the phenotype.

WT1-expressing mesothelium: a source of mesenchymal
progenitors

A significant proportion of the vertebrate body comprises polarised
epithelial cells, while another major component is non-polarised,
more motile mesenchymal cells. These two cell types can switch
between types via the processes of EMT and MET, and waves of
EMT and MET are indeed vital for development. However,
although often underappreciated, there are also stable cell
populations that have an intermediate epithelial/mesenchyme state
(Chau and Hastie, 2012). These cells are polarised, have adherens
junctions but express high levels of mesenchymal markers
including vimentin. Pre-eminent amongst these, as the name
suggests, is the mesothelium that lines the body cavity and the
organs therein. The mesothelium protects tissues from adhesion and
plays key roles in fluid transport and inflammation (Kawanishi,
2016). However, over the past decade it has become clear that
mesothelia are also a source of mesenchymal progenitors for diverse
cell types within tissues, including fibroblasts and more specialised
cells. In addition, it has been shown that WT1 is expressed at high
levels in the proliferating coelomic epithelium and its mesothelial
derivatives during development. Using lineage tracing, via a Wil
locus-driven Cre recombinase to activate a reporter in mesothelial
cells and their progeny (Zhou et al., 2008), the identity and fate of
such mesothelial-derived cells has been investigated.

As discussed above, a role for the mesothelium as a source of
mesenchymal progenitors was first shown in the heart, where the
epicardium produces progenitors for vascular smooth muscle and
some endothelium. Soon after, it was shown that the serosal
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mesothelium is a major source of progenitors for the smooth muscle
component of the gut and lung vasculature (Wilm et al., 2005; Que
et al., 2008). Furthermore, the lung mesothelium is a source of
progenitors for endothelial cells, bronchial musculature and tracheal
and bronchial cartilage (Cano et al., 2013), while in the liver, the
mesothelium is the source of a subset of hepatic stellate cells that
play a key role in tissue fibrosis (Asahina et al., 2011) (Fig. 3). WT1-
expressing mesothelium also produces progenitors for the
interstitial cells of Cajal, the intestinal pace makers (Carmona
et al., 2013) (Fig. 3). Perhaps most surprising was the finding that
visceral fat depots have a WT1-expressing mesothelial lining that
provides progenitors for a significant proportion of visceral white
adipose tissue (WAT) (Chau et al., 2014) (Fig. 3). There are two
major classes of WAT: visceral and subcutaneous. Excess visceral
fat predisposes to major diseases including heart disease, type 2
diabetes and cancer, whereas subcutaneous fat is thought to be
protective. The nature and origin of progenitors for subcutaneous
WAT and visceral fat depots have been the subject of much
speculation (Billon and Dani, 2012), but it has now been shown that
a significant proportion of all visceral WAT, but not subcutaneous
WAT, arises from WT1-expressing progenitors and that these arise
from the mesothelium (Chau et al., 2014) (Fig. 3).

In some tissues, WT1 expression is downregulated towards the
end of gestation or postnatally; the timing of this downregulation
varies depending on the organ, e.g. it is fast in the lungs (Cano et al.,
2016), occurs at an intermediate rate in the heart (Smart et al., 2011)
and is slow in the liver (Ijpenberg et al., 2007). Potentially
interesting from a regenerative medicine perspective is that WT1
expression is reactivated in the adult epicardium following cardiac
ischaemia, and this is associated with epicardial cell proliferation
and the production of new EPDCs, which have the potential to
generate new coronary vasculature and, controversially,
cardiomyocytes (Smart et al., 2011).

It is also of interest that the other two major differentiated cell
types that express WT1 at high levels — the kidney podocytes and
gonadal Sertoli cells — are also epithelial with mesenchymal
properties. It is unclear whether mutation of WT1 or other stresses
leads to an epithelial-mesenchymal imbalance in these cells.

WTH1 in the nervous system: key roles in sensory neuron
differentiation

WT1 expression is not restricted to the mesoderm and its derivatives
during embryonic development. It is also expressed in a small
number of symmetrically placed neurons in the ventral spinal cord,
the roof of the fourth ventricle of the brain and the developing
sensory nervous system (Armstrong et al., 1993). Although the
functional significance of WT1 expression in the ventricle and
spinal cord is yet to be revealed, it has been shown that WT1 is
essential for the development of retinal, olfactory and taste bud
neurons, with the +KTS and —KTS isoforms appearing to play
different roles.

In the developing retina, for instance, WT1 expression becomes
restricted to the presumptive retinal ganglion layer and is absent
from adult retinas (Wagner et al., 2002a). #¢/ ~'~ mice exhibit much
thinner retinas than control animals, and the number of proliferating
cells in E12 mutant embryos is reduced by 90% relative to wild-type
controls (Wagner et al., 2002a). Furthermore, a significant
proportion of retinal ganglion cells is lost by apoptosis in mutant
embryos, and the growth of optic nerve fibres is disturbed. This
phenotype is reminiscent of that observed in knockouts for the
Poudf? transcription factor (Gan et al., 1996). Accordingly, Pou4f2
transcript levels are reduced dramatically in ##/ mutant retinas and
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WT1 was shown to transactivate the Pou4f2 promoter (Wagner
etal., 2002a). Subsequently, it was shown that the retinal defects are
more severe in mice lacking the —KTS than the +KTS isoforms
(Wagner et al., 2005b).

WTT is also expressed in the developing olfactory epithelium
from E9.5 to E18.5, and both W¢I null mice and those specifically
lacking +KTS isoforms exhibit a thinner olfactory epithelium than
wild-type animals (Wagner et al., 2002a). By contrast, animals
lacking —KTS isoforms appear to have normal olfactory epithelia.
Mechanistically, it was shown that the expression of two key
transcription factors with crucial roles in olfactory neuron
development, MASH1 (ASCL1) and neurogenin 1, is reduced in
WT1 +KTS mutants. Moreover, the +KTS but not —KTS isoforms
can induce the expression of these two neurogenic genes.

More recently, it was shown that the role of WT1 in sensory
system development also extends to taste buds (Gao et al., 2014). In
mammals, taste buds are located in specialised areas called papillae,
of which there are three types: fungiform, foliate and circumvallate
(CV). WT1 is expressed in the developing CV papillae located on
the back of the tongue, and this expression continues into adult life,
principally in taste buds. In mice lacking WT1, the CV papillae fail
to form and the levels of three signalling molecules implicated in
gustatory development (BMP4, PTCH1 and LEF1) are reduced. In
line with this, WT1 was shown to bind to the promoter regions of the
endogenous Ptchl and Lefl genes and their expression was shown
to be dependent on WT1.

WT1 in adult tissue homeostasis and disease

Although early studies established that WT1 plays crucial roles
during development, it was not clear whether the gene continues to
function in adult life and whether it is implicated in adult disease.
WT1 continues to be expressed in just a few locations in the adult
mouse: kidney podocytes, supporting gonadal cells, the mesothelial
lining of organs and 1% of bone marrow cells. To address the
continuing requirement for WTI1 into adult life, a ubiquitous
deletion of the gene was induced in 6-week-old mice (Chau et al.,

Fig. 3. Specialised cell types
arising from the mesothelium. WT1
expression (red) is observed in the
mesothelium and the mesenchymal
* progenitors it produces, but not in the
differentiated progeny of these
* Mesenchymal progenitors. For instance, WT1 is
intermediate expressed in: (A) the mesothelial
{ lining of the heart (the epicardium)
and epicardium-derived cells
(EPDCs); (B) the liver mesothelium
and its mesenchymal progenitors that
give rise to a subset of hepatic stellate
cells; (C) the mesothelial lining of
visceral white adipose tissue and the
mesenchymal progenitors that give
rise to adipocytes; and (D) the
intestinal mesothelium and its
progenitors that form interstitial cells
of Cajal.

Quiescent
stellate cells

¢

Mesenchymal
intermediate
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2011). The results were dramatic and unanticipated: the mice died
~10 days after the initiation of Wt/ deletion. These animals suffered
from severe glomerulosclerosis with loss of podocyte foot
processes, atrophy of the spleen and exocrine pancreas, and
widespread fat and bone loss. Although the mechanisms
underlying these dramatic phenotypes remain unclear, it was
hypothesised that they reflect a combination of systemic, local
paracrine and cell-autonomous factors operating downstream of
WT1 (Chau and Hastie, 2012). Proteomic analysis revealed a 95%
reduction in circulating IGF1 levels in these mice (Chau et al.,
2011). As IGF1 regulates both bone and fat growth, it is reasonable
to conclude that reduction in this key signalling molecule
contributes to the widespread bone and fat reduction. However,
the fat loss might also reflect a cell-autonomous role for WT1 as it
continues to be expressed in visceral WAT progenitors in adult life.
Furthermore, preliminary evidence suggests that WT1 deletion
leads to a reduction in these progenitors (Chau et al., 2014).

A rare population of WT1-expressing cells also persists in the
cortex of the adult adrenal gland, and lineage tracing has shown that
these cells are able to differentiate into steroidogenic cells
throughout life (Bandiera et al., 2013). These progenitors also
express GATA4, GLI1 and TCF21. Importantly, gonadectomy
activated this cell population, leading to their differentiation into
gonadal steroidogenic tissue (Bandiera et al., 2013). This defines a
novel paradigm whereby a response to organ loss is the recreation of
hormone-producing cells at an ectopic site.

WTT is also expressed at high levels in a variety of adult epithelial
tumours and in some leukaemias, and this has led to much
endeavour in the pursuit of immune therapies targeting WTI1
epitopes (Nishida and Sugiyama, 2016). In the majority of cases, it
is still unclear whether WT1 overexpression is helping to drive the
carcinogenic state or is merely a consequence. However, in an
shRNA screen for genes cooperating with KRAS, WT1 was
identified as a key regulator of oncogenesis and senescence
downstream of KRAS (Vicent et al., 2010). Moreover, WtI loss
reduces tumour burden in a mouse model of KRAS-driven lung

2867

DEVELOPMENT



PRIMER

Development (2017) 144, 2862-2872 doi:10.1242/dev.153163

cancer (Vicent et al., 2010). Consistent with this, W¢I loss was
shown to lead to decreased proliferation and to senescence in a
human lung cancer cell line dependent on oncogenic KRAS (Vicent
et al.,, 2010). Much evidence has been published to suggest that
WTI can increase the survival of various cancer cells through anti-
apoptotic functions. For example, a mechanism by which WT1 anti-
apoptotic function can be modulated in response to cytotoxic drugs
in cell lines and cell-free systems has been reported (Hartkamp et al.,
2010). WT1 is cleaved into unstable fragments by the protease
HTRAZ2, the expression of which is induced by anti-cancer drugs.
This leads to downregulation of WT1 and a resulting increase in cell
survival through upregulation of C-MYC and JUNB, which are
normally repressed by WTI1. It has also been reported (Wagner
et al., 2014) that WT1 is often expressed in the vasculature and
stroma of a variety of adult cancers, rather than in the epithelial
components themselves. Using lung cancer and melanoma
xenograft models, it was shown that the host vasculature and
stroma invading the tumour express WT1 but that the nearby
vasculature and stroma do not express detectable levels. In addition,
when Tie2-Cre was used to delete Wt/ in the host endothelial,
haematopoeitic and myeloid suppressor cells, tumour growth and
metastases are impaired, and pre-existing tumours regress (Wagner
et al., 2014). Mechanistically, WT1 was shown to transcriptionally
activate both Pecaml and c-Kit explaining, at least in part, its
proangiogenic functions.

Surprisingly little is known about the pathways and factors that
act upstream to regulate WT1 expression. However, it has been
shown that WT1 expression is induced in coronary vasculature
following ischaemia (Wagner et al., 2002b). It was then reported
that WT1 is induced by hypoxia, with compelling evidence showing
that the hypoxia-inducible factor HIF1 transactivates WT1 directly
(Wagner et al., 2003). The possibility that WTI1 plays a
physiological role in response to ischaemia remains to be explored.

Molecular mechanisms of WT1 action

Although there is much evidence that WT1 functions as a
transcription factor, several studies support post-transcriptional
functions, via RNA interactions, for WTI1. Furthermore, as
summarised below, the data suggest that the -KTS isoforms may
function mostly as transcriptional regulators, whereas the +KTS
isoforms act predominantly post-transcriptionally, although this is
not black and white as the +KTS isoforms can bind DNA and
regulate transcription and the —KTS isoforms can bind RNA and
shuttle to the cytoplasm. Genetic studies have shown that the two
isoforms function differently at the later stages of genitourinary
development and in sensory organ differentiation (Hammes et al.,
2001; Wagner et al., 2005b). However, mice lacking the —-KTS or
+KTS isoforms do not, unlike null mice, exhibit defects in the early
stages of genitourinary development or cardiovascular development
(Hammes et al., 2001). This suggests that the two isoforms perform
identical or compensatory functions during these processes.

Effects on transcription and chromatin

WTI is a transcription factor that binds to DNA targets through its
four zinc fingers. Early cell-free studies showed that WTI, the
—KTS isoforms in particular, binds to a consensus site, 5'-
GCGGGGGCG-3" (Rauscher et al., 1990). This consensus is
identical to that found for EGR1, which has only three zinc fingers,
very similar to WT1 zinc fingers 2-4. Crystallographic and NMR
analyses of WT1 zinc finger interaction with DNA confirmed that
only zinc fingers 2-4 insert deeply into the major groove, where they
make base-specific contacts (Stoll et al., 2007). The first zinc finger
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does not contribute to binding specificity but helps anchor WT1 to
the DNA. Cell-free studies also showed that the +KTS isoform
binds to a slightly different sequence (Bickmore et al., 1992). A
molecular explanation for this came through NMR analysis, which
showed that the KTS insertion increases the flexibility of the linker
between zinc fingers 3 and 4, thus abrogating binding of finger 4 to
its cognate site in the major groove (Laity et al., 2000).

Recent studies identifying physiological target genes
(summarised in Table 1) using ChIP-ChIP and ChIP-seq have
brought much clarity to this area. Several slightly different genomic
binding sites have been identified, one identical to that shown to
interact with the +KTS isoforms in vitro (Motamedi et al., 2014,
Kann et al., 2015a; Lefebvre et al., 2015; Dong et al., 2015). So far,
most of the validated transcriptional targets appear to be —KTS
specific, with few genuine +KTS targets identified. Through ChIP-
ChIP and ChIP-seq, several thousand potential WT1 transcriptional
targets during kidney development have been identified. However,
so far, only a small subset of these have been validated as genuine
targets, the expression of which changes as a result of WTI1
mutation in developing tissue.

WT1 can act as either a transcriptional activator or repressor
(Fig. 4A) depending on its binding partners (for a review see Toska
and Roberts, 2014). Accordingly, there are repressor and activator
regulatory domains at residues 71-101 and 180-250, respectively
(Fig. 1). The repression domain was used to isolate a novel co-
repressor, BASP1, that clearly plays a role in the downregulation of
some WTI targets in vivo (Carpenter et al., 2004; Essafi et al.,
2011). Several other co-activators, co-repressors and transcription
factors, including p53 (TRP53), have been shown to interact with
WT1, modulating its target sites and activities, at least in cell lines
(Toska and Roberts, 2014). Furthermore, several post-translational
modifications, including sumoylation and phosphorylation, have
been shown to regulate WT1 subcellular localisation and function
(reviewed by Toska and Roberts, 2014).

Recent studies have revealed that WT1 can also regulate gene
expression by modulating the epigenetic landscape, and this is
relevant for disease progression (Rampal et al., 2014; Wang et al.,
2015). Loss-of-function WT1 mutations are observed in a subset of
acute myeloid leukaemia (AML), as are mutations in the genes
encoding TET family proteins, including TET2 and IDH1/2
(Rampal et al., 2014, Wang et al., 2015). These enzymes are
involved in converting 5S-methylcytosine (SmC) in the genome to 5-
hydroxymethylcytosine (ShmC), often leading to increased gene
expression. Importantly, it was noted that W7/ and TET gene
mutations are mutually exclusive and this led to the hypothesis that
WT1 might work in the same pathway as TETs. Indeed, it was
shown that WTT1 interacts with TET2, recruiting it to target genes to
activate their expression (Rampal et al., 2014; Wang et al., 2015).
Accordingly, loss of function of WT1, TET2 or TET3 leads to a
reduction in ShmC and a similar impaired haematopoietic
differentiation phenotype.

WTT1 also seems to modulate the state of chromatin domains far
beyond its binding sites. For example, WT1 is a transcriptional
activator of Wnt4 in developing kidney mesenchyme undergoing
MET, but a repressor of Wnt4 in epicardial cells poised for EMT,
and these roles appear to involve global changes in chromatin access
(Essafi et al., 2011). Transactivation and repression require the co-
activator CBP/p300 (CREBBP/EP300) and co-repressor BASP1,
respectively (Essafi et al., 2011). Deletion of Wzl in kidney
mesenchyme leads to loss of Wnt4 expression and the switching of
the whole 130 kb Wnt4 locus, which lies between two CTCF
binding sites, from an active chromatin configuration to a repressed
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Table 1. Validated WT1 transcriptional targets that are relevant for developmental processes in different tissues

Cellltissue Activated (A) or Biochemical activity
Gene type repressed (R) of protein References
Fgf16/20 Kidney mesenchyme/nephron A Signalling upstream of MAP kinase/ Motamedi et al., 2014
progenitors PI3 kinase

Bmper " A Inhibits BMP signalling Motamedi et al., 2014

Bmp7 " A Usually signals via SMADS Hartwig et al., 2010

Sal1 " A Transcription factor Hartwig et al., 2010

Pax2 ” A Transcription factor Hartwig et al., 2010

Heyl ’ A Transcription factor/Notch signalling  Hartwig et al., 2010

Cxxch5 ” A Transcription factor Hartwig et al., 2010

Lsp1 ” A F-actin binding Hartwig et al., 2010

Pbx2 " A Transcription factor Hartwig et al., 2010

Plxdc2 " A Plexin domain-containing protein Hartwig et al., 2010

Rps6ka3 ” A Protein kinase Hartwig et al., 2010

Scx " A Transcription factor Hartwig et al., 2010

Sox11 " A Transcription factor Hartwig et al., 2010

Gas1 " A FGF signalling Kann et al., 2015b

Wnt4 " A Signalling via NFAT Sim et al., 2002; Essafi et al., 2011

Podxl Podocytes A Anti-adhesive membrane protein Palmer et al., 2001

nephrin (Nphs1) " A Renal filtration barrier Wagner et al., 2004; Guo et al., 2004

Magi2 ’ A Assembly of slit diaphragm Dong et al., 2015; Lefebvre et al., 2015;
Kann et al., 2015a

Nphs2 " A Component of slit diaphragm Dong et al., 2015; Lefebvre et al., 2015;
Kann et al., 2015a

Mafb " A Transcription factor Dong et al., 2015

Scel " A In skin cornified envelope Ratelade et al., 2010

Sulf1 " A Sulfatase Ratelade et al., 2010; Schumacher et al.,
2011

Snait1 Epicardium/embryoid bodies A Activates EMT Martinez-Estrada et al., 2010

E-cadherin (Cdh7) Epicardium R Epithelial cell adhesion Martinez-Estrada et al., 2010

Whnt4 " R Signalling Essafi et al., 2011

Raldh2 (Aldh1a2) " R Retinoic acid synthesis Guadix et al., 2011

Cxcl10 " R Chemokine Velecela et al., 2013

Ccl5 ” R Chemokine Velecela et al., 2013

Sf1 Adrenal-gonadal primordium A Transcription factor Wilhelm and Englert, 2002

Gli1 Developing adrenal gland Transcription factor in SHH pathway Bandiera et al., 2013

Tef21 " Transcription factor Bandiera et al., 2013

Sry Developing male gonad A Transcription factor Miyamoto et al., 2008

Left Posterior taste field A Transcription factor Gao et al., 2014

Ptch1 " A Receptor for SHH Gao et al., 2014

Bmp4 ” A Signalling via SMADS Gao et al., 2014

In all cases, WT1 has been shown to interact with these genes in the appropriate tissue by ChIP, whether in the primary paper listed or in a subsequent publication.
In all cases, Wt1 mutation or overexpression leads to a change in the expression of the target gene in the appropriate tissue.

state. Conversely, deletion of Wt in the epicardium switches the
chromatin between these two CTCF sites from a repressed to an
active conformation and this is associated with activation of Wnt4
expression. This switching of states is referred to as ‘chromatin flip-
flop’ (Essafi et al., 2011). It has been proposed that WT1 activates
the Wnt4 domain in the kidney mesenchyme to allow access of other
transcriptional activators of Wnt4, including B-catenin and SIX2,
whereas in the epicardium WTI keeps the locus in a silent state,
preventing access of Wnt4 activators.

Effects through RNA binding and post-transcriptional regulation

The first indication that WT1 might also function post-
transcriptionally came with the observation that the +KTS
isoform specifically localises and interacts with splice factors in
kidney cells (Larsson et al., 1995). It was subsequently revealed
that WT1 can be incorporated into functional spliceosomes in
cell-free systems (Davies et al., 1998). These observations were
soon followed up by experiments showing that both major WT1
isoforms, but not EGR1, can bind RNA derived from exon 2 of
Igf2, the +KTS isoform showing higher affinity (Caricasole et al.,
1996). The RNA interaction occurred through the zinc fingers

and required the atypical first zinc finger. Subsequently, it was
shown that both zinc finger 1 and the KTS insertion are important
for WT1-RNA interactions in Xenopus oocytes (Ladomery et al.,
2003). Using systematic evolution of ligands by exponential
enrichment (SELEX), three high-affinity RNA-binding
motifs have been identified for the WT1-KTS isoform (Bardeesy
and Pelletier, 1998), and structural studies have shown that both
the sequence and secondary structure of RNA determine binding
specificity and affinity for WT1 (Zhai et al., 2001). It has also been
demonstrated that, although the majority of WT1 is in the nucleus,
some is present in the cytoplasm, located on actively translating
polysomes, with all isoforms shuttling between the nucleus and
cytoplasm (Niksic et al., 2004). Furthermore, WT1, specifically the
+KTS isoform, was shown to recruit a viral RNA segment to
polysomes (Bor et al., 2006). Additional circumstantial evidence for
post-transcriptional functions comes from reports that WT1 interacts
with RNA-binding proteins, often in an isoform-dependent manner.
These include the splice factors U2AF65 (U2AF2) (Davies et al.,
1998) and RBM4 (Markus et al., 2006), HNRPU (HNRNPU)
(Spraggon et al., 2007) and the Wilms’ tumour associated protein
WTAP (Little et al., 2000). The latter protein is very topical as it is an
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essential component of the complex that carries out m6A RNA
methylation (Ping et al., 2014), linking m6A methylation to splicing.

In spite of all this circumstantial evidence, experiments
demonstrating a post-transcriptional role for WT1 through RNA
interaction have been lacking. The field has been hampered by a lack
of identification of physiological RNA targets. This has now been
addressed to some degree by a recent study that used UV
crosslinking and sequencing to identify endogenous RNAs
interacting with WT1 in MI15 kidney cells and partially
differentiated embryonic stem cells (Bharathavikru et al., 2017).
This analysis showed that WT1 interacts with and regulates sets of
mRNAs involved in appropriate developmental processes,
including cell adhesion, cell migration, kidney and cardiovascular
development. The interaction is mainly at the 3"UTR and often with
secondary structures, supporting the NMR analysis. Transcriptomic
and functional experiments support a model in which WT1 controls
the stability of these mRNAs, most of which do not appear to be
transcriptional targets. However, some genes, for example
podocalyxin, are regulated by WTI1 at the transcriptional and
post-transcriptional levels, raising the possibility that WT1 might
chaperone single genes through multiple stages of the gene
expression cascade (Fig. 4B). Given these new findings, it will be
essential to measure transcription rates, rather than just steady-state
levels of mRNA, to prove that targets are regulated at the
transcriptional level when WT1 levels are altered.

An intriguing non-canonical function for WT1 has also been
identified (Shandilya et al., 2014), revealing that it regulates
the mitotic checkpoint in cultured cell lines through direct
interaction with the spindle assembly checkpoint protein MAD?2.
Clearly, this novel observation could have implications for cancers
arising through W71 mutation or misregulation, but the relevance of
these findings in an organism context still need to be ascertained.

RNA stability

Conclusions
WTT has been a valuable tool for understanding complex aspects of
tissue development and homeostasis while also revealing some of
the mechanisms that underpin human disease. Recent studies
showing that WT1 regulates mRNA turnover through 3’ UTR
interactions dovetail well with new findings highlighting the
importance of microRNA processing pathway genes in the
aetiology of Wilms’ tumour (Astuti et al., 2012; Wegert et al.,
2015). Further studies will be required to elucidate the physiological
significance and the spectrum of post-transcriptional mechanisms
by which WT1 mediates its myriad effects.

At present, we are very much underestimating the potential
complexity of WT1 itself, never mind the complex networks in
which it functions, warranting a more systems-based approach. For
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Fig. 4. The role of WT1 in
transcriptional and post-
transcriptional gene regulation.

(A) WT1 can function at the
transcriptional level, acting to either
activate or repress transcription.

(B) WT1 can also function post-
transcriptionally by regulating RNA
stability and possibly RNA degradation,
splicing and translation.

example, how do the two major isoforms overlap or differ in their
functions, and what is the role of the other mammalian-specific
isoforms? In this regard, we must take into consideration the fact
that all the WT1 isoforms have the potential to dimerize, so the
homodimers and heterodimers might have very different functions.
Moreover, we have little knowledge of WT1 post-translational
modifications and whether or how these might affect WT1 activity.
We also know very little about the factors that operate upstream to
regulate WT1 expression.

Most experiments so far have shown that WT1 is essential in
cellular or developmental processes but have not addressed its
instructive roles. Much more work will be needed to identify the
cell-autonomous and non-cell-autonomous mechanisms by which
WT1 regulates homeostasis. It will be fascinating to study how the
different WT1-expressing mesenchymal progenitors respond to
tissue damage as well as cellular and environmental cues. Finally, it
will be important to determine with rigour whether WT1 plays a
significant role in adult cancer and whether this information can be
translated into clinical benefit and therapeutic applications.
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