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ABSTRACT

The transcript encoding translationally controlled tumor protein
(Tctp), a molecule associated with aggressive breast cancers, was
identified among the most abundant in genome-wide screens of
axons, suggesting that Tctp is important in neurons. Here, we tested
the role of Tctp in retinal axon development in Xenopus laevis. We
report that Tctp deficiency results in stunted and splayed retinotectal
projections that fail to innervate the optic tectum at the normal
developmental time owing to impaired axon extension. Tctp-deficient
axons exhibit defects associated with mitochondrial dysfunction and
we show that Tctp interacts in the axonal compartment with myeloid
cell leukemia 1 (Mcl1), a pro-survival member of the Bcl2 family. Mcl1
knockdown gives rise to similar axon misprojection phenotypes, and
we provide evidence that the anti-apoptotic activity of Tctp is
necessary for the normal development of the retinotectal projection.
These findings suggest that Tctp supports the development of the
retinotectal projection via its regulation of pro-survival signalling and
axonal mitochondrial homeostasis, and establish a novel and
fundamental role for Tctp in vertebrate neural circuitry assembly.

KEY WORDS: Tctp, tpt1, Neural circuitry assembly, Axon guidance,
Retinotectal projection, RNA localisation, Retinal ganglion cell

INTRODUCTION

Motility and invasiveness are traits central to malignancy and
growth cone migration alike. In fact, from the associated changes in
adhesion to the build-up of protrusive actin dynamics, or the
continuous interaction with the surrounding environment, the initial
challenges experienced by a metastatic cancer cell resemble in many
ways the obstacles overcome by a navigating growth cone as it
progresses through the embryonic brain. Curiously, the four families
of guidance cues classically associated with axon guidance —
ephrins, semaphorins, netrins and slits (Tessier-Lavigne and
Goodman, 1996) have emerged as important regulators of cancer
progression, in particular during the phases of primary tumour
growth and dissemination (Mehlen et al., 2011; Pasquale, 2010;
Tamagnone, 2012), suggesting that common signalling pathways
might operate in both contexts. Indeed, frequent mutations and copy
number variations were recently discovered in axon guidance genes
in tumours derived from patients diagnosed with pancreatic ductal
adenocarcinoma (Biankin et al., 2012) and liver fluke-associated
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cholangiocarcinoma (Ong et al., 2012), and several independent
genome-wide screens have found cancer-linked transcripts to be
well represented in axonal mRNA populations (Andreassi et al.,
2010; Gumy et al., 2011; Zivraj et al., 2010).

Transcripts encoding Tctp (gene symbol: #p¢]) are ranked among
the most enriched in the axonal compartment across diverse
embryonic and adult neuronal populations, including retinal
ganglion cells (Andreassi et al., 2010; Gumy et al., 2011; Taylor
etal., 2009; Zivraj et al., 2010). Tctp is an evolutionarily conserved
protein implicated in cell growth (Hsu et al., 2007; Kamath et al.,
2003) and is particularly well studied in cancer pathogenesis
(Amson et al., 2012; Kaarbo et al., 2013; Tuynder et al., 2002).
Initially discovered as an abundant mRNA in untranslated,
partially suppressed messenger ribonucleoprotein particles in
mouse sarcoma ascites cells (Yenofsky et al., 1982), Tctp was
subsequently characterised as a protein that is synthesised at a
greatly enhanced rate in growing versus non-growing Ehrlich ascites
tumour cells (Benndorf et al., 1988; Bohm et al., 1989). Tctp has
since been shown to be involved in cellular functions as diverse as
DNA damage (Zhang et al., 2012), cell proliferation (Chen et al.,
2007) and allergy responses (MacDonald et al., 1995). In addition,
Tctp plays an essential, but still not fully understood, role in
development; indeed, loss of #cfp expression in mice results in
increased apoptosis and embryonic lethality (Chen et al., 2007,
Susini et al., 2008). Tctp has been shown to interact with the
anti-apoptotic oncoproteins myeloid cell leukemia 1 (Mcll) and
Bcl2-like protein 1 (Bel-Xy ; Bel211) (Liu et al., 2005; Yang et al.,
2005; Zhang et al., 2002), and to prevent Bcl2-associated protein X
(Bax) homodimerisation in the mitochondrial outer membrane
(Susini et al., 2008). Notably, 7TCTP mRNA expression is detected
in many areas of the adult human brain (Thiele et al., 2000), and
TCTP protein levels are downregulated in the temporal cortex of
Alzheimer’s disease patients (Kim et al., 2001), suggesting that its
expression in the CNS remains important after development.

Here, motivated by the parallels between axon growth and cancer
cell invasion, we have investigated the role of cancer-associated
Tctp in the context of neural connectivity using Xenopus laevis
larvae as an in vivo model system. We report that Tctp functions as a
checkpoint for the normal development of the retinotectal
projection. Our results also reveal that mitochondrial function and
distribution are affected in axons deficient for Tctp. Finally, we link
Tctp to the survival machinery of the axon via its interaction with
Mcll, an anti-apoptotic member of the Bcl2 protein family.

RESULTS

Expression of tctp in the neural retina

Immunohistochemistry using an antibody raised against the
X laevis protein revealed that Tctp is broadly present in the
retina, including the ganglion cell layer (GCL) and the optic fibre
layer (OFL) (Fig. 1A) (Bazile et al., 2009). A strong positive signal
is also evident in the optic nerve head (ONH) (Fig. 1A), where
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Fig. 1. Expression of tctp in the Xenopus neural retina. (A) Coronal section of stage 43 retina probed with an anti-Tctp antibody and counterstained with DAPI.
Arrowheads indicate the optic fibre layer (OFL). The boxed area is enlarged beneath. The dashed contour delineates the outer plexiform layer. (B) Stage 32 eye
explants grown in vitro for 24 h were stained with anti-Tctp antibody (left, phase contrast image; right, Tctp antibody staining). Tctp is detected in the axon shaft,
central domain and filopodia. (C) In situ hybridisation (ISH) detection of tctpo mMRNA expression on coronal sections of stage 43 retinas. Arrowheads indicate the
OFL. The boxed area is enlarged in the middle panel. (D,E) Quantitative ISH detection of tctp mMRNA expression in the RGC axonal and growth cone
compartments was performed using stage 32 eye explants grown in vitro for 24 h. Meanzs.e.m.; ***P<0.0001, one-way ANOVA with Bonferroni correction.
(F) RACE amplifications of tctpo mRNAs using retinal RNA extracts. FP, forward primer; NUP, nested universal primer; RP, reverse primer; UP, universal primer.
(G) Organisation of the fctp gene in X. laevis. cds, coding region; poly(A) signal, polyadenylation signal. (H) Schematic of the laser-capture microdissection
procedure used to collect RGC axonal extracts. (I) RACE amplifications of tctp mRNAs using laser-captured axonal extracts. (J) Purity assessment of laser-
captured material by RT-PCR. —RT, RNA samples not reverse transcribed. (K) RT-gPCR experimental design. (L,M) Axonal and whole-eye content of tctp
mRNAs were analysed by RT-gPCR and normalised to actb expression. In L, data are plotted as ‘tctp-S+tctp-L’ to ‘tctp-L’ expression ratios (*P=0.0175, one-way
ANOVA), whereas in M the quantification cycle (Cq) difference relative to actb is shown. Scale bars: 50 pmin A,C; 5 um in B,D. CMZ, ciliary marginal zone; GCL,
ganglion cell layer; IPL/OPL, inner/outer plexiform layer; ONH, optic nerve head; PR, photoreceptor layer.
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Fig. 2. Tctp is required to establish correct retinotectal projections in vivo. (A) Experimental outline. OT, optic tract. Dashed line encircles the contralateral,
Dil-filled eye. (B) tctp-MO leads to a specific knockdown in Tctp protein levels in the CNS, as evaluated by western blot analysis of stage 37/38 embryos using an
anti-Tctp antibody. (C) Representative growth cones from control morpholino (con-MO)-injected and tctp-MO-injected embryos stained for Tctp. (D-F) Dil-filled
retinotectal projections in MO-injected stage 40 embryos. Dashed lines approximate the boundary of the optic tectum, where RGC axons terminate. Injection of
MO-resistant tcfp MRNA (rescue mRNA) rescued the development of the retinotectal projection. (G) Relative projection lengths in the various MO-injected
backgrounds. Meants.e.m.; n, number of brains analysed; ***P<0.0001, Kruskal-Wallis test. (H) Number of embryos displaying axon extension defects. con-MO
versus tctp-MO, P<0.0001; tctp-MO versus tctp-MO+rescue mRNA, P=0.0002; Fisher’s exact test; performed on number of observations but plotted as
percentages. (I) Mean (ts.e.m.) optic tract widths. con-MO versus tctp-MO, **P<0.01 (C2), *P<0.05 (C3), ***P<0.0001 (C4), *P<0.05 (C5), **P<0.05 (C6), two-
way ANOVA with Bonferroni correction (for details of statistics see Fig. S2F). C2-7 denote imaginary, evenly spaced hemi-circumferences centred on the optic

chiasm. Scale bars: 5 ym in C; 100 ym in D-F. n.s., not significant.

retinal ganglion cell (RGC) axons collect to exit the eye, and in RGC
axons and growth cones in vitro (Fig. 1B). In situ hybridisation
(ISH) showed a similarly broad expression in the retina that was
surprisingly robust in the OFL and ONH, indicating the presence of
tctp mRNA in retinal axons in vivo (Fig. 1C; Fig. S1A,B). This was
confirmed by fluorescent ISH on retinal axons and growth cones
in vitro (Fig. 1D,E; Fig. S1C). The inner and outer plexiform layers
(IPL and OPL, respectively) were also positive for Tctp protein and
mRNA, suggestive of widespread localisation in the neurites of
retinal neurons (Fig. 1A,C). Apart from the retinal neuropil, zctp
expression was observed in the photoreceptor layer and the ciliary
marginal zone (CMZ), a well-characterised retinal neurogenic niche
(Fig. 1A,C).

The human TCTP gene is transcribed into two distinct mRNA
variants that differ only in the length of their 3" untranslated regions
(UTRs) (Thiele et al., 2000). As most mRNA regulatory elements
are situated within the 3'UTRs (Martin and Ephrussi, 2009), we
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investigated whether #ctp is regulated in an analogous manner in the
X laevis retina. Using rapid amplification of 5" and 3’ cDNA ends
(5" and 3’ RACE), two 3'UTR variants of zctp were obtained from
eye RNA extracts, comprising a short (fctp-S, 210 bases) isoform
and a longer (fctp-L, 607 bases) version, overlapping in its entirety
the short form and possessing a unique stretch at its 3" end (Fig. 1F).
Similar to human, the exon specifying the 3’'UTR in X. laevis
contains two alternative polyadenylation signals, resulting in
transcripts with 3'UTRs of different length but encoding the same
protein (Fig. 1G). A single 5’ end was identified and, as described
in human, sequencing it in its entirety revealed the existence of a
5’-terminal oligopyrimidine (TOP) motif previously not annotated
in X. laevis (Fig. S1E).

Differential processing at alternative polyadenylation sites is
known to be physiologically regulated during development or by
pathological events such as cancer, and can affect the localisation
and translational properties of the mRNA (Di Giammartino et al.,
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Fig. 3. Tctp is not necessary for the timely development of the eye. (A) Representative stage 43 control and Tctp-depleted retinas stained with phalloidin
and DAPI. The boxed areas are shown at a higher magnification to the right. (B,C) Immunohistochemistry analysis of the photoreceptor layer in stage 43
wild-type retinas probed with anti-Tctp and anti-opsin or anti-rhodopsin antibodies, and counterstained with DAPI. IS, photoreceptor inner segment; ONL,
outer nuclear layer; OS, photoreceptor outer segment; PR, photoreceptor. (D,E) Representative micrographs of the photoreceptor layer in stage 43 control or
Tctp morphant retinas probed with anti-opsin or anti-rhodopsin antibodies, and counterstained with DAPI. (F) Average inner segment lengths in control and
Tctp morphant retinas. ***P<0.0001, unpaired t-test; box plot whiskers denote 5th-95th percentile. (G) Proportion of photoreceptors showing a complete loss
of the outer segment in control and Tctp morphant retinas. n, number of photoreceptor layers analysed; ***P<0.0001, unpaired t-test. Scale bars: 50 ym in A;

25 um in B-E.

2011). For example, the longer karyopherin (importin) beta 1
transcript, equally arising from alternative polyadenylation,
harbours a signal that enables axonal localisation (Perry et al.,
2012). We thus explored whether fctp localisation in RGC
axons is governed in a similar manner. We used laser-capture
microdissection (LCM) to harvest axonal extracts (Zivraj et al.,
2010) (Fig. 1H; Fig. S1D). To determine the purity of our pool of
axonal mRNAs, we tested for the presence of mRNAs encoding
nuclear proteins, such as histone H4 (histlh4a), and for transcripts
described in dendrites but not in axons, such as microtubule-
associated protein-2 (map2). No such amplification products were
detected by reverse transcription PCR (RT-PCR) (Fig. 1J). By
contrast, actb (which encodes B-actin), a transcript previously
identified in axons and growth cones (Bassell et al., 1998; Leung
et al., 2006), was readily amplified (Fig. 1J). Significantly, tctp

sequence reads from 5" and 3’ RACE reactions using RGC axonal
extracts were identical to those obtained from whole-eye
preparations, implying that both isoforms localise in these axons
(Fig. 11).

We next employed quantitative RT-PCR (RT-qPCR) to
complement our analysis. We designed two sets of primers: one
directed to a segment of the fctp protein-coding region, thus
allowing for an expression readout of both mRNA variants, and a
second pair targeting part of the unique region of fctp-L (Fig. 1K). In
whole-eye extracts, an approximately constant 9:1 tctp-S to tctp-L
ratio was obtained at all developmental stages examined.
Interestingly, there was a ~16:1 fctp-S to fctp-L ratio in axonal
extracts, indicating that the fctp-S variant is locally enriched in the
axonal compartment (Fig. 1L). Moreover, we detected a near
tenfold (ACqycsp:acis=3.1) enrichment over actb mRNA, a known
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Fig. 4. Tctp deficiency impairs axon extension in vivo. (A) Schematic of the experiment. con-MO-injected or tctp-MO-injected stage 28 embryos were
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gap-RFP-labelled control (top) and Tctp-depleted (bottom) RGC axons coursing through the optic tract. Dotted lines approximate the boundary of the optic
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(D-F) Meants.e.m.; n, number of axons (D) or embryos (E,F) analysed; unpaired t-test. Scale bars: 25 pm.

axonally enriched mRNA, confirming fctp as a highly abundant
axonal transcript (Fig. 1M).

Tctp is required to establish correct axonal projections

in vivo

We next assessed whether Tctp plays a role in retinal axon guidance.
To inhibit fczp mRNA translation in vivo, we used an antisense
morpholino oligonucleotide (MO) directed against the start site of
tctp mRNA (tctp-MO), which was delivered at the four-cell stage by
injection into both dorsal blastomeres (Fig. 2A). In doing so, we
targeted both zctp-S and fctp-L transcripts throughout the CNS.
Western blot analysis validated the efficient knockdown of Tctp
levels (~50% in brain and eye lysates; *P=0.041, unpaired #-test)
(Fig. 2B). Similarly, we observed a 40-60% decrease in Tctp protein
expression in RGC growth cones from #cfp-MO-injected embryos
(***P<0.0001, Mann—Whitney test), demonstrating that the axonal
pool of Tctp is targeted by this approach (Fig. 2C). At the MO
dosage used, Tctp morphants appeared morphologically normal,
with no overt delays in development, although most individuals
showed small decreases in eye size (an average of 10%;
**P=0.0063, unpaired z-test; Fig. S2A-D). Of note, we titrated an
MO dosage capable of achieving an expression knockdown
comparable in magnitude to that of tctp™~ mice, which are
reported to be viable and fertile, unlike 7ctp~~ pups (Chen et al.,
2007; Susini et al., 2008).

—/—
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We analysed RGC axon trajectories by anterograde lipophilic
dye (Dil) labelling at stage 40 (~3-day-old larvae), when the
pioneer population of axons have completed their growth through
the optic tract and arrived in the optic tectum (Holt and Harris,
1983). Whereas control projections consistently coursed a normal
trajectory and had reached the target region by this stage
(Fig. 2D), most age-matched Tctp morphants exhibited
significantly shorter projections that failed to enter the optic
tectum (Fig. 2E,G,H). Additionally, instead of forming the
compact axonal bundle typical of normal projections, RGC
axons in Tctp morphants grew in a dispersed fashion, straying
inappropriately into territories in the diencephalon and
telencephalon. Indeed, the optic tract in Tctp morphants was on
average ~21 um wider than in controls (Fig. 2E,I). Restoring the
levels of Tctp with an MO-resistant zczp mRNA in tctp-MO-
injected embryos completely rescued the development of the
retinotectal projection both in terms of tract length and tract
width, demonstrating that the phenotypes are specific to the loss
of Tctp function (Fig. 2F-I; Fig. S2E,F). Collectively, these data
demonstrate that Tctp is necessary for the accurate and timely
development of the retinotectal projection.

Tctp promotes axon extension in vivo
The shortened axon projection phenotype in Tctp morphants could
arise from a general delay in eye development or a decrease in the
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Scale bars: 100 pm.

rate of RGC axon extension. To distinguish between these
possibilities, we first examined the histology of the retina.
Overall, although some disorder in the neuropil and an increase in
cell death in the GCL were noted, the gross morphology and
stratification of the retina appeared unaffected in Tctp morphants,
suggesting no major delay in development (Fig. 3A; Fig. S3A-D).

Marked alterations were evident, however, in the photoreceptor
layer of Tctp morphants (Fig. 3A). Prompted by the possibility
that this defect might provide insight into Tctp action, we further
evaluated the photoreceptor phenotype. Briefly, the photoreceptor
outer segment is an apical structure densely packed with discs of
folded membranes containing light-sensitive photopigments

(opsins), whereas the inner segment, which lies between the
outer segment and the nuclear layer, is dedicated to sustaining the
energy and protein synthesis needs of the photoreceptor (Wright
et al., 2010). First, using opsin markers and a nuclear stain, we
pinpointed the localisation of Tctp to the mitochondria-rich inner
segments of both cone and rod photoreceptors (Fig. 3B,C). Our
subsequent analysis revealed that photoreceptors in Tctp morphant
retinas have shorter inner segments (cones, 13.7 um versus
16.1 um in controls; rods, 11.8 um versus 15.8 um in controls),
and showed a complete loss of the outer segment in a significant
proportion of cones (35% versus 13% in controls) and rods (27%
versus 5% in controls) (Fig. 3D-G). Collectively, these data
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used to examine mitochondrial density in RGC axons in vivo. (F) Micrographs of RGC axons co-labelled with mt-GFP and gap-RFP, plus quantification of axonal
mitochondrial density. n, number of axons analysed; ***P=0.0002, unpaired t-test. In box plots, whiskers cover 5th-95th percentile and ‘+’ indicates the mean.

Boxed areas in images are enlarged to the right. Scale bars: 5 pm.

indicate that although Tctp is not essential for the timely
development of the retina, it lends an unexpected contribution
to photoreceptor maintenance.

To measure directly the rate of axon growth in vivo, we made
time-lapse movies of control and morphant axons using eye-
targeted electroporation to deliver gap-RFP (a membrane-targeted
version of RFP) (Fig. 4A). Overall, Tctp-depleted axons were
significantly slower than control axons, advancing through the optic
tract at about half the speed (ventral optic tract, 16.5 um/h versus
34.4 um/h in controls; dorsal optic tract, 16.1 pm/h versus 27.8 um/h
in controls) (Fig. 4B-D). In addition, 40% of the morphant axons
analysed (33 of 82 axons) stalled along the optic tract, a
significantly higher proportion than in control samples (our
analysis parameters classified ~6% of control axons as ‘stalled’;
Fig. 4E). As suggested by the fixed Dil samples, time-lapse imaging
confirmed that axonal growth in Tctp morphants was dispersed and
erratic, which translated into significantly wider projections relative
to controls (Fig. 4F). Lastly, we tested whether the tortuous
trajectories associated with defective pathfinding could account for
the shortened axon tract phenotype detected in Tctp morphants by
including only normally projecting axons in our analysis. We found
that normally projecting Tctp-depleted axons still extended through
the optic tract at significantly slower average rates than controls
(Fig. S3E). Collectively, these findings strongly indicate that Tctp
regulates retinal axon growth.
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The retinotectal projection develops unerringly in Tctp-
deficient brains

Tctp exhibits immunoglobulin E-dependent histamine-releasing
activity and other cytokine-like extracellular functions (Kim et al.,
2013; MacDonald et al., 1995). It could therefore work in the
embryonic environment to promote axon development. To address
this possibility, we injected MOs into only one of the first two dorsal
blastomeres, leading to embryos in which one half of the CNS is
depleted in Tctp and the other is wild type (Fig. SA-C). Because
RGC axons cross the midline at the optic chiasm and project
contralaterally, this strategy enabled us to test the contribution
of the optic tract pathway substrate. Embryos injected with control
MO (con-MO) consistently developed normal projections in
both backgrounds, verifying the suitability of the strategy
(Fig. 5D,F). Significantly, Tctp-depleted retinal axons navigating
into the contralateral normal (fctp-MO-free) hemisphere (Eye-MO:
Brain-wr) exhibited the same range of phenotypes as observed in
global Tctp morphants (Fig. SE). By contrast, normal RGC axons
projecting into the contralateral Tctp-depleted (tczp-MO-injected)
side of the brain (Eye-wt:Brain-MO) showed no defects (Fig. 5G-I;
Fig. S2G). Collectively, these findings show that the retinotectal
projection can develop unerringly through a Tctp-depleted optic
tract neuroepithelium, and indicate that the axonal phenotype of
morphant retinal axons in the optic pathway is independent of Tctp
acting extracellularly.

DEVELOPMENT


http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131060/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.131060/-/DC1

RESEARCH ARTICLE Development (2016) 143, 1134-1148 doi:10.1242/dev.131060

As  ne B C _ D
© 15N8 ns. ns. ns _
g 1.5 102 - % — 52 a-Tubulin
= W e Pgcla 090
gz ! 52 Z8
i ® % 12- Cytoch
8 0.5 (kDaE a-Tubulin E 2 05 - ytochrome ¢
<
z o I g ol SN A &
£ (\s“ Qx\\ & & E & Go'@ & & &
& &
B con-mo [ tetp-MO
E ~
<3 40
=
Z % 30
< ES5 20
o g 0
£ x o 19
S 8g o
0 . .
3 © Inner plexiform Ganglion
Q layer cell layer
B con-mo [ teto-MO
F G
o con-MO? tctp-MO® P-value
E:' Anterogradely Transported 37/105 25/115
8 Mitochondria (35.24%) (21.74%) 0.0333
— Retrogadely Transported 2/105 10/115 0.0358
=) Mitochondria (1.91%) (8.70%) :
* Stationary Mitochondria 66/105 80/115 03163
% (Displacement < 5 pm) (62.86%) (69.57%) ’
l 2p =14 axons ®n =16 axons
oS s
Soma Growth Cone
H |
B con-MO [ teto-MO E * © 1
H 3 T =2y
Retrograde | Anterograde = +101 g a2
— = 3 E e n.s.
| o 5 o s =208 —
i £ + c -
o < s @ 06
{ 5 ol 50
' = g g & 04
| | a—
l I ¢ 5 5 S 02
=z 5 o0 ®©
: : ; : : : : : ‘ c E =5 0
20 0 5 ® .10 2 =9 —
- +20 +40 +60 g = I Anterograde  Retrograde
Net movement (pm) & B con-vo [ tetp-MO
J e K 50
- 250 " s
— o 38 B con-MO
2 200 2 > 40
@ @ g [l tctp-mO
3 150 g g 30
a ] 5] >
— [ [0]
o P
5 100 : £ 20]
8 E >
c 30 = @ 101
3 £ ;
0- S ® o =
o O
P 0 1 2 3 4 E
&R
& O Number of pauses s
Fig. 7. See next page for legend. 8
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function 2005), and its expression in the brain is downregulated in [
To begin to investigate the mechanism of how Tctp regulates axon  pathologies associated with mitochondrial abnormalities, such as g

growth, we focused on mitochondria. Tctp is documented as part of ~ Alzheimer’s disease and Down syndrome (Kim et al., 2001;
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Fig. 7. Altered mitochondrial dynamics in Tctp-depleted axons. (A) Ratio
of mitochondrial to nuclear DNA determined by gPCR in control and Tctp-
depleted retinas. Mean+95% confidence interval; n=7 paired retinas per
condition; P=0.23, Mann—Whitney test. (B) Tctp morphants show unaltered
Pgc1o expression levels in the CNS as evaluated by western blot analysis of
stage 37/38 embryos using an anti-Pgc1o antibody. n=3 independent
samples; P=0.5955, unpaired t-test. (C) Tctp morphants show unaltered
expression of mitochondria-related genes as assessed by RT-gPCR using eye
RNA extracts. Mean+95% confidence interval; n=9 retinas per condition,
Mann-Whitney test. (D) Tctp morphants show unaltered cytochrome c
expression levels in the CNS, as evaluated by western blot analysis of stage
37/38 embryos using an anti-cytochrome ¢ antibody. n=3 independent
samples; P=0.5989, unpaired t-test. (E) Control and Tctp-depleted RGCs have
similar levels of cox5a expression. Meants.e.m.; n=~20. GCL, P=0.2026; IPL,
P=0.2668; Mann—-Whitney test. (F) Representative kymographs (time-space
plots) of MitoTracker-labelled RGC axonal mitochondria in control and Tctp
morphant backgrounds. The vertical and horizontal axes represent time and
spatial position, respectively (e.g. a vertical line indicates a stationary
mitochondrion). (G) Summary of changes in axonal mitochondrial dynamics
(statistical significance determined using Fisher’s exact test). (H) Relative
mitochondrial motility and mean net movement in control and Tctp-depleted
RGC axons. Box plot whiskers indicate 5th-95th percentile. Right:
Meanzs.e.m.; *P<0.0117, Mann—Whitney test. (I) Analysis of fast
mitochondrial transport. Meants.e.m.; anterograde direction, P=0.9468;
retrograde direction, P=0.7308; Mann—Whitney test. (J) Average duration of
mitochondrial pauses in control and Tctp-depleted RGC axons. Box plot
whiskers indicate 5-95 percentile and '+’ the mean; P=0.902, Mann—Whitney
test. Permanently stationary mitochondria were excluded from this analysis.
(K) Average number and frequency distributions of mitochondrial pauses.
Meanzs.e.m.; P=0.317, Mann-Whitney test. Scale bars: 50 um in E; 5 um in
F. n.s., not significant.

Nunnari and Suomalainen, 2012; Pagano and Castello, 2012).
Furthermore, photoreceptor degeneration is frequently characterised
by bioenergetic decline (Wright et al., 2010), and mitochondrial
dysfunction is reported in a number of retinal diseases,
including photoreceptor-specific age-related macular degeneration
(Alexander et al., 2000; Delettre et al., 2000; Wallace et al., 1988;
Wright et al., 2010).

First, we investigated whether the overall metabolic status was
changed in Tctp morphant retinas using a bioluminescence ATP
assay (Agathocleous et al., 2012). Remarkably, the energy content
in Tetp-depleted retinas was found to be, on average, 30% lower
than in controls (Fig. 6A). We next measured the mitochondrial
membrane potential (AW,,), a cardinal indicator of mitochondrial
function, in retinal explant cultures. Notably, in Tctp morphants,
we found a significantly lower accumulation of the cationic
fluorescent probe tetramethylrhodamine methyl ester (TMRM) in
the mitochondria-rich growth cone central domain (reduced by
~20% relative to control), indicating A'¥,,, depolarisation. Analysis
of individual mitochondria distributed throughout the axonal
compartment showed a comparable AW, reduction in Tectp
morphants (Fig. 6B-D). A significant decrease in the number of
axonal mitochondria was also noted in these experiments, which
was confirmed in vitro with a mitochondrial stain (~30% fewer
mitochondria) and in vivo by co-labelling RGC axons with
mitochondrion-targeted GFP (mt-GFP) and gap-RFP (~23%
fewer mitochondria) (Fig. 6E,F; Fig. S4A). The average length
of axonal mitochondria did not differ from control (Fig. S4B).
Collectively, these results show a significant reduction in
mitochondrial density in Tctp-depleted axons, as well as a
decrease in axonal mitochondrial function and global energy levels.

Because new mitochondria are generated in the neuronal soma,
being transported from there to the cell periphery (Sheng and Cai,
2012), we reasoned that the decrease in axonal mitochondrial
density observed in Tctp morphants could arise through impaired
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global mitochondrial biogenesis. We documented comparable
mitochondrial DNA copy numbers (i.e. the ratio of mitochondrial
to nuclear DNA) in Tctp-depleted retinas, as evaluated by
quantitative PCR (Fig. 7A). Western blot analysis of Tctp-
depleted tissues showed, in addition, unaltered expression levels
of peroxisome proliferator-activated receptor gamma, coactivator 1
alpha (Pgclo; Ppargcla — Xenbase), a master inducer of
mitochondrial biogenesis and regulator of mitochondrial density
in neurons (Wareski et al., 2009) (Fig. 7B; Fig. S4C-E). In
agreement with these findings, the expression levels of the
nuclear-encoded mitochondrial genes examined [isocitrate
dehydrogenase 3 (NAD") alpha (idh3a); cytochrome ¢ oxidase
subunit Va (cox5a); cytochrome ¢, somatic (cycs); ras homolog
family member T1 (rhotl) — Xenbase, also known as
mitochondrial Rho GTPase 1 (mirol)] were unchanged relative
to control retinas (Fig. 7C,D). Additionally, we detected similar
cox5a mRNA expression levels in the GCL and in the IPL (made
up of RGC dendrites and processes of other retinal neurons) in
both backgrounds (Fig. 7E). Taken together, these data strongly
indicate that mitochondrial biogenesis and mass are unaffected in
Tctp morphants.

Having excluded impaired mitochondrial biogenesis, and
because mitochondrial transport depends on mitochondrial
function (Miller and Sheetz, 2004; Rintoul et al., 2003; Zala
et al., 2013), we next investigated whether Tctp deficiency affects
mitochondrial dynamics in axons. Analysis of 5-min time-lapse
movies of labelled mitochondria showed a higher proportion of
mitochondria moving in the retrograde direction (8.7% versus 1.9%
in controls, *P=0.0358) and fewer mitochondria moving
anterogradely (21.7% versus 35.2% in controls, *P=0.0353). In
addition, the mean net displacement of mitochondria, including
stationary, anterogradely trafficked and retrogradely trafficked
organelles, was smaller in Tctp-depleted axons, although the bias
was still in the anterograde direction (on average, each
mitochondrion moved distally +4.4 pm compared with +8.9 pm in
controls; Fig. 7F-H). However, the velocity of mitochondrial
transport in the anterograde and retrograde directions, as well as the
frequency and duration of mitochondrial pauses, were not
significantly different between the groups (Fig. 7I-K; Fig. S4F),
suggesting that the mitochondrial transport machinery is not
compromised in Tctp morphants.

Tctp acts via the survival machinery to promote axon
development

Several studies indicate that Tctp interacts with members of the
B-cell lymphoma 2 (Bcl2) family of proteins, which function as key
mediators of mitochondrial integrity and apoptosis (Czabotar et al.,
2014). Interestingly, the Bcl2 family is implicated in many instances
of photoreceptor disease (Chen et al., 1996; Nir et al., 2000; Yang
et al., 2004), and embryonic sensory neurons depleted of Bcl2, the
prototypic member of this family, have reduced axon growth rates
(Hilton et al., 1997), a phenotype we observe in Tctp morphants.
Particularly well corroborated is the association of Tctp with Mcll
(Liu et al., 2005; Yang et al., 2005; Zhang et al., 2002), a pro-
survival Bel2-related factor linked to neuroprotection responses in
the CNS (Mori et al., 2004), prompting us to explore a potential
interaction between these proteins in neurons.

First, we investigated whether Mcl1 is expressed in vivo by RGCs
using an antibody raised against the X. laevis protein (Tsuchiya and
Yamashita, 2011). Similar to Tctp, Mcl1 is expressed in the IPL, the
OPL and the inner segment of photoreceptors. Mcll is also present
in the GCL, the OFL and the ONH, indicating that Mcl1 localises to
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Fig. 8. Axonal Tctp interacts with pro-survival Mcl1. (A) Coronal section of stage 43 retina probed with an anti-Mcl1 antibody and counterstained with
DAPI. (B,C) PLA signal for Tctp and Mcl1 in cultured rat cortical neurons (E18.5+3 DIV) counterstained with DAPI and phalloidin. The boxed areas are enlarged
beneath. In C, anti-Mcl1 serum and blocking peptide were co-incubated before proceeding with the assay. (D) Representative control and Tctp morphant RGC
growth cones stained for P53. Meants.e.m.; n, number of growth cones analysed; ***P=0.0002, unpaired t-test. (E) Representative control and Tctp morphant
RGC growth cones stained with an antibody that specifically recognises the cleaved (activated) form of Caspase-3. Meants.e.m.; n, number of growth cones
analysed; ***P=0.0002, unpaired t-test. Scale bars: 50 um in A; 10 ym in B,C; 5 ym in D,E.

RGCs and their axons in vivo (Fig. 8A; Fig. S5A,B). In line with
these data, Mcll was detected in the axonal and dendritic
compartments of rat cortical neurons, confirming that, like Tctp,
Mcll is present in neurites (Fig. S5C,D). We next tested whether
Tctp physically interacts in axons with Mcll using a proximity
ligation assay (PLA) (Soderberg et al., 2006; Yoon et al., 2012). We
used rat cortical neurons in these studies owing to the availability of
specific primary antibodies raised in different hosts, a central
requirement of this methodology. Positive Tctp-Mcll PLA spots
were abundantly detected in the cell body, but also along the
neurites of cortical neurons [embryonic day (E) 18.5+3 DIV]
(Fig. 8B,C; Fig. S6A), indicative of a close association between
Tctp and Mcll (maximum working distance of the assay is in the
range of 30-40 nm). We obtained an even more profuse signal in
cultures aged in vitro for 14 days, suggesting that Tctp-Mcll
interactions are not transient phenomena (Fig. S6B). Of particular
note, ~5-10% of Tctp-Mcll-positive puncta colocalised with
mitochondria in neurites (Fig. S6C). Collectively, these data
validate previous biochemical reports and add a hitherto
unexplored subcellular dimension to them, revealing that Tctp
interacts with Mcl1 in the cell body and processes of neuronal cells.

Mechanistically, pro-survival members of the Bcl2 family (e.g.
Mcll) operate by sequestering pro-apoptotic proteins (e.g. Bax),
thus preventing the release of cytochrome ¢ from the mitochondrial
intermembrane space and subsequent activation of caspases (Pease
and Segal, 2014). Tctp is reported to stabilise and enhance Mcll
biological activity (Liu et al., 2005) and to promote the degradation
of P53 (tumor protein p53, Tp53 — Xenbase) (Amson et al., 2012;
Rho et al., 2011), which itself neutralises the pro-survival actions of
Bcl2 and Mcll at the mitochondria (Leu et al., 2004; Vaseva and
Moll, 2009). We found using quantitative immunofluorescence that
P53 expression was significantly upregulated in Tctp-depleted
growth cones (Fig. 8D). In addition, we measured a 50% increase in
active Caspase-3 mean signal relative to controls (Fig. 8E),
consistent with a detrimental balance between pro- and anti-
apoptotic signalling in Tctp morphants.

Finally, we investigated whether Tctp acts via Mcl1 and the survival
machinery to promote axon development. The retinotectal projection
in Mcll morphants was found to be significantly wider along the
ventral optic tract relative to controls, and axons often extended
erroneously into the telencephalon (Fig. 9A-D; Fig. S6D).
Furthermore, we detected outgrowth defects in subsets of axons
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Fig. 9. Tctp regulates axon development via its anti-apoptotic effects. (A-C) Lateral view of Dil-filled retinotectal projections in con-MO-injected or mc/1-MO-
injected stage 40 embryos. Dashed lines approximate the boundary of the optic tectum; arrowhead denotes a region of the tract with outgrowth defects; asterisks
mark beaded axons, suggestive of degenerating axons; boxed region in C shows axon misprojections into the telencephalon and diencephalon. Panels to the
right show enlarged images. The boxed area in C is centred in the ventral optic tract. (D) Mean (ts.e.m.) optic tract width in con-MO-injected and mc/71-MO-injected
embryos. C2, **P<0.01, two-way ANOVA. C2-7 denote imaginary, evenly spaced hemi-circumferences centred on the optic chiasm. (E) Relative projection
lengths in control and Mcl1 morphant backgrounds. Meants.e.m.; n, number of brains analysed; n.s., not significant; Mann—Whitney test. (F) Summary of
phenotypic changes in Mcl1 morphant projections (statistical significance determined using Fisher’s exact test). (G) Co-delivery of tctp-MO and fctp,o.17> MRNA,
which encodes a truncated Tctp protein devoid of anti-apoptotic activity, fails to rescue the effects of Tctp depletion on the development of the retinotectal
projection. (H) Relative projection lengths in embryos injected with con-MO, tctp-MO or tctp-MO+truncated tctp,g.172 MRNA. Meants.e.m.; n, number of brains
analysed; *P=0.008, Kruskal-Wallis test. (I) Mean (+s.e.m.) optic tract widths. con-MO versus tctp-MO+truncated tctp,o.17o MRNA, *P<0.05 (C2), *P<0.05 (C3),
*P<0.05 (C4), **P<0.01 (C5), *P<0.05 (C6), two-way ANOVA with Bonferroni correction. Scale bars: 50 pm.

coursing through the dorsal optic tract, although the absolute length of
the projection was comparable to controls (Fig. 9C,E,F). We also
noted a high frequency of degenerating axon profiles, distinguished by
their beaded morphology, similar to that observed in Tctp morphants
(Fig. 9B,F; Fig. STA-D). Overall, these results suggest that Tctp and
Mcll are functionally related, despite the qualitatively milder
phenotypes detected in Mcll morphants. This might be due to
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compensation by other Bcl2-related proteins, as our data indicate that
Tctp also interacts with Bel-X; in neurons (Fig. SSA,B).

To test directly whether Tctp pro-survival interactions are
required for retinal axon development, we designed a mutated zctp
rescue transgene encoding an N-terminally truncated Tctp protein
lacking anti-apoptotic properties (Tctpao-172aa)- TCtP4o-1724a TEtains
Tctp signature motifs and the interaction domains of several known
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Tctp-interacting proteins (Yang et al., 2005), but not those
necessary for the association with Mcll and Bcl-X; (Yang et al.,
2005; Zhang et al., 2002). Delivery of fctp49.17» mRNA together
with zctp-MO by blastomere microinjection failed to mitigate the
effects of Tctp depletion on the development of the retinotectal
projection in terms of both tract length and tract width (Fig. 9G-I;
Fig. S8C). Collectively, the findings are consistent with Tctp pro-
survival actions being necessary for the normal development of the
retinotectal projection.

DISCUSSION

Uncontrolled growth and heightened survival are hallmarks
of malignancy, allowing cancer cells to out-compete their
neighbours and eventually dominate tissues. Tctp has previously
been associated with cell growth, including during bone
development and cancer pathogenesis (Amson et al., 2012;
Brioudes et al., 2010; Kaarbo et al., 2013; Miao et al., 2013;
Zhang et al., 2008), and is suggested to function as a pro-survival
factor through its interplay with the Bcl2 protein family (Liu et al.,
2005; Susini et al., 2008; Yang et al., 2005; Zhang et al., 2002).
Thus, Tctp upregulation, as described in a variety of malignant
tumours (Amson et al., 2012; Lo et al., 2012; Miao et al., 2013), is
likely to reflect the growth and survival advantages that Tctp confers
to the cell. In line with the many parallels that can be drawn between
the normal processes of migratory growth cones during axon
development and the disease mechanisms of cancer cell invasion,
we document here that Tctp regulates the development of the
retinotectal projection by impacting on axon growth and guidance,
and link Tctp to the survival machinery of the axon.

Tetp deficiency leads to multiple mitochondria-related
abnormalities in axons, including a substantially diminished
mitochondrial membrane potential and decreased mitochondrial
density. This evidence indicates that axonal Tctp contributes to the
maintenance of mitochondrial function in this subcellular domain.
Unlike vesicular fast axonal transport, which is reliant on the glycolytic
pathway for its energetic needs (Zala et al., 2013), the trafficking of
mitochondria is dependent on ATP generated by oxidative
phosphorylation (Rintoul et al., 2003; Zala et al., 2013). Thus,
considering the disruption of the mitochondrial membrane potential
observed in Tctp-depleted axons, a parameter that directly influences
mitochondrial ATP production, the defective accumulation of
mitochondria at the neuronal periphery is perhaps a predictable
outcome of compromised mitochondrial operation. Significantly, the
general reduction in axonal mitochondrial density detected in these
axons is not accompanied by alterations in mitochondrial biogenesis
or mass, arguing that this deficit does not result from an inability of
the neuron to generate mitochondria. Although we did not address
the potential involvement of axonal mitophagy (Ashrafi et al., 2014),
our analysis also indicates that more mitochondria are trafficked
retrogradely in Tctp-depleted axons. Consistent with these
findings, previously reported evidence indicates that dysfunctional
mitochondria are selectively returned to the cell body for repair and/or
degradation (Miller and Sheetz, 2004; Sheng and Cai, 2012). Hence,
the insult to mitochondria in axons depleted of Tctp might, in effect,
lead to a secondary perturbation on mitochondrial dynamics and an
overall more prominent decline in axonal mitochondrial distribution.

How does Tctp promote mitochondrial function? Pro-survival
members of the Bcl2 protein family, such as Mcll, work primarily
by sequestering and neutralising Bcl2-related pro-apoptotic factors
(e.g. Bax), which, if left uncontrolled, negatively affect the integrity
of mitochondria (Shamas-Din et al., 2013). A fitting analogy would
be a molecular tug-of-war between pro- and anti-apoptotic

Bcel2-related factors controlling mitochondrial homeostasis.
According to the model put forward by Susini and colleagues,
Tctp pro-survival activity results from its blocking Bax dimerisation,
a key mitochondrial outer membrane permeabilisation (MOMP)-
inducing event, by binding and reconfiguring Mcll and Bcl-X| in
such a way that their inhibitory actions on Bax are promoted (Susini
et al., 2008). Akin to the pivotal role of mitochondria in neutrophil
chemotaxis (Bao et al., 2015), we speculate that compromised pro-
survival signalling in axons deficient in Tctp translates into
mitochondrial dysfunction and a secondary decline in axonal
mitochondrial density, ultimately resulting in an energy and
Ca?*-buffering state insufficient to sustain the normal processes of
a growing axon. These effects would be particularly acute in the
growth cone, an ATP-intensive distal outpost where mitochondria
accumulate (Lathrop and Steketee, 2013), impairing its ability to
adequately respond to guidance and growth-promoting cues in the
embryonic environment.

In summary, the findings presented here suggest that Tctp
functions as a checkpoint for the normal development of the
retinotectal projection via its regulation of pro-survival signalling
and axonal mitochondrial homeostasis. Although the precise role(s)
of mitochondria in axon growth and navigation are still unresolved,
it will also be interesting in the future to investigate the possibility
that Tctp regulates mechanisms extrinsic to mitochondria. Indeed,
considering the involvement of local caspase action in axon
guidance and branching behaviours (Campbell and Holt, 2003;
Campbell and Okamoto, 2013; Ohsawa et al., 2010), future work
should address the contribution of dysfunctional caspase activation
towards the axon development defects observed in Tctp morphant
embryos.

MATERIALS AND METHODS

Xenopus laevis embryos

Xenopus laevis embryos of either sex were obtained by in vitro fertilisation,
raised in 0.1x Modified Barth’s Saline [0.88 mM NaCl, 0.01 mM KCl,
0.024 mM NaHCO;, 0.1 mM HEPES, 8.2 uM MgSOy,, 3.3 uM Ca(NOs),,
4.1 uM CaCl,] at 14-18°C, and staged following Nieuwkoop and Faber
(Nieuwkoop and Faber, 1994). All animal experiments were approved by
the University of Cambridge Ethical Review Committee.

Retinal cultures

Unless otherwise noted, eye primordia were dissected from anaesthetised
stage 32 larvae, and plated on culture dishes coated with poly-L-lysine
(10 pg/ml, Sigma) and laminin (10 pg/ml, Sigma). Cultures were incubated
at 20°C in 60% L15 minimal medium (Life Technologies) for 24 h before
further manipulation.

Immunostaining of retinal sections

Stage 43 (unless otherwise specified) transverse 12-um cryosections were
processed using standard immunohistochemistry procedures (blocking
solution: 10% heat-inactivated goat serum, 1% bovine serum albumin, 0.5%
Triton X-100 in 1x PBS). Antigen retrieval with steaming 0.01 M sodium
citrate (0.05% Tween 20, pH 6.0) was carried out before staining for Tctp.
For further details, including antibodies, see supplementary Materials and
Methods.

In situ hybridisation and fluorescence in situ hybridisation

ISH on retinal sections was performed as described previously (Xue
and Harris, 2012) using digoxigenin (DIG)-labelled riboprobes generated
from IMAGE clones. Four non-overlapping DNA oligonucleotides
complementary to the fcfp coding sequence were DIG-labelled and
hybridisation procedure on retinal growth cones carried out as previously
described (Zivraj et al., 2010). For further details, including probe
sequences, see supplementary Materials and Methods.
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Eye RNA extraction

Retinas from stage 37/38 embryos were dissected in 1x Modified Barth’s
Saline containing ethyl 3-aminobenzoate methanesulfonate (0.04% wt/vol;
Sigma) and put on ice. Total RNA extraction was performed using a
column-based purification method following the instructions provided by
the manufacturer (RNeasy Mini Kit, Qiagen). Tissue homogenisation was
achieved by vortexing.

Laser-capture microdissection and RNA extraction

Per experiment, ~140 stage 33/34 eye explants were plated on polyethylene
terephthalate slides, pre-coated with poly-L-lysine (10 pg/ml) and laminin
(10 pg/ml), and cultured for 32-36 h. Retinal cultures were fixed (4%
paraformaldehyde, 4% sucrose in 1x PBS) for 10 min, dehydrated through
an ethanol series, and air-dried before the microdissection procedure, as
described previously (Zivraj et al., 2010). RNA was extracted using the
RNAqueous-Micro Kit (Life Technologies) according to the manufacturer’s
instructions. Extract purity was determined by RT-PCR. For further details,
see supplementary Materials and Methods.

5’ and 3’ rapid amplification of cDNA ends (RACE PCR)

RNA extracts were processed with SMARTer RACE cDNA Amplification Kit
(Clontech) according to the manufacturer’s instructions. RACE PCR was
performed using Advantage HF 2 PCR Kit (Clontech). Following gel
extraction, PCR products were TA-cloned and sequenced in both orientations.

Morpholino oligonucleotides

Antisense fctp-MO (translation-blocking), mcl/-MO (splice-blocking) and
control-MO were supplied by GeneTools: 5'-ATCATGTTGGCGGCCTA-
AGTGTTGT-3', 5~ AGTAGAGTAAGCCATGCTCACCCGT-3" and 5'-
CCTCTTACCTCAGTTACAATTTATA-3’, respectively. For further
details, see supplementary Materials and Methods.

Blastomere microinjection

Dorsal blastomere injections were performed at the four-cell stage as
described previously (Leung and Holt, 2008). tczp-MO and mclI-MO were
injected at 12 ng/blastomere and 6 ng/blastomere, respectively.

Retina-targeted electroporation

Plasmid DNA electroporation was carried out on stage 28-30 embryos as
described previously (Falk et al., 2007) using eight consecutive 18 V pulses
of 50 ms duration, delivered at 1-s intervals. gap-RFP and mt-GFP were
delivered at 1 mg/ul.

Dil labelling of retinal axons

Embryos were fixed overnight at 4°C in 4% paraformaldehyde in PBS and
RGC axons labelled by intraocular injection of the fluorescent carbocyanine
Dil. The contralateral (with respect to the dye-injected eye) brain
hemisphere was later dissected, mounted in 1x PBS and visualised using
confocal microscopy. Tract length was normalised to the distance between
the optic chiasm and the posterior boundary of the tectum. For further
details, see supplementary Materials and Methods.

In vivo imaging of axon pathfinding

Live imaging of pathfinding retinal axons was performed as described
previously (Leung et al., 2013). Specimens were mounted in an imaging
chamber constructed on oxygenated Permanox slides (Nunc). Images were
acquired every 15 min for 2 h. Axons were scored as ‘stalled’ if their
outgrowth was <10 pm over the 2-h period of analysis. For further details,
see supplementary Materials and Methods.

Analysis of photoreceptor degeneration

Transverse stage 43 retinal sections probed for opsin or rhodopsin and
counterstained with DAPI were used, respectively, in cone and rod
photoreceptor phenotypic analyses. The average distance between the
fluorescence signals in the outer nuclear layer (i.e. DAPI-stained
photoreceptor cell bodies) and the photoreceptor outer segments was
taken as an approximation of photoreceptor inner segment length. The width
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of the gaps left open by collapsed outer segments was normalised to the
perimeter of the outer nuclear layer to estimate the percentage of
photoreceptors with degenerative phenotypes. Cone and rod analyses
were conducted independently.

TUNEL assay

TUNEL labelling of stage 43 transverse 12-um cryosections was performed
following the instructions provided by the manufacturer (/n situ Cell Death
Detection Kit — TMR red, Roche). Data measurements reflect, per section,
the ratio between TUNEL-positive nuclei and the total number of DAPI-
stained nuclei in the ganglion cell layer. For further details, see
supplementary Materials and Methods.

ATP bioluminescence assay

ATP content was measured using the ATP Bioluminescence Kit CLS II
(Roche). Immediately after dissection, single retinas were incubated in 50 ul
of 1% perchloric acid for precisely 10 min at room temperature before the
reaction was stopped in 450 ul of boiling Tris buffer (100 mM Tris, 4 mM
EDTA, pH 7.75), incubated for 2 min at 100°C, and centrifuged at 1000 g
for 1 min. For further details, see supplementary Materials and Methods.

Mitochondrial membrane potential assessment

Retinal cultures were incubated with 20 nM tetramethylrhodamine, methyl
ester (TMRM) at 20°C for 20 min and washed with culture medium before
imaging. AW -corrected AW\, measurements were derived from the ratio of
fluorescence intensities between mitochondria (F,,) and mitochondria-poor
regions (F,.) (Marks et al., 2005). For further details, see supplementary
Materials and Methods.

Visualising mitochondrial dynamics

Retinal explants were incubated with 25 nM MitoTracker Red (Life
Technologies) at 20°C for 20 min and washed with culture medium before
imaging. Time-lapse recordings were run for 5 min applying 5-s intervals
between time points. A mobile mitochondrion was only considered as such
if its dislocation was >5 pm (Sheng and Cai, 2012). The subset of
mitochondria undergoing fast transport were defined as those moving at
average velocities of >0.3 um/s. For further details, see supplementary
Materials and Methods.

Real-time PCR

Per condition, seven to nine independent samples were collected on different
days each consisting of two retinas dissected from the same embryo (stage
37/38). When quantifying nuclear-encoded mitochondria-related targets,
reference gene (ywhaz, rpsi3, hprtl, thpl) normalisation was performed
using geNorm; the optimal normalisation factor was calculated as the
geometric mean of reference targets ywhaz and thpl and data analysis
performed within gbaset (Biogazelle). Mitochondrial DNA content
determination used gcg and b2m (genomic targets), and mt-t/1 and atp6
(mitochondria-encoded gene targets). Mitochondrial DNA content and
RNA isoform data were analysed using the AACq method. For further
details, see supplementary Materials and Methods and Table S1.

Primary rat cortex neuronal culture and immunocytochemistry
Foetal neurons derived from cortices of F344 rat E18.5 embryos were
obtained from Cyagen Biosciences as cryopreserved primary cells, and plated
on culture dishes pre-coated with poly-L-lysine (15 pg/ml, Sigma) and
laminin (15 pg/ml, Sigma). Neuronal cultures were grown at 37°C in a
5% CO, humidified incubator in OriCell Neuron Growth Medium
(Cyagen Biosciences) supplemented with L-alanyl-L-glutamine (Life
Technologies) and B-27 (Life Technologies) for at least 72 h before further
manipulation. For immunocytochemistry, cells were fixed, washed and
permeabilised then standard protocols followed. For immunocytochemistry,
cells were fixed in pre-warmed 4% paraformaldehyde, washed with 10 mM
glycine in 1x PBS, and permeabilised with 0.03% Triton X-100 in 1x PBS.
Images were acquired using a laser scanning confocal microscope. For
further details, including antibodies, see supplementary Materials and
Methods.
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In situ proximity ligation assay

In situ proximity ligation assays were performed on rat cortical neurons
or HCT116 cells (certified by ATCC) according to manufacturer’s
recommendations (Duolink; Olink Biosciences). The following primary
antibody pairs were used: mouse monoclonal anti-Tctp (1:400; Santa Cruz
Biotechnology, sc-13313 1) and rabbit polyclonal anti-Mcl1 (1:100; Santa Cruz
Biotechnology, sc-819); mouse anti-Tctp (1:400; Santa Cruz Biotechnology,
sc-133131) and rabbit anti-Bel-X; (1:100; Santa Cruz Biotechnology, sc-
7195). Additionally, a blocking Mcll peptide (provided by Santa Cruz
Biotechnology), used at a fivefold excess relative to the anti-Mcl1 antibody,
was included in preliminary experiments to evaluate the specificity of the
technique. For further details, see supplementary Materials and Methods.

Quantitative immunofluorescence

Quantitative immunofluorescence was performed as described previously
(Leung et al., 2013). Background-corrected fluorescence intensities (mean
pixel intensity per unit area) were measured in non-collapsed growth cones.
For further details, see supplementary Materials and Methods.

Western blot

Stage 35/36 (unless otherwise specified) eye and/or brain lysates were
prepared in ice-cold RIPA buffer and resolved by SDS-PAGE. Both ‘semi-
dry’ and ‘wet’ electroblotting methods were applied, depending on the size
of the target protein to be analysed. After electroblotting, nitrocellulose
membranes were probed using the following primary antibodies: anti-Tctp
(1:5000; gift from J. Kubiak, Universit¢ de Rennes, France); anti-Pgclo
(1:500; Aviva Systems Biology, ARP39015_P050) and anti-Cytochrome-c
(1:1000; Invitrogen, 338500). HRP-conjugated secondary antibodies
(Abcam) were used in combination with a chemiluminescence-based
detection system (Amersham ECL, GE Healthcare). To evaluate the
efficiency of Tctp knockdown in HCT116 cell lines, a commercially
available anti-Tctp antibody was used (1:500; Santa Cruz Biotechnology,
sc-133131).

Statistical analysis

Each experiment was repeated at least three times unless otherwise
indicated. Details of statistical analysis are included in figure legends or
main text. Data were analysed with Prism (GraphPad), except real-time PCR
data (gbase+). For all tests, a significance threshold of ¢=0.05 was used.

Note added in proof

New research indicates that Tctp has a BH3-like domain which potentiates,
rather than inhibits, the anti-apoptotic function of Bcl-XL (Thebault et al.,
2016).
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