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Understanding development and stem cells using single
cell-based analyses of gene expression
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ABSTRACT
In recent years, genome-wide profiling approaches have begun to
uncover the molecular programs that drive developmental processes.
In particular, technical advances that enable genome-wide profiling of
thousands of individual cells have provided the tantalizing prospect
of cataloging cell type diversity and developmental dynamics in a
quantitative and comprehensive manner. Here, we review how single-
cell RNA sequencing has provided key insights into mammalian
developmental and stem cell biology, emphasizing the analytical
approaches that are specific to studying gene expression in single
cells.
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Introduction
To characterize the diversity of cell types in multicellular
organisms, to investigate the mechanisms that give rise to this
diversity in development and how they go awry in disease, and to
understand how dynamic intercellular interactions contribute to
these processes, we need technologies that allow us to make
genome-wide measurements of many single cells. Over the past
16 years, a number of genome-wide profiling techniques (e.g.
RNA sequencing and chromatin immunoprecipitation sequencing
or ChIP-Seq; see Glossary, Box 1) have been developed and used
to study global changes in, for example, gene expression,
chromatin occupancy by transcription factors and epigenetic
marking. However, in general, these approaches require more
starting material than is available in an individual cell, limiting
their application to cell populations. Thus, while such studies have
provided important advances, it is becoming clear that the profiling
of individual cells would be highly advantageous. There are many
reasons for this. First, especially in developmental contexts, the
rarity of some cell types means that large numbers of animals need
to be used in order to acquire sufficient cells for profiling. For
example, profiling the transcriptome of hematopoietic stem cells
(HSCs) across seven distinct stages of development required the
manual dissection of greater than 2500 mouse embryos, a
painstaking feat accomplished over the course of 3 years
(McKinney-Freeman et al., 2012). Second, even highly robust
and functionally verified isolation strategies do not reach 100%
purity. For example, at best, only one in two CD150+CD48-
Sca-1+Lineage-c-kit+ bone marrow cells can reconstitute the
hematopoietic system of irradiated mice (Kiel et al., 2005). This
impurity is problematic because it generates molecular signatures

that are weighted averages of the constituent cell types rather than
an accurate reflection of an individual cell. Third, although single
cell profiling can help to define cell types with higher resolution, it
can also be used to discover previously unappreciated cell types in
heterogeneous populations and complex tissues. For example, the
single cell ‘profiling’ (using Southern hybridization) of cDNA
from nine genes in 15 single pyramidal neurons of the rat
hippocampus led to the discovery of two neuronal subtypes
distinguished by their K+ to Ca2+ channel gene expression ratios
(Eberwine et al., 1992). Fourth, and finally, it is becoming evident
that single-cell profiling will allow us to address a wide range of
questions and hypotheses concerning the co-occurrence of
molecular events in individual cells. This exploration need not be
limited to gene expression. For example, the simultaneous
interrogation of DNA copy number variation (CNV) and gene
expression in single cells (Dey et al., 2015; Macaulay et al., 2015)
could be used to uncover the extent to which CNVs contribute to
functional heterogeneity in the developing nervous system
(McConnell et al., 2013), and to determine the extent to which
this is mediated by alterations in gene expression. Likewise, the
integration of DNA methylation state with transcription will reveal
the extent to which this epigenetic modification contributes to
‘stochastic’ expression (Angermueller et al., 2016). More
generally, the incorporation of other data on a per cell basis will
compound the amount of knowledge that can be gleaned from
single-cell molecular profiling.

In the relatively brief time since the first description of the mRNA
content of single cells (Tang et al., 2009), a staggering array of
single-cell genome-wide profiling techniques and applications have
been reported (Fig. 1). The surfeit of methods to quantify RNA in
single cells, including Smart-Seq (Ramskold et al., 2012), CEL-Seq
(Hashimshony et al., 2012) and Quartz-Seq (Sasagawa et al., 2013),
reflects the relative ease with which mRNA can be captured,
amplified and sequenced in order to provide a molecular readout of
cell state. In addition to single-cell gene expression, methods to
assess DNA variation (Navin et al., 2011), chromatin organization
(Nagano et al., 2016), chromatin accessibility (Cusanovich et al.,
2015; Buenrostro et al., 2015), DNA-protein interactions (Rotem
et al., 2015) and DNA methylation (Smallwood et al., 2014) have
been developed for single cells.

Here, we review single-cell genome-wide studies of mammalian
development and stem cells, focusing on single-cell RNA
sequencing (scRNA-Seq; see Box 2), its applications and the
insights that have been gleaned from this technique. We do not
discuss the tantalizing progress being made in single-cell
proteomics (Bandura et al., 2009) or in situ RNA-Seq (Ke et al.,
2013; Lee et al., 2014; Lovatt et al., 2014). We also refer the reader
to several other reviews that provide a more in-depth discussion of
the technical and molecular details of single-cell methods (Etzrodt
et al., 2014; Kolodziejczyk et al., 2015a; Macaulay and Voet, 2014;
Wang and Navin, 2015).

Department of Biomedical Engineering, Institute for Cell Engineering, Johns
Hopkins University School of Medicine, Baltimore, MD 21205, USA.

*Author for correspondence (patrick.cahan@jhmi.edu)

P.C., 0000-0003-3652-2540

17

© 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 17-32 doi:10.1242/dev.133058

D
E
V
E
LO

P
M

E
N
T

mailto:patrick.cahan@jhmi.edu
http://orcid.org/0000-0003-3652-2540


The basics of scRNA-Seq analysis
The technique of scRNA-Seq involves isolating and lysing single
cells, producing cDNA in such a way that material from a cell is
uniquely marked or barcoded, and generating next-generation
sequencing libraries that are subjected to high-throughput
sequencing (see Box 2). The ultimate output of this process is a
series of sequence reads that are attributed to single cells with the
barcode, aligned to a reference genome or transcriptome, and
transformed into expression estimates. After sequencing, libraries
are subjected to quality control to remove low-quality samples
(e.g. material from incompletely lysed cells), and normalized
expression estimates are then used as input for an ever-increasing
battery of algorithms tailored for scRNA-Seq. We briefly describe
the approaches currently used to analyze scRNA-Seq data (Fig. 2).
We refer the reader to other reviews that discuss the many
pre-processing and quality-control steps that are required to
produce ‘clean’, informative single-cell data (Bacher and
Kendziorski, 2016; Stegle et al., 2015), and that describe
methods to detect and account for uninteresting confounding
effects, such as the stage of cell cycle (Buettner et al., 2015;
Vallejos et al., 2015), and to analyze and account for technical
noise and the so-called ‘drop out’ (see Glossary, Box 1) effect

(Brennecke et al., 2013; Grün et al., 2014; Kharchenko et al.,
2014; Pierson and Yau, 2015).

scRNA-Seq can be used to determine the various cell types
within a population or tissue, including rare cell types. Commonly
used approaches to identify sub-structure in scRNA-Seq data and to
identify distinct cell types include principal component analysis
(PCA; see Glossary, Box 1) and t-distributed stochastic neighbor
embedding (t-SNE; see Glossary, Box 1), both of which aim to
reduce the number of variables required to represent the total
variation in the data (Maaten and Hinton, 2008). After running the
data through these dimensionality reduction techniques, the results
are visualized and subsequently used as input for secondary
algorithms, such as K-means clustering (see Glossary, Box 1) and
Gaussian mixture modeling (see Glossary, Box 1), to identify the
number of clusters and to assign cells to clusters, sometimes in a
probabilistic fashion (Fig. 2A). Owing to the low sensitivity of
scRNA-Seq, it has been challenging to use these approaches ‘as is’
to identify rare sub-populations and distinguish them from technical
outliers. However, an analytical pipeline called RACE ID was
recently developed to address this problem (Grün et al., 2015).
RACE ID first estimates the number of clusters (cell types or states)
using k-means. Second, it statistically models the expression of each
gene within each cluster and uses these models to identify outlier
cells, which are defined as those with highly unlikely expression of
two or more genes. Finally, it assigns outliers to new clusters,
defining these as new cell types or states, that are visualized using
t-SNE. Although this approach has several parameters that require
tweaking, it has been used successfully for identifying rare Paneth
progenitor cells in intestinal organoids (Grün et al., 2015). Other
similar approaches have also been described, including GiniClust
(Jiang et al., 2016), and predictions generated with these methods
can be tested by searching for genes encoding cell-surface markers
that distinguish the new cell clusters, prospective isolation by
fluorescence-activated cell sorting (FACS) and subsequent
functional assessment.

In addition to cell type heterogeneity, cells within a population
can exhibit temporal heterogeneity. They may, for example, differ
primarily with regard to the stage (e.g. of a developmental
process) at which they are sampled. Another simple variable is
the stage of the cell cycle but the concept is extendable to
developmental trajectories, or even to stages of disease
progression. Several approaches have recently been developed
to reconstruct major trajectories from single-cell molecular
profiling data and to place cells along these trajectories
(Fig. 2B). The first of these to be developed were Wanderlust
and Monocle (Bendall et al., 2014; Trapnell et al., 2014). Monocle
relies on the minimal spanning tree (MST; see Glossary, Box 1)
algorithm to find trajectories in data, which are interpreted as a
temporal progression or ‘pseudotime’ (see Glossary, Box 1). Cells
can then be placed along pseudotime based on their distance from
the major trajectories defined by the MST, and the data can be
analyzed using standard approaches for temporal data. Such an
approach is typically used to identify regulators of developmental
progression or bifurcation points. By contrast, Wanderlust (which
was implemented to order single cell mass-cytometry data) creates
an ensemble of nearest neighbor graph and determines an average
path based on the trajectories defined as the shortest path starting
from a defined starting point. A multitude of new algorithms have
been described more recently to achieve a similar aim. These
include Wishbone (Setty et al., 2016), Sincell (Juliá et al., 2015),
time variant clustering (Huang et al., 2014), SCUBA (Marco
et al., 2014), Waterfall (Shin et al., 2015), probabilistic Boolean

Box 1. Glossary
Bayesian network: A probabilistic graph in which each node represents
a random variable and each edge represents a conditional dependence
between two random variables (or nodes).
Chromatin immunoprecipitation sequencing or ChIP-Seq: Amethod
to determine the genomic regions with which a protein interacts.
Drop-out: A false negative in scRNA-Seq data. In other words, when a
gene is expressed in a cell but is not detected by scRNA-Seq.
Gaussianmixture model: A class of probabilistic models that represent
clusters of data points using Gaussian densities.
Gene regulatory network (GRN): The complete set of regulatory
relationships between genes and gene products.
K-means clustering: An algorithm that assigns entities (e.g. samples or
cells) to K distinct groups, where K is an integer specified by the user.
K-means seeks to find the set of group assignments that minimize the
distances within all of groups.
Minimal spanning tree (MST): An algorithm to connect vertices of a
weighted-edge graph, such that the resulting graph has the minimal total
edge weight.
Principal component analysis (PCA): A linear projection of data from
high to low dimensions constrained by maximizing the variance between
components. Good at preserving large distances between points (cells)
in the original space.
Pseudotime: An artificial ordering of cells based upon a statistically
inferred trajectory often interpreted as time. Such an approach is useful
when sampling from a population or populations in which single cells are
at distinct stages of a process.
Simpson’s paradox: The loss or reversal of statistical associations
between variables, as determined in more than one group, when those
groups are combined.
Synthetic RNA spike-ins: Poly-adenylated mRNA synthesized and
provided at known copy number used to estimate absolute abundance of
target mRNA, and to estimate and correct for technical noise in scRNA-
Seq. Commonly used spike-in sets are designed to have no similarity to
the transcriptomes of commonly studied species but to have similar
sequence composition and lengths.
t-distributed stochastic neighbor embedding (t-SNE): a projection of
high dimensional data into lower dimensions by preserving
probabilistically determined pairwise distances between points. Good at
preserving smaller distances between points (cells) in the original space.
Transcriptional noise: Random fluctuations in the transcription of a
single gene, quantified as the standard deviation divided by the mean.
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networks (Chen et al., 2015), diffusion maps (Haghverdi et al.,
2015), TSCAN (Ji and Ji, 2016), SLICER (Welch et al., 2016) and
SCOUP (Matsumoto and Kiryu, 2016). These various types of
pseudotime analyses allow the identification of regulators of
temporal processes and of transient events that are obscured by
bulk-derived data. Models generated from these types of analyses
can be tested by live-cell tracking, by modulating the expression
of candidate transcriptional regulators or by perturbing the
identified signaling pathways.
Similar to the concept of placing cells along a temporal axis,

several algorithms have been developed to place cells into spatial
contexts. Such spatial reconstruction methods (Satija et al., 2015;
Achim et al., 2015) use prior information about localized marker
gene expression to place single cells from scRNA-Seq into a spatial
representation of an anatomical context (Fig. 2C). When temporal
and spatial axes coincide, Sinova (a method similar in concept to
Monocle) can be used to place cells spatially without prior
knowledge of marker gene expression (Li et al., 2016c).
Finally, there is much excitement around the prospect of using

scRNA-Seq to reconstruct gene regulatory networks (GRNs; see
Glossary, Box 1) that more faithfully predict transcriptional state
and dynamics than those produced from the profiling of bulk
populations. In theory, GRNs constructed from single-cell data
should be better because they will not be confounded by population
substructure, which can lead to Simpson’s Paradox (Trapnell, 2015)
(see Glossary, Box 1), and because gene-to-gene correlations (from
which GRNs are reverse engineered) are elicited by stochastic
variation rather than non-physiological overexpression or knockdown.
(Bian and Cahan, 2016). However, the low sensitivity of scRNA-
Seq is problematic for detecting correlations, especially for genes
that are transcribed at very low rates. Thus, although GRNs have
been reconstructed from single-cell quantitative PCR (qPCR) data
using Bayesian networks (see Glossary, Box 1) (Moignard et al.,
2015), and formal methods have been devised in this context
(Ocone et al., 2015), no large-scale GRN reconstruction from
scRNA-Seq data has been described to date.

‘Embryomics’: using scRNA-Seq to understand
embryogenesis
As we have summarized above, a host of approaches and techniques
have been developed in recent years to study gene expression in
single cells and to then analyze this data so as to provide meaningful
datasets. Importantly, such methods have been used successfully to
gain insights into various aspects of embryogenesis and early
development (summarized in Table 1). Below, we highlight just
some of these advances.

Lineage segregation in the pre-implantation embryo
Before it implants, the mammalian embryo consists of three
lineages: the epiblast (EPI), which gives rise to three germ layers;
the trophectoderm (TE), which mediates implantation; and
the primitive endoderm (PE), which provides nutrition to the
developing embryo (Rossant et al., 2009). A first hint of the power
of single cell techniques was provided by a single-cell qPCR
study that uncovered transcriptional differences between these early
embryonic lineages in mice (Guo et al., 2010). In this study, ∼450
single cells at seven developmental stages (from the zygote to
64-cell blastocyst) were manually isolated and the expression of 48
genes representing, for example, developmental signaling pathways
(e.g. Bmp4) or transcription factors known to regulate pluripotency
(e.g. Utf1) and gastrulation (e.g. Gata2) were analyzed. Using the
expression of markers characteristic of cells constituting the
blastocyst, Guo et al. were able to group the cells from the 64 cell
embryos as EPI, TE, or PE and identify genes that mark fate
decisions. For example, Sox2 expression marked the first fate
decision – the choice to form inner or outer cells of the morula.
Notably, it was shown that lineage specification also involves a
reduction in the expression of some TFs in cells of opposing
lineages, as well as lineage-specific increases in some TFs. For
example, Gata6 expression is reduced in EPI progenitors, whereas
factors such as Klf2 are reduced in TE progenitors.

Given that the above study was based on the targeted analysis of
just a few genes using qPCR, the identification of novel genes that
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Fig. 1. The growth of single cell genome-
wide profiling techniques. A surge in
scRNA-Seq applications can be observed.
The cumulative number of cells that have
been subjected to scRNA-Seq is shown,
separated by species. Landmark studies
are highlighted. Tang et al. (2009), Tang
(2010b), Islam (2011), Ramskold (2012)
and Hashimshony (2012) are the first five
scRNA-Seq studies. They introduced the
major varieties of scRNA-Seq: Tang
protocol, STRT-Seq, CEL-Seq and Smart-
Seq. Yan (2013) and Xue (2013) leverage
scRNA-Seq to explore and the dynamics of
human zygotic genome activation. Picelli
(2013) introduces Smart-Seq2 with
increased sensitivity. Macosko (2015) and
Klein (2015) introduce high-throughput low-
cost droplet-based methods that have
vastly increased the number of cells that
can be sequenced.
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play key roles in these developmental stages was not possible.
However, the first scRNA-Seq study began to address this issue
by characterizing the complete transcriptomes of individual
blastomeres from four-cell stage murine embryos and from mature
oocytes (Tang et al., 2010a). In addition to acting as a proof of
principle, this study documented that a single cell expresses

multiple isoforms of the same gene – information that is
indeterminable from bulk samples.

The most recent and comprehensive transcriptional portrait of
human pre-implantation embryos, using 1529 individual cells from
88 pre-implantation embryos, substantiated many observations of
the earlier molecular characterizations (Petropoulos et al., 2016).

Box 2. Single-cell RNA sequencing: how does it work?

Cell isolation 
and lysis

Reverse 
transcription

Amplification Library preparation 
and sequencing

scRNA-Seq 
method

PCR

IVT-PCR

TS and UMI

Library prep
and Seq

PolyA tailing and
 SSS and UMI

Smart-Seq

inDrop

Tang

Quartz-Seq

Drop-Seq

SCRB-Seq

STRT-Seq

Droplets

Tubes

MARS-Seq

CEL-Seq

Microfluidics

TS

PolyA tailing
and SSS

Cells:    50,401 
Genes:  6177
Studies: 1  

Cells:    5212 
Genes:  NA
Studies: 1  

Cells:     513 
Genes:  6832
Studies: 40  

Cells:     107
Genes:  10,874
Studies: 8  

Cells:     851 
Genes:  3400
Studies: 1  

Cells:     47
Genes:   NA
Studies: 1  

Cells:    85 
Genes:  5867
Studies: 2 

Cells:    1467 
Genes:  8822
Studies: 5  

Cells:    2042 
Genes:  533
Studies: 3  

Some of the most widely used protocols for scRNA-Seq are listed; shown in boxes are the number of studies in which the approach has been used, the
average number of single cells subjected to scRNA-Seq and the average number of genes reported as detected. Although all techniques follow a similar
outline, they vary in their methods. The first step in scRNA-Seq is the efficient capture and lysis of single cells. This can be achieved via manual isolation
of cells using FACS or micropipetting into tubes containing lysis solution (tubes), via commercial microfluidics-based platforms such as Fluidigm’s C1
(microfluidics), or by capturing cells into nanoliter droplets that contain lysis buffer (droplets). Once cells are lysed, themRNA population is bound by primers
containing a polyT region that allows them to bind to the polyA tail of mRNA. These primers can also have other unique features such as unique molecular
identifiers (UMIs), cell barcodes or sequences that serve as PCR adapters. The captured mRNA is subsequently converted to cDNA using a reverse
transcriptase to generate the first cDNA strand. Historical techniques then use polyA tailing of the 3′ end of the newly synthesized strand followed by second-
strand synthesis (SSS) to produce double-stranded DNA (ds-cDNA). However, recently, template switching (TS) is carried out prior to generation of the
second strand, using a custom oligo called the template switch oligo (TSO) that binds the 3′ end of the newly synthesized cDNA and serves as a primer for
the generation of the second strand, thus resulting in identical sequences on both ends of the ds-cDNA. This ensures efficient amplification of the full-length
ds-cDNA. PolyA tailing and TS can be carried out both with or without UMIs. After successful second-strand synthesis, most techniques use PCR-based
amplification to amplify the ds-cDNA obtained from a single cell, in order to generate enough starting material for sequencing. However, techniques such as
MARS-Seq, CEL-Seq and inDrop perform in vitro transcription (IVT) followed by another round of cDNA synthesis, before PCR amplification. After this point,
all techniques converge, such that the amplified ds-cDNA is used as starting material to generate a collection of short, adapter-ligated fragments called a
library, that is fed into a sequencer of choice to generate sequencing reads. NA, not applicable.
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Fig. 2. Typical approaches for analyzing scRNA-Seq datasets. Several types of analyses are popular for analyzing scRNA-Seq datasets. (A) When trying to
identify cell types, dimension reduction techniques such as independent component analysis, principal component analysis, t-distributed stochastic neighbor
embedding, ZIFA (Pierson and Yau, 2015) or weighted gene co-expression network analysis (Langfelder and Horvath, 2008) are first used to project high-
dimensional data into a smaller number of dimensions to ease visual evaluation and interpretation. Clusters of similar cells can be identified using generally
applicable methods, such as Gaussian mixture modeling (Fraley and Raftery, 2002) or K-means clustering, or methods devised specifically for single cell data,
such as StemID (Grün et al., 2016), SCUBA, SNN-Cliq (Xu and Su, 2015), Destiny (Angerer et al., 2015) or BackSpin (Zeisel et al., 2015). Clusters can then be
annotated based on domain-specific knowledge of the expression of a few genes, or automatically based on gene set enrichment. Finally, specific genes that are
differentially expressed between clusters can be identified using scRNA-Seq-specific methods such as SCDE (Kharchenko et al., 2014) and MAST (Finak et al.,
2015). (B) Most pseudotime analyses (which place each cell on a statistically derived axis that represents progression along a process, such as developmental
time) start by performing dimension reduction. They then determine trajectories through the reduced dimensionality data; some algorithms identify bifurcation
points and generate a distinct trajectory. The trajectories can then be used to order single cells along the process and to identify candidate regulators of stage
transitions, for example, by finding stage-specific transcription factors (TF1-TF5). (C) One of the major drawbacks of scRNA-Seq is the loss of spatial context
information when cells are dissociated and/or isolated. Spatial reconstruction methods attempt to ameliorate this issue by leveraging prior knowledge of landmark
gene expression. Typically, localized expression of select genes is generated from in situ hybridization. Spatial reconstruction algorithms then compare scRNA-
Seq profiles to discretized in situ hybridization profiles, and cells are placed in silico in the anatomical region with amatching profile. Machine-learning approaches
can be used to estimate the expression of landmark genes to overcome the noisy nature of scRNA-Ssq data.
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Indeed, similar to the findings based on qPCR analyses, it was shown
that lineage-specificmarkers exhibit promiscuous co-expression prior
to lineagematuration between E3 and E5. For example, co-expression
of TE- (GATA2 and GATA3), PE- (GATA4 and PDGFRA) and EPI-
(SOX2 and TDGF21) indicative genes was observed before the three
distinct groups of cells were labeled at late E5.

Human zygotic genome activation
The dynamics of human zygotic genome activation (ZGA, also
referred to as embryonic genome activation or EGA) have remained
elusive for many years because it is difficult to obtain the numbers
of precisely timed human embryos that would be required for
traditional, bulk molecular profiling (Braude et al., 1988; Dobson

et al., 2004). This, however, has changed with the development of
single-cell-based approaches. Indeed, to more finely map human
ZGA, scRNA-Seq was carried out on 33 cells isolated from human
pre-implantation embryos, ranging from the zygote to the 8-cell
stage, all of which had been derived by intra-cytoplasmic sperm
injection from a single sperm donor (Xue et al., 2013). Using
this approach, maternal and paternal transcripts in single cells
could be distinguished based on paternal-specific single-nucleotide
polymorphisms (SNPs), and it was found that the expression of
paternal alleles occurs as early as the 2-cell stage, followed by major
ZGA in the 4- to 8-cell stages. These findings were corroborated
in a scRNA-Seq-based analysis of 124 human embryonic cells,
including zygotes and cells from the 2-cell, 4-cell, 8-cell, morula

Table 1. Single-cell RNA-Seq-based studies of early mammalian development

Study Cell type(s) Primary Species Cells
Number
of genes Method Summary

Tang et al.
(2009)

Early embryo Yes Mouse 7 11,920 Tang The first scRNA-Seq study; characterized
blastomere expression state

Tang et al.
(2010b)

Early embryo, mESC, ICM
outgrowth

Yes Mouse 34 10,815 Tang Discovered a metabolic switch from ICM
cells to ESCs

Islam et al.
(2011)

mESC, MEF No Mouse 85 4250 STRT-
Seq

STRT-Seq is described and can pinpoint
the exact location of the 5′ end of
transcripts

Ramskold et al.
(2012)

Cancer cell lines, oocyte,
CTC, melanocytes, hESC

Yes Mouse,
Human

38 10,000 Smart-
Seq

Identified candidate biomarkers of
circulating tumor cells

Hashimshony
et al. (2012)

Embryo, MEF, mESC Yes C. elegans,
mouse

52 5500 CEL-
Seq

CEL-Seq is described, representing
advances in processivity and cost
effectiveness

Pan et al. (2013) K562, dorsal root ganglia Yes Human,
mouse

3 4706 Custom Optimizes two protocols for sequencing
low-abundance material

Sasagawa et al.
(2013)

mESC, ESC-derived primitive
endoderm

No Mouse 47 NA Quartz-
Seq

Describes Quartz-Seq

Yan et al. (2013) Oocyte, zygote, 2-cell, 4-cell,
8-cell, morula, late blast,
hESC

Yes Human 124 11,006 Tang A comprehensive transcriptomic profiling of
human pre-implantation embryos and
ESCs

Xue et al. (2013) Oocyte, pronucleus, zygote,
2-cell, 4-cell, 8-cell

Yes Human,
mouse

37 10,231 Tang Discovers that paternal-specific single
nucleotide polymorphisms can be
detected as early as the 2-cell stage

Islam et al.
(2013)

ESC No Mouse 41 7595 STRT-
Seq

Introduction of UMIs to enable mRNA to
ameliorate the issue of PCR duplications
during amplification

Deng et al.
(2014)

Zygote, 2-cell, 4-cell, 8-cell,
16-cell, early blast, mid
blast, late blast, M-II
oocyte, fibroblasts, liver

Yes Mouse 298 NA Smart-
Seq

Global analysis of allelic expression on
mouse pre-implantation embryos;
revealed that random monoallelic
expression results from stochastic allelic
transcription

Grün et al.
(2014)

ESC No Mouse 118 6235 CEL-
Seq

Proposed a noise model to correct for
sampling noise and global cell-to-cell
variation in sequencing efficiency

Kumar et al.
(2014)

ESC No Mouse 415 NA Smart-
Seq

Showed that transcriptional heterogeneity
is regulated and associated with
expression of lineage specifiers; loss of
mature miRNA pushes ESCs to a low-
noise state

Satija et al.
(2015)

Embryo Yes Zebrafish 851 3400 SCRB-
seq

Description of Seurat to computationally
reconstruct the spatial organization of
zebrafish embryos

Klein et al.
(2015)

ESC No Mouse 5212 NA inDrop High-throughput droplet-microfluidic
approach applied to RNA-Seq thousands
of single cells

Cacchiarelli
et al. (2015)

Fibroblasts, PSC No Human 52 NA Smart-
Seq

Suggested that reprogramming reflects
aspects of development in reverse

Kim et al. (2015) ESC No Mouse 54 7385 Smart-
Seq

Described a generative statistical model to
quantify technical noise using spike-ins

CEL-Seq, cell expression by linear amplification and sequencing; CTCs, circulating tumor cells; ESC, embryonic stem cell; hESC, human embryonic stem cell;
MEF, mouse embryonic fibroblast; mESC, mouse embryonic stem cell; ICM, inner cell mass; scRNA-Seq, single-cell RNA sequencing; STRT-Seq, single-cell
tagged reverse transcription sequencing; NA, not applicable; PSC, pluripotent stem cell; UMIs, unique molecular identifiers.
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and late blastocyst stages (Yan et al., 2013). Based on the sheer
number of genes that are differentially expressed between the 4-cell
and the 8-cell stage, and because the genes upregulated are enriched
in ribosome and RNA metabolism functions, it was concluded that
the major phase of ZGA occurs at this stage. This is in contrast to
ZGA dynamics in the mouse, where the major phase of ZGA was
found by scRNA-Seq to occur between the zygote and late 2-cell
stage (Blakeley et al., 2015). In spite of this difference in the timing
of ZGA, a high degree of conservation between the human and
mouse pre-implantation development genetic programs was
observed (Xue et al., 2013). By performing network and gene
enrichment analysis, it was shown that the genetic networks
coinciding with the three waves of ZGA/EGA in human and mouse
embryos share analogous cellular functions. For example, networks
activated in the early ZGA wave are enriched in protein transport
and GTPase signaling genes (at the 1- to 4-cell stage in human, the
1- to 2-cell stage in mouse), networks activated in the major ZGA
wave are highly enriched in RNA processing and ribosome
biogenesis genes (at the 8-cell stage in human, and the 2- to 4-cell
stage in mouse), and networks activated in the final wave are
enriched in translation and mitochondrial genes (at the 16-cell stage
in human, and the 8- to 16-cell stage in mouse). This suggests that
the regulation of these conserved genetic programs is decoupled (to
some extent) from the number of cell cycles post-fertilization,
raising the issue of how the waves of ZGA/EGA are timed.

Blastomere asymmetry
Another elusive facet of early human embryogenesis is the timing of
the first symmetry-breaking event – the moment at which seemingly
equivalent blastomeres start to exhibit differences. Using scRNA-
Seq, it was demonstrated that the transcriptional profile of the zygote
was distinct when compared with that of other cleavage-stage
embryos (Xue et al., 2013), an observation that was further
substantiated in 2015 by a computational meta-analysis of scRNA-
Seq data (Shi et al., 2015). Comparing scRNA-Seq data with a
theoretical prediction of a biased distribution of transcripts suggested
that the asymmetric distribution of transcripts occurs at the point
immediately after the first embryonic cleavage. This biased
distribution of transcripts follows a binomial pattern, which means
that when the RNA copy number is low, the transcript will be less
evenly distributed to daughter cells after the first cleavage. In the
subsequent 2- to 16-cell stages, asymmetrically distributed transcripts
diverge into either being minimized through negative-feedback loops
or enhanced through positive-feedback loops, suggesting that
transcriptional noise (see Glossary, Box 1) is initially important but
then has progressively minimal impact during lineage specification.

Allele-specific gene expression
Although allelic exclusion has been linked to diverse biological
functions, including T-cell receptor expression and antigen
recognition in B cells (Brady et al., 2010), its genome-wide
prevalence has been unclear. However, in 2014, this issue was
addressed by determining allele-specific expression in 269 single
cells isolated from pre-implantation stage mouse embryos (Deng
et al., 2014; Ramskold et al., 2012). By crossing mice of different
backgrounds (CAST and C57), allele-specific expression could be
quantified on a per cell basis with scRNA-Seq by using SNPs to
distinguish alleles. Using this approach, it was estimated that the
extent of monoallelic expression is surprisingly high (54% of
genes), a figure that subsequently has been revised to 17.8% after
accounting for technical noise (Kim et al., 2015). More recently, by
observing SNPs in male pre-implantation human embryos, it was

shown that X-chromosome genes exhibit lingering bi-allelic
expression, which is absent at later stages (Petropoulos et al., 2016).

Using scRNA-Seq to gain insights into the biology of stem
cells
The scRNA-Seq studies discussed above focused primarily on gene
expression in early embryos, but it soon became clear that such an
approach could also be used to further understand the biology of
different types of stem cells. Indeed, and as we highlight briefly
below, scRNA-Seq studies carried out in just the past few years have
begun to answer some key questions in the stem cell field.

The relationship between stem cell states
Embryonic stem cells (ESCs) are derived by explant culture of day 4.5
(murine) or day 8 (human) embryos; however, the precise relationship
between ESCs and the cells from which they originate in vivo has
remained ill-defined (Nichols and Smith, 2011). To address this issue,
scRNA-Seq has been used to elucidate the precise changes that
accompany the transition of human inner cell mass cells to human
ESCs (Tang et al., 2010a). This study revealed a switch in the levels of
genes encoding metabolic factors, as well as increases in the levels of
genes encoding epigenetic repressors, although it should be noted that
the study was limited in the number of cells profiled. Similarly,
scRNA-Seq has leverage to identify transcriptional changes that occur
during the reprogramming of cells to induced pluripotent stem cells
(iPSCs). A pioneering single-cell qPCR study discovered that the
reprogrammingprocess is divided into an early, rate-limiting stochastic
phase followed by a deterministic phase (Buganim et al., 2012).
Subsequent studies that have applied scRNA-Seq to reprogramming
have refined this model, finding that reprogramming follows
development ‘in reverse’ (Cacchiarelli et al., 2015).

Transcriptional heterogeneity and pluripotency
Related to how ESCs are derived is the question ‘how is this artificial
state is maintained in culture?’. The role of transcriptional
heterogeneity in pluripotency has been a subject of debate since
fluctuations in the levels of Nanog and other pluripotency factors in
mouse ESCs were first reported (Chambers et al., 2007; Niwa et al.,
2009; Toyooka et al., 2008). One hypothesis is that transcriptional
heterogeneity in lineage regulators or signaling components affords
stem cells reversible opportunities to exit the pluripotent state if
conditions are permissive, resulting in a meta-stable state (reviewed
byMacArthur et al., 2009; Cahan and Daley, 2013). This hypothesis
has been explored by applying scRNA-Seq to 183 mouse ESCs
cultured in traditional conditions (LIF and serum on feeders) (Kumar
et al., 2014). The authors indeed found that the expression of some
pluripotency regulators (e.g. Essrb) is bimodal. Most interesting was
the discovery of genes that are sporadically expressed, i.e. that are
expressed at a high level in a few cells but not detected in the rest.
Both Polycomb targeted genes, which define lineage regulators, and
components of developmental signaling pathways are enriched in
these sporadically expressed gene sets. Furthermore, the expression
of Polycomb target genes as awhole correlates with the expression of
variably (both positively and negatively) expressed pluripotency
factors, implying the presence of genetic circuits that regulate
transitions among distinct pluripotent states, thereby offering access
to stochastically selected lineage fate choices. The above study also
examined whether transcriptional heterogeneity is affected by
culturing in the presence of GSK and ERK inhibitors (‘2i’), which
had been reported to reduce heterogeneous expression of some
pluripotency factors, and in mouse ESCs lacking mature
microRNAs, which fail to differentiate. Indeed, it was found that
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the expression of pluripotency-associated genes is substantially less
heterogeneous in mouse ESCs cultured in 2i than in either mouse
ESCs cultured in serum or mouse ESCs lacking mature microRNAs.
This result was subsequently corroborated by a study that used
scRNA-Seq of 250mouse ESCs in serum and LIF, 295 in standard 2i
and 159 in alternative ground state conditions (Kolodziejczyk et al.,
2015b). Although there was no difference in global transcriptional
heterogeneity between conditions, gene sets that included
pluripotency factors were more heterogeneous if cells had been
cultured in serum and LIF than in either of the ground state
conditions. Taken together, these results suggest a model whereby
mouse ESCs are afforded the opportunity to access lineage
specification programs through stochastic expression of
pluripotency factors, which is perhaps facilitated by lower
H3K27me3 at these lineage regulators. However, the extent to
which this model is applicable to early fate decisions in transiently
pluripotent cells of the blastocyst has not been addressed.

Defining and refining cell identity using scRNA-Seq
molecular profiles
A number of recent studies have also applied scRNA-Seq to study
post-implantation development and beyond, focusing primarily on
defining the cellular composition of diverse tissues and populations
at different developmental time points. These investigations range
from defining the molecular profiles of hematopoietic stem cells
(HSCs) from mouse embryos (Zhou et al., 2016) and the
transcriptional landscape of heart development (DeLaughter et al.,
2016; Li et al., 2016a), to comparing cell type diversity in the
embryonic midbrain between human and mouse (La Manno et al.,
2016) and obtaining initial cellular censuses of the murine spleen
(Jaitin et al., 2014), cortex and hippocampus (Zeisel et al., 2015).
We list many of these studies in Table 2 but note that more studies
are being published every month. Here, we focus our discussion on
human radial glial (RG) cell diversity in the developing neocortex,
which has been the subject of several distinct studies.
RG cells, which give rise to most of the neurons of the neocortex

and, at subsequent stages of development, to astrocytes (Kriegstein
and Alvarez-Buylla, 2009), reside in the ventricular and outer
subventricular zone of the neocortex. RG cells from these regions
(termed vRG and oRG cells, respectively) have distinct functional
and morphological characteristics, but the molecular profiles that
determine these traits have remained elusive, as have their
relationship to each other and to intermediate progenitor cells
(IPCs), owing to the inability to prospectively isolate pure and
relatively unharmed vRG and oRG cells. This challenge was
overcome by a pair of studies, the first of which was a proof-of-
principle analysis demonstrating the feasibility of single-cell
profiling of single human neocortex-derived primary cells (Pollen
et al., 2014). In this study, the authors applied scRNA-Seq to 24
cells from the developing (gestational week 16-21) human
neocortex and were able to find expression signatures that
distinguish RG cells from newborn neurons. They presented data
suggesting that even low-coverage sequencing (∼50,000 reads per
cell) can be sufficient for gross cell type classification. By profiling
393 human cortical germinal zone cells using scRNA-Seq, the same
group later distinguished oRG from vRG cells. They found that
oRG cells are enriched for genes related to cellular migratory
behavior and extracellular matrix, such as HOPX and TNC, whereas
vRG express CRYAB, PDGFD, TAGLN2, FBXO32 and PALLD
(Pollen et al., 2015). They also described a transcriptional state that
characterized putative intermediate progenitors, but found that the
distinct nature of this state was not readily compatible with the

model of continuous transition from RG to IPC to neuron that had
been proposed based on FACS-isolated bulk RNA-Seq and scRNA-
Seq of fewer cells (Johnson et al., 2015). A separate study (Thomsen
et al., 2015) reported a novel method for sequencing RNA from
fixed and stained single cells (‘fixed and recovered single cell RNA’
or FRISCR) and applied this to corroborate the distinct vRG and
oRG signatures. Regrettably, none of these studies applied temporal
reconstruction to their data, which might have provided new data-
driven hints to the temporal relationships between RG cells, IPCs,
neuroblasts and neurons.

Pseudotime: understanding lineage progression using
scRNA-Seq
Inferring temporal trajectories from ‘snap-shots’ of single cells has
already proven to be so attractive that it has created a virtual cottage
industry of computationalists dedicated to devising and improving
new methods. One of the most powerful outcomes of these
methods is the identification of signaling pathways and genetic
circuits that contribute to cell state transitions, which thereby
generates specific and testable hypotheses. Some notable and
recent examples of applying pseudotime analytics to diverse
developmental contexts include the specification of human
mesoderm (Loh et al., 2016) and endoderm (Chu et al., 2016)
derivatives from pluripotent stem cells, and the specification of
tissue-resident macrophages from erythroid-myeloid progenitors
(Mass et al., 2016). Here, we discuss the application of temporal
inference, or pseudotime, methods to explore the progression of
quiescent neural stem cells (NSCs) to neurons.

In adult murine brains, NSCs can be found in the subventricular
zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus,
although there is functional and phenotypic heterogeneity within NSC
pools from either region, i.e. individual NSCs differ in their
proliferative tendency and their expression of selected NSC-marker
genes. This issue of heterogeneity was recently examined by applying
scRNA-Seq to NSCs and their progeny isolated from the dentate gyrus
(at one time point), as marked by Nestin-CFP (Shin et al., 2015). Six
different states were identified and the pseudotime algorithmWaterfall
was used to place cells from five of these states onto a continuous
progression from quiescent NSCs to intermediate progenitor cells.
Enrichment analysis across these states uncovered a gradual decrease
in expression of Acyl-CoA synthetases and components of the
glycolytic metabolism machinery, and a concomitant upregulation of
ribosomal and spliceosome genes, and genes involved in oxidative
phosphorylation. Based on these findings, it was proposed that the
sequential reduction of signaling pathwaygenes reflects the importance
of the niche role served byNSCs of bothmaintaining theNSC state and
allowing it to respond rapidly to perturbations therein.

In a different study, scRNA-Seq was applied to prospectively
isolated populations of NSCs and neuroblasts from the SVZ
(Llorens-Bobadilla et al., 2015). Dimension reduction analysis
clearly identified three distinct populations corresponding to
oligodendrocytes, NSCs and neuroblasts. Unsupervised hierarchical
clustering of the cells revealed four distinct NSC states. By ordering
these cells using Monocle, the authors were able to attribute each
NSC state to a developmental time point spanning from a dormant
stage to a primed quiescent stage, to an early activated stage and
finally to a dividing stage. Similar to the metabolic and ribosomal
dynamics of NSC differentiation in the SGZ, SVZNSCs also express
relatively higher levels of glycolytic and fatty acid metabolism genes
in the quiescent stages and lower levels of ribosomal genes. However,
unlike the situation with SGZNSCs, it was found that subsets of SVZ
NSC transcription factors reflective of distinct neuronal sub-types
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Table 2. Single-cell RNA-Seq analyses of differentiated cell types

Study Cell type(s) Primary Species Cells Genes Method Summary

Brennecke et al.
(2013)

Root quiescent center cells, root
epidermis and murine immune

Yes Arabidopsis,
Human

104 NA Tang Method to model gene-specific
biological and technical
transcriptional noise

Picelli et al.
(2013)

HEK293T, DG-75, C2C12, MEF No Human 252 10,000 Smart-
Seq

Smart-Seq2 protocol introduced;
resulted in increased cDNA length
and yield

Wu et al. (2013) HCT116 No Human 109 4750 Smart-
Seq

Evaluation of sensitivity and accuracy
of various single-cell RNA-Seq
methods

Grindberg et al.
(2013)

Dentate gyrus neurons, NPC
nucleus, NPC cell

Yes Mouse 8 NA Tang Demonstration of nuclear isolation
followed by scRNA-Seq in tissues
where intact cell isolation is difficult

Marinov et al.
(2014)

Lymphoblastoid cell line No Human 15 NA Smart-
Seq

Absolute quantification of RNA
molecules per gene using spike-in-
based quantification

Jaitin et al.
(2014)

Spleen Yes Mouse 4590 553 MARS-
Seq

Automated massively parallel single-
cell RNA sequencing for in vivo
sampling of multiple cells and
FACS-based sorting into wells

Trapnell et al.
(2014)

Myoblast Yes Human 279 5273 Smart-
Seq

Describes Monocle: one of the first
pseudotime algorithms

Treutlein et al.
(2014)

Lung epithelia Yes Mouse 198 3500 Smart-
Seq

Characterized cell types and
developmental hierarchies in the
developing lung

Brunskill et al.
(2014)

Kidney Yes Mouse 235 NA Smart-
Seq

Created an atlas of gene expression
profiles in different stages of kidney
development and provided
evidence for multi-lineage priming

Shalek et al.
(2014)

BMDC Yes Mouse 1775 6313 Smart-
Seq

Highlighted the importance of
intercellular communication in
establishing cell heterogeneity, and
showed modes of establishment of
complex dynamic responses of
multicellular populations

Patel et al.
(2014)

Glioblastoma Yes Human 430 NA Smart-
Seq

Revealed cellular heterogeneity in
regulatory programs pertinent to the
biology and hence treatment of
glioblastoma tumors

Pollen et al.
(2014)

CML line, hiPSC, keratinocytes,
ductal carcinoma,
lymphoblastoid cells, APL cells,
fibroblast, neural progenitors,
fetal neurons

Yes Human 301 5000 Smart-
Seq

Established a strategy to compare
heterogeneous cell populations in
an unbiased manner using
microfluidics-based cell capture
followed by low coverage
sequencing

Zeisel et al.
(2015)

Neocortical and hippocampus
neurons

Yes Mouse 3315 15,310 STRT-
Seq

Characterized the cell types present in
the mouse cortex and
hippocampus, and identified novel
cell types and their corresponding
marker genes

Macosko et al.
(2015)

HEK293T, fibroblasts and retinal
cells

Yes Human,
mouse

50,401 6177.5 Smart-
Seq

Description of Drop-Seq: a
microfluidics-based platform that
enables capture, lysis and
barcoding of thousands of single
cells

Llorens-
Bobadilla et al.
(2015)

Adult radial glial cells, neuroblasts Yes Mouse 130 NA Smart-
Seq

Identified lineage-specific neural stem
cells in the subventricular zone

Shin et al. (2015) Neural progenitors Yes Mouse 168 NA Smart-
Seq

Characterized adult hippocampal
quiescent neural stem cells;
described Waterfall, another
pseudotime algorithm

Pollen et al.
(2015)

Cortical germinal zone cells Yes Human 393 NA Smart-
Seq

Revealed that radial glia located in the
outer subventricular zone support
brain expansion by increasing
proliferative potential at the niche
during cortical development

Continued
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Table 2. Continued

Study Cell type(s) Primary Species Cells Genes Method Summary

Thomsen et al.
(2015)

Radial gial, intermediate
progenitor cells

Yes Human 255 NA Smart-
Seq

Developed FRISCR (fixed and
recovered intact single-cell RNA),
which can profile transcriptomes of
individual cells

Hanchate et al.
(2015)

Olfactory sensory neurons Yes Mouse 85 NA Smart-
Seq

Discovered that, unlike mature
olfactory neurons [which express
only one of the 1000 odorant
receptors (Olfrs)], immature
neurons can express multiple Olfrs

Camp et al.
(2015)

iPSC and ESC-derived cerebral
organoid cells

No Human 508 NA Smart-
Seq

Comparison of cerebral organoids and
fetal neocortex with regards to cell
composition and progenitor-to-
neuron lineage relationships

Li et al. (2016b) Pancreatic islet cells Yes Human 64 NA Smart-
Seq

Identified TFs specific to islet
subtypes

Tasic et al.
(2016)

Cortical neurons Yes Mouse 1679 NA Smart-
Seq

Constructed a cellular taxonomy of the
primary visual cortex in adult mice

Angermueller
et al. (2016)

ESC No Mouse 61 5000 G&T-
Seq

Developed scM&T-Seq, which allows
transcriptome and methylome
profiling of single cells

Macaulay et al.
(2016)

Hematopoietic progenitors Yes Zebrafish 363 3500 Smart-
Seq

Refined the conventional lineage tree
of hematopoiesis to thrombocytes

Xin et al. (2016) Pancreatic islet cells Yes Mouse 341 NA Smart-
Seq

Assessed the Fluidigm C1 system
using islets as the cell source and
discovered limitations in the cell
capture microfluidic device

Zhou et al.
(2016)

Pre-HSC and HSC Yes Mouse 99 5875 Tang Dissected the molecular mechanisms
involved in the stepwise generation
of hematopoietic stem cells and
characterized purified nascent pre-
HSCs

Eltahla et al.
(2016)

T cells Yes Human 56 NA Smart-
Seq

Proposed a novel method
(VDJpuzzle) to study T-cell
heterogeneity by linking gene
expression profiles; reconstructed
TCRαβ using scRNA-Seq of Ag-
specific T cells

Gao et al. (2016) Dentate gyrus neurons Yes Mouse 84 NA Smart-
Seq

Classified postnatal immature neurons
into distinct developmental lineages
as they show diverging expression
profiles

Liu et al. (2016) Neocortical cells Yes Human 226 NA Smart-
Seq

Profiled lncRNA expression in human
neocortical cells by performing
strand-specific scRNA-Seq during
various developmental stages

Nelson et al.
(2016)

Placenta cell Yes Mouse 448 15,402 Tang Provided insights into the various cell
types present in the maternal-fetal
interface

Petropoulos
et al. (2016)

Pre-implantation embryonic
tissue

Yes Human 1529 8500 Smart-
Seq

Provided a comprehensive
transcriptional map of human pre-
implantation development,
revealing lineage and X-
chromosome dynamics

Nowakowski
et al. (2016)

Cerbral organoid cell No Human 210 NA Smart-
Seq

Explored putative Zika virus entry
proteins in neural stem cells

Li et al. (2016c) Growth plate cells Yes Mouse 217 9000 Smart-
Seq

Developed Sinova, a spatial
reconstruction method; used the
pipeline to analyze growth-plate
development with high temporal and
spatial resolution

Loh et al. (2016) ESC-derived mesoderm No Human 651 NA Smart-
Seq

Provided a stepwise map of
developmental pathways that
specify diverse mesoderm-derived
lineages

Gokce et al.
(2016)

Striatum Yes Mouse 1208 NA Smart-
Seq

Constructed the cellular taxonomy of
themouse striatum and revealed the

Continued
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(e.g. dorsal, ventral, dorsolateral) were correlated, consistent with the
notion that both active and quiescent NSCs are predisposed or even
committed towards specific lineages.

Insights into the ‘Janus’ progenitor state
It is possible that, between the ∼40 rounds of cell divisions through
which the zygote gives rise to all mature cell types, there is a

progenitor stage during which the cell type-specific expression
programs of related but distinct cell types are simultaneously
co-expressed (Fig. 3). Evocative of Janus – the two-faced Roman
deity of gateways and transitions – this state would comprise
multiple transcriptional programs that, later in development, are
uniquely attributable to a single cell type. Such a state was identified
when studying the events that regulate the developmental

Table 2. Continued

Study Cell type(s) Primary Species Cells Genes Method Summary

diversity between the various striatal
cell types

Mass et al.
(2016)

Tissue-resident macrophages Yes Mouse 408 NA MARS-
Seq

Analyzed the specification of tissue-
resident macrophages and
proposed their subsequent
differentiation to be an integral part
of organogenesis

Chu et al. (2016) Pluripotent stem cell differentiated
endoderm derivatives

No Human 1776 NA Smart-
Seq

Elucidated novel regulators of
mesendoderm transition to
definitive endoderm by combining
scRNA-Seq and genetic
approaches

Tintori et al.
(2016)

Early embryo Yes C. elegans 219 8575 Smart-
Seq

Provided a resource and a
visualization tool for the
transcriptional profiles of each cell
until the 16-cell stage of the C.
elegans embryo

Gury-BenAri
et al. (2016)

Intestinal innate lymphoid cells Yes Mouse 1129 NA MARS-
Seq

Identified diversity in innate lymphoid
cells of the gut that results from
signaling from the local microbiome
population

Habib et al.
(2016)

Hippocampal neurons Yes Mouse 1367 5100 Smart-
Seq

Described a method to sequence
individual dividing cells by
combined single-nucleus RNA-Seq
(sNuc-Seq) with EdU pulse labeling

Olsson et al.
(2016)

Multipotent progenitor cells;
common myeloid progenitor
cells; granulocyte monocyte
progenitor cells

Yes Mouse 382 NA Smart-
Seq

Combined iterative clustering and
guide-gene selection with scRNA-
Seq to dissect mixed lineage states
of a multipotent progenitor
population into macrophage or
neutrophil lineage specification

Nath et al.
(2016)

ALA neuron Yes C. elegans 9 8133 STRT-
Seq

Investigated downstream
mechanisms of a neuro-secretory
cell that promotes sleep

Yu et al. (2016) Bone marrow cells Yes Mouse 497 8758 Smart-
Seq

Identified a molecular marker for a
novel innate lymphoid cell precursor
that could potentially be
manipulated for use in
immunotherapy

La Manno et al.
(2016)

Ventral midbrain cell Yes Mouse,
Human

3884 NA STRT-
Seq

Analyzed the time-course of ventral
midbrain development and provided
a method to assess the fidelity of
iPSC-derived dopaminergic
neurons

Kee et al. (2016) Lmx1a neuron Yes Mouse 550 NA Smart-
Seq

Revealed a relationship between
differentiating dopamine and sub-
thalamic nucleus lineages, which
could have implications in the
treatment of Parkinson’s disease

DeLaughter
et al. (2016)

129SV cardiac cells Yes Mouse 1133 NA Smart-
Seq

Obtained dynamic spatiotemporal
gene expression profiles for distinct
cardiomyocyte populations across
development

Li et al. (2016a) Murine heart cells Yes Mouse 2233 NA Smart-
Seq

Uncovered chamber-specific genes in
the embryonic mouse heart

BMDC, bone marrow-derived dendritic cell; CML, chronic myeloid leukemia; FACS, fluorescence-activated cell sorting; FRISCR, fixed and recovered single cell
RNA; HSC, hematopoietic stem cell; iPSC, induced pluripotent stem cell; MARS-Seq, massively parallel single-cell RNA sequencing; NA, not applicable; NPC,
neural progenitor cell; MEF,mouse embryonic fibroblast; scM&T-Seq, single-cell genome-widemethylome and transcriptome sequencing; STRT-Seq, single-cell
tagged reverse transcription sequencing; TFs, transcription factors.
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transformation of the lung bronchial tree into alveolar air sacs
(Treutlein et al., 2014). Analysis of this stage of lung development
had previously been impaired by the paucity of cells involved and
the absence of markers that could be used to isolate pure populations
of progenitors. However, these issues were avoided by applying
scRNA-Seq to 198 different cells of the developing murine lung:
E14.5 bronchial progenitors, E16.5 cells undergoing sacculation,
E18.5 distal lung epithelial cells and mature alveolar type 2 (AT2)
cells (Treutlein et al., 2014). The authors used PCA to define
distinct cell types within the 80 E18.5 cells to find five major
clusters or groups of cells. By examining the expression of genes
representative of distinct lung cell types, they could annotate four of
these groups of cells as either epithelial, ciliated, AT1 or AT2.
Because the fifth group expressed markers of both AT1 and AT2, it

was hypothesized that this population represented a bipotent
progenitor of AT1 and AT2 cells. This hypothesis was consistent
with single-cell qPCR data of E16.5 alveolar progenitors, which
also express markers of both alveolar progenitors, and implies that
the AT1/AT2 fate choice entails the active repression of alternative
lineages rather than selective activation. Notably, bipotent
progenitors were shown by immunofluorescence to co-express
AT1 and AT2 marker genes, making it unlikely that they represent
expression profiles of doublets, as has been reported in the context
of pancreatic islets (Xin et al., 2016) and in species-mixing
experiments (Macosko et al., 2015).

The observation of this dual state has raised several provocative
questions. First, by what mechanisms are the genetic programs of
alternate lineages repressed? Hopx, a transcriptional repressor that
has been implicated in maturation in a wide range of lineages, was
found to mark AT1 cells in this study, but it is also expressed in
bipotent progenitors, so its expression cannot be the initiating cell
fate event. In fact, no AT-specific lineage factor appears to be
induced. Therefore, it is possible that transcriptional repressors of
the alternate lineagewere undetectable using scRNA-Seq due to low
copy number, or that alternative mechanisms of repression, such as
microRNAs, which currently are not profiled in scRNA-Seq, are
major contributors to the differentiation of these alveolar lineages.
Alternatively, post-transcriptional events could be the major drivers
of this fate decision.

Second, how pervasive are dual states in development? As
more scRNA-Seq studies are performed, we will gain a better
sense of this, but there are already some hints that it is not an
idiosyncrasy of the lung. Reminiscent of the bipotent progenitor
dual-state is the observation that Foxd1, which marks stromal-
committed cells, and Six2, which marks nephron-committed
cells, are co-expressed in single cells of E11.5 metanephric
mesenchyme (Brunskill et al., 2014). This observation was made
originally using single-cell microarrays and scRNA-Seq, and co-
expression was also confirmed at the protein level, albeit at a
lower frequency. At the time, this observation was attributed
to stochastic expression because, unlike the lung bipotent
progenitor cells, the dual-expressing metanephric mesenchyme
cells do not otherwise reflect an ensemble of stromal and
nephron progenitor profiles. However, it is possible that the
co-expressing metanephric mesenchyme cells represent the tail
end of a fate-decision process and, therefore, sampling more cells
at earlier time points would clarify this issue.

Another example of dual-expressing progenitors was uncovered
by the application of scRNA-Seq to 85 developing olfactory sensory
neurons (Hanchate et al., 2015). In this approach, Monocle was
applied to reconstruct a temporal trajectory of the 85 cells and to
assign them to four distinct classes: progenitors, precursors, and
immature and mature neurons. The authors found that almost half of
the immature neurons expressed more than one receptor, and as the
cells matured they exhibited increased expression of a selected
receptor and repressed the alternative receptor genes, a finding
validated by single-molecule FISH. In general, a better
understanding of when dual states are employed, and of the
molecular basis by which they are initiated, permitted and resolved,
will enable us to speculate on a more fundamental question: what is
the purpose of this duality? Does it allow progenitors to perform
functions during development that are later distributed to more-
specialized cell types? Does it provide greater robustness to
environmental perturbations during development? Or is it simply
a neutral consequence of how cell type-specific circuitry is encoded
and elaborated during development?

AT2AT1

E16.5 alveolar
progenitor

A

NephronStromal cells

Foxd1
Six2

E11.5
metanephric
mesenchyme

B

Six2

>?", Macrophage
Neutrophil

Bipotent
progenitors

Irf8

Gfi1

Irf8

Gfi1

C

Foxd1

Fig. 3. The ‘Janus’ progenitor state. scRNA-Seq has enabled the
identification of embryonic progenitors that simultaneously express genes that
were previously suspected of being lineage specific. (A) The PCA analysis of
scRNA-Seq profiles of 198 developingmurine lung cells has identified a cluster
that expresses markers for both AT1 and AT2 cells, corroborating with single-
cell qPCR data of E16.5 alveolar progenitors. (B) scRNA-Seq profiles of
E11.5 metanephric mesenchyme has identified cells that co-express Foxd1
and Six2, which mark stromal-committing cells and nephron-committing cells,
respectively. (C) A binary cell fate decision between the macrophage lineage
and the neutrophil lineagewas unveiled when bipotent progenitors were shown
to co-express Irf8 and Gfi1, which regulate macrophage and neutrophil
specification, respectively.
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Conclusions
As we have summarized here, scRNA-Seq-based approaches are
being used increasingly to provide insights into various aspects of
developmental and stem cell biology. Such studies have defined
the transcriptional programs of the earliest stages of mammalian
development, have implicated regulated transcriptional heterogeneity
as a contributor to the pluripotent state, and have uncovered an
unexpected yet widespread pattern of dual identity in embryonic
progenitors. However, there are several substantial obstacles to
realizing the full potential of scRNA-Seq when applied to
development. First, the isolation of intact, unperturbed single cells
from dissociated tissue remains a major challenge. Methods such as
FRISCR, in which cells are fixed rapidly, promise to ameliorate some
of these issues. Second, what is a biological replicate of a single cell?
Several groups have attempted cell splitting to assess technical
variability but this has not become widespread in practice, likely due
to technical challenges in evenly splitting cells and maintaining a
modicum of sensitivity. In general, distinguishing technical noise
from true biological noise is an area of very active research, and
synthetic RNA spike-ins (see Glossary, Box 1) have so far proven to
be the most common approach to deal with this issue (Marinov et al.,
2014). Third, most scRNA-Seq methods are polyA-centric, thus
limiting our ability to measure non-polyA RNA at a single cell level.
Perhaps themost significant barrier is the limited efficiency of reverse
transcription, which leads to limited sensitivity. A final substantial
challenge in the field will be the development of computational and
experimental approaches that enable some level of data integration
across studies. As these issues are tackled, and as scRNA-Seq is
applied more broadly, we anticipate a time when there will be enough
data to develop quantitative definitions of cell type identity
throughout development.
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