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ABSTRACT
In a few regions of the adult brain, specialized astrocytes act as neural
stem cells capable of sustaining life-long neurogenesis. In other,
typically non-neurogenic regions, some astrocytes have an intrinsic
capacity to produce neurons when provoked by particular conditions
but do not use this ability to replace neurons completely after injury or
disease. Why do astrocytes display regional differences and why do
they not use their neurogenic capacity for brain repair to a greater
extent? In this Review, we discuss the neurogenic potential of
astrocytes in different brain regions and ask what stimulates this
potential in some regions but not in others. We discuss the
transcriptional networks and environmental cues that govern cell
identity, and consider how the activation of neurogenic properties in
astrocytes can be understood as the de-repression of a latent
neurogenic transcriptional program.
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Introduction
The adult mammalian brain contains stem cells that continuously
produce new neurons (Braun and Jessberger, 2014). When these
stem cells were first discovered, many hoped that they would be
similar to those previously found in other organs and that they
would be able to repair injuries and replace lost or damaged neurons
in many parts of the brain. Since then, however, it has become clear
that adult neurogenesis is important for a few, specialized functions
in the healthy brain and it does not seem to be a major intrinsic
mechanism for brain repair. In short, despite the presence of neural
stem cells, the adult mammalian brain is not an organ that
regenerates efficiently.
Adult neural stem cells are specialized astrocytes, and they are

very similar to astrocytes in other parts of the brain (Götz et al.,
2015). Indeed, like these stem cells, some astrocytes in the brain
parenchyma even have an intrinsic ability to generate neurons.
Although this ability is dormant, it can be brought out by
stimulating the cells with growth factors in vitro (Buffo et al.,
2008; Sirko et al., 2013; Shimada et al., 2012). Recently, it has
been shown that some parenchymal astrocytes in the striatum can,
after certain injuries, also produce neurons in vivo (Magnusson
et al., 2014; Nato et al., 2015). The neurons generated in this way
are, however, few and it is not known whether they can contribute
to functional recovery in a meaningful way. Today, much research
is focused on bringing out the neurogenic potential of astrocytes
and on using these cells as a reservoir for new neurons in the
injured brain.

Astrocytes are located throughout the brain and are
heterogeneous in form and function. Only in the subventricular
zone and dentate gyrus are they clearly specialized and behave as
neural stem cells. In these regions, neurogenic capacity is a product
of both cell-intrinsic potential and a supportive microenvironment,
but the relative importance of each is not well understood. This is
even more the case for parenchymal astrocytes, whose true intrinsic
potential for neurogenesis is not known. In this Review, we consider
how the extent of neurogenesis varies in different regions of the
adult mammalian brain. In its own way, each of these regions serves
as an example of how the intrinsic neurogenic potential of astrocytes
is regulated by the extracellular environment. Finally, we discuss the
underlying transcriptional networks that govern cell identity and ask
how environmental signals interact with these networks to allow
cells to maintain latent neurogenic properties.

Adult neurogenesis in different brain regions
The subventricular zone and dentate gyrus
It might sound like a simple task to determine which brain regions
are neurogenic and which are not, but depending on how
‘neurogenic’ is defined, different regions might qualify (Fig. 1)
(Kempermann, 2011). A region may display a continuous
production of new neurons; it may contain cells with an intrinsic
neurogenic potential that is not realized under normal
circumstances, or it may merely have an environment capable of
supporting neuronal differentiation. Regardless of which definition
is used, however, two regions in the mammalian brain stand out: the
subventricular zone, which lines the lateral ventricles, and the
dentate gyrus in the hippocampus (Fig. 1). Here, more than a
thousand new neurons are generated every day (Spalding et al.,
2013; Ponti et al., 2013). Newborn neurons appear hyper-excitable
(Schmidt-Hieber et al., 2004), which possibly gives them a special
role in information processing. In the dentate gyrus, these neurons
might help the hippocampus to tell similar experiences apart and to
store these experiences as separate memories (Kheirbek et al.,
2012). From the subventricular zone, newborn neurons migrate to
the olfactory bulb where they are involved in certain aspects of odor
discrimination (Lepousez et al., 2013). In addition to its role in
information processing, neurogenesis in the olfactory bulb is also
important for maintaining tissue homeostasis – a role it does not
have in the dentate gyrus (Imayoshi et al., 2008). Species-specific
differences in adult neurogenesis do exist. Humans renew a larger
proportion of dentate gyrus neurons than rodents do (Spalding et al.,
2013), whereas whales and dolphins have relatively small
hippocampi and apparently generate no new neurons in this
region (Patzke et al., 2013). Also, in the human subventricular
zone, newborn neurons do not migrate to the olfactory bulb as they
do in most mammals (Sanai et al., 2011; Bergmann et al., 2012;
Wang et al., 2011).

In the dentate gyrus and subventricular zone, the new neurons are
produced by specialized astrocytes, which act as the brain’s stem
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cells (Lim and Alvarez-Buylla, 2014). The classical definition of a
stem cell calls for two central properties: multipotency, which is the
ability to produce more than one cell type and self-renewal, which is
the ability to retain multipotency through an indefinite number of
cell divisions. Adult neural stem cells do display these properties
when isolated and exposed to growth factors in vitro (Reynolds and
Weiss, 1992; Palmer et al., 1997). But in vivo, these properties often
emerge only on a population level. Many individual stem cells in the
subventricular zone are not multipotent; they produce exclusively
neurons or oligodendrocytes, but never both (Ortega et al., 2013). A
stem cell might even be restricted to producing a single neuronal
subtype (Merkle et al., 2007). Self-renewal, too, could be a
population-level trait. In fact, individual neural stem cells in the
subventricular zone may well spend most of their life in a quiescent
state, becoming activated only for a few weeks of intense
proliferation, followed by exhaustion of their stem cell potential
(Fuentealba et al., 2015; Furutachi et al., 2015; Calzolari et al.,
2015). The case might be different in the dentate gyrus. Here, some
stem cells can generate both neurons and astrocytes in vivo
(Bonaguidi et al., 2011). Indeed, inactivation of the gene Nf1
even enables oligodendrocyte generation, which does not occur
normally (Sun et al., 2015). The in vivo self-renewal of individual
dentate gyrus stem cells is still a matter of debate. One study found
that these cells rapidly exhaust their stem cell potential (Encinas
et al., 2011), whereas another reported that stem cells in this region
can cycle between quiescence and activation more than once
(Bonaguidi et al., 2011). Even so, the recent insights from the
subventricular zone suggest that neural stem cells, whose potential
is brought out fully by in vitro conditions, might be restrained by
their extracellular environment in vivo. This opens the possibility
that in other brain regions, too, cells exist whose neurogenic
potential is, in effect, hidden by a similarly restrictive environment.
Quiescent stem cells are common throughout the body, but their

inactivity can make them difficult to identify as stem cells (Li and
Clevers, 2010). In the subventricular zone, this difficulty has caused
controversy over whether ependymal cells have stem cell properties,
because these cells are able to produce neuroblasts and astrocytes
only when stimulated by injuries or growth factors (Luo et al., 2015;

Nomura et al., 2010; Carlén et al., 2009). As quiescence is common
among the astrocyte-like neural stem cells in the neurogenic regions,
it raises the tantalizing possibility that there are astrocytes in other
parts of the brain that are in a similar state of quiescence.

Striatum
Until recently, the established dogma in the neurogenesis field was
that the capacity for adult neurogenesis has decreased with
increasing brain complexity during evolution. This dogma was
challenged a few years ago when it was found that hippocampal
neurogenesis takes place to the same extent in adult humans as it
does in mice (Spalding et al., 2013). Even so, the finding soon
afterwards that adult humans also have ongoing neurogenesis in the
striatum came unexpectedly (Ernst et al., 2014). Mice, which are the
most widely used laboratory animals, do not normally exhibit
striatal neurogenesis under physiological conditions (Teramoto
et al., 2003; Yamashita et al., 2006; Magnusson et al., 2014; Nato
et al., 2015), except during a short period after birth (Inta et al.,
2008). However, there is no reason to assume that the human brain
should be more similar to the mouse brain than to that of other
mammals. Rabbits, to which humans are equally distantly related,
do exhibit adult striatal neurogenesis under physiological conditions
(Luzzati et al., 2006). In fact, low levels of striatal neurogenesis have
even been reported in healthy rats (Dayer et al., 2005; Arvidsson
et al., 2002) and in a non-human primate species (Bédard et al.,
2002), although this is controversial and other studies have not been
able to replicate these findings (Benraiss et al., 2001; Wang et al.,
2014).

In contrast to the dentate gyrus and olfactory bulb, where the
function of newborn neurons is becoming better understood,
essentially nothing is known about the purpose of adult
neurogenesis in the striatum. Striatal neurogenesis in the healthy
brain is, however, restricted to the medial striatum in rabbits, rats and
squirrel monkeys (Luzzati et al., 2006; Dayer et al., 2005; Bédard
et al., 2002). This region receives input from the limbic emotional
circuitry and the auditory and visual cortex, but not primarily from
motor areas, which project mostly to the lateral striatum (McGeorge
and Faull, 1989). Moreover, turnover in the healthy striatum is
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olfactory bulb
Constitutive: declines
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Fig. 1. The extent of neurogenesis in different regions of the adult brain of rodents and humans. In some regions, neurogenesis takes place throughout life
(green), in other regions it is mostly in response to injuries (yellow) and in yet other regions, there is no strong evidence that it ever occurs in adulthood (red).
Figure inspired by fig. 8-1 in Kempermann, 2011.
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largely limited to calretinin-expressing interneurons (Liu et al.,
2009; Ernst et al., 2014; Luzzati et al., 2006), although the situation
might be different after injury (Kokaia and Lindvall, 2012). The
percentage of calretinin-positive neurons in the striatum differs
markedly between species, from 1% in rodents to 10% in humans
(Inta et al., 2015). It is conceivable, therefore, that increased
neuronal turnover in the striatum of humans is correlated with a
greater importance of this neuronal subtype.
The number of newborn striatal neurons reported in healthy

humans, squirrel monkeys and rats is very low, at least compared
with that in the dentate gyrus. It would be easy to conclude that
neuronal turnover is therefore insignificant. However, this might
not necessarily be the case. If turnover in the healthy striatum is
restricted to a specific subpopulation of neurons that is very small
and widely dispersed, turnover rates could be substantial as a
percentage of the parental subpopulation. In the human striatum, for
example, the turnover rate of the renewing cell population has been
estimated at 2.7% per year (Ernst et al., 2014), which is comparable
to the 1.75% estimated for the human dentate gyrus (Spalding et al.,
2013). A similar case has been made for neuronal turnover in the
striatum of rats (Dayer et al., 2005). In rodents, striatal neurogenesis
is greatly increased after injury, particularly after stroke. However,
the number of neurons that die as a result of the stroke is also very
large, and one study in rats found that a mere 0.2% of dead striatal
neurons had been replaced by neurogenesis 6 weeks after stroke
(Arvidsson et al., 2002). At least some of these neurons are
integrated into the neuronal circuitry and display functional
electrophysiological properties (Hou et al., 2008), but it is not
known whether so few newborn neurons can compensate for the
loss of brain function that results from a stroke. Neither is it known
whether humans also have increased striatal neurogenesis after
stroke.
The nearby subventricular zone was long thought to be the only

source of adult-born striatal neurons, based on the fact that
neuroblasts can migrate into the striatum after stroke (Li et al.,
2010; Zhang et al., 2009). But we and others have recently found
that parenchymal astrocytes residing in the striatum can also
generate neurons (Magnusson et al., 2014; Nato et al., 2015;
Luzzati et al., 2014; Duan et al., 2015; Shen et al., 2015). These
striatal astrocytes are triggered by certain injuries, such as stroke,
to activate latent neurogenic properties and produce neurons in a
burst of proliferation (Fig. 2). After stroke in rodents, thousands of
newborn neuroblasts appear in the striatum over the following
weeks and months (Arvidsson et al., 2002; Magnusson et al.,
2014; Li et al., 2010; Zhang et al., 2009). Although many of these
neuroblasts have migrated from the subventricular zone, as many
as one- to two-thirds are estimated to have been generated by local
astrocytes in mice (Magnusson et al., 2014). This shows that
astrocytes in the striatum can act as neuronal precursor cells, at
least when triggered by appropriate environmental signals. In this
way, these astrocytes appear similar to adult neural stem cells –
they are mostly quiescent and, when activated, proliferate in bursts
to generate new neurons. Importantly, however, it is still not

known whether human astrocytes also carry such latent neurogenic
properties (Box 1).

Neocortex
Whether adult neurogenesis persists in brain regions other than
those described above is a controversial topic. Many reports claim to
demonstrate signs of ongoing neurogenesis in parts of the healthy
parenchyma, such as the neocortex (reviewed in Kempermann,
2011). But most of the evidence for this is weak and often consists
of ambiguous images of single cells. Therefore, it is important to use
rigorous criteria when evaluating such claims.

The difficulties of trying to label brain regions as neurogenic or
non-neurogenic are nowhere as obvious as in the neocortex. This is
because neurogenesis requires not only a cell-intrinsic capacity to
generate neurons, but it also depends on a supportive environment,
which the neocortex does not have. There are cells in the neocortex,
including astrocytes, with an intrinsic capacity to generate neurons.
This has been demonstrated by the fact that such cells can be
isolated from the injured (Buffo et al., 2008; Sirko et al., 2013;
Shimada et al., 2012) or even the healthy neocortex of rodents
(Palmer et al., 1999; Grande et al., 2013; Sirko et al., 2013) and
coaxed into producing neurons in vitro. But this, on its own, does
not constitute adult neurogenesis. Many groups have tried to find
mature newborn neurons in the neocortex of healthy mice and
primates but have so far not been successful (Magavi et al., 2000;
Kornack and Rakic, 2001; Ehninger and Kempermann, 2003;
Koketsu et al., 2003; Rakic, 2002). It must be mentioned that some
of the astrocytes with in vitro neurogenic capacity isolated from the
mouse neocortex actually originate in the subventricular zone, from
which they migrate after injury (Faiz et al., 2015). In the healthy
brain, no such migration is known to take place and in this situation,
all neocortical astrocytes with in vitro neurogenic potential are
probably locally derived (Sirko et al., 2013).

Even after injuries such as stroke, which in the rodent striatum
would lead to robust production of neurons, cortical neurogenesis
appears extremely limited. Although isolated newborn neurons
have been reported in the rodent neocortex injured by stroke or
selective neuronal loss (Ohira et al., 2010; Li et al., 2008; Jiang
et al., 2001; Magavi et al., 2000; Chen et al., 2004; Brill et al.,
2009), other groups have found no such neurons (Arvidsson et al.,
2002; Parent et al., 2002; Diaz et al., 2013; Huttner et al., 2014).
Studies that analyzed the incorporation of 14C in the DNA of
dividing cells observed no neurogenesis in the human neocortex,
either in the healthy brain or after stroke. These results are
supported by analyses of neuronal BrdU incorporation and
lipofuscin content (Bhardwaj et al., 2006; Huttner et al., 2014).
Importantly, the 14C method has a detection level that limits the
possible turnover in the human neocortex to an extremely small or
short-lived subpopulation of neurons. When combined with other
methods it can have an even higher sensitivity, being able to detect
newborn neurons at densities as low as 1:1000 neurons (Huttner
et al., 2014; Bhardwaj et al., 2006). As noted for the striatum,
these results do not completely rule out neuronal turnover in the

Astrocytes New neuronsTransit-
amplifying cells

Neuroblasts

Stroke
Excitotoxic injury
Rbpj deletion
Sox2 overexpression 

Striatum

Fig. 2. Neurogenesis by astrocytes in the striatum. In
the striatum (red shaded area), astrocytes can be
stimulated to undergo neurogenesis after injuries like
stroke, where Notch signaling is downregulated, or
excitotoxic injury, by ablation of Notch-mediating
transcription factor Rbpj or by overexpression of Sox2.
Activated striatal astrocytes proliferate and generate
transit-amplifying cells, neuroblasts and neurons.

1077

REVIEW Development (2016) 143, 1075-1086 doi:10.1242/dev.133975

D
E
V
E
LO

P
M

E
N
T



neocortex. There might exist a very small and widely dispersed
subpopulation to which renewal is restricted. In fact, one rigorous
study found evidence for a minuscule number of new interneurons
in layer 6 of the rat neocortex (Dayer et al., 2005). These newborn
neurons were a thousand times more sparsely dispersed compared
with those in the dentate gyrus. Even if such a small neuronal
population is irrelevant from a regenerative medicine perspective,
its existence would be highly noteworthy because these neurons
would be developing in an environment that is considered to be
utterly non-neurogenic.
There are reports that describe signs of neurogenesis in other

regions of the healthy adult brain than those described here. In the
hypothalamus of mice, for example, neurogenesis continues for one
month after birth, but not longer (Robins et al., 2013). Many other
regions have been suggested to be neurogenic, but such reports
have, in general, not stood the test of time (Kempermann, 2011).

Regional differences in the astrocyte phenotype
The brain regions discussed above – the subventricular zone and
dentate gyrus, the striatum and the neocortex – all contain astrocytes
with an intrinsic ability to produce neurons but the actual rates of
neurogenesis vary dramatically between regions. In the
subventricular zone and dentate gyrus, neurogenesis occurs
continuously; in the striatum, mostly after certain injuries; and in
the neocortex, maybe never. These differences are likely to be partly
explained by cell-intrinsic differences, although the capacity of the
surrounding environment to support neurogenesis could be equally
important. This has been demonstrated by transplantation
experiments, where cells isolated from typically neurogenic, as
well as non-neurogenic regions, can generate neurons when
transplanted to the neurogenic niches (Gage et al., 1995;
Shihabuddin et al., 2000; Lie et al., 2002). When transplanted to
the striatum, too, adult neural precursor cells have been found to
generate a small amount of neurons in some studies (Zhang et al.,
2003; Lim et al., 2000; Herrera et al., 1999) but not in others
(Seidenfaden et al., 2006).When transplanted to the neocortex, such
cells appear to generate only glia (Herrera et al., 1999).
Interestingly, however, if the transplanted neural precursor cells
are derived from embryos instead of adults, both the striatum and
cortex appear to be more permissive to neuronal differentiation
(Martínez-Cerdeño et al., 2010; Gaillard et al., 2007). Experiments
like these demonstrate that the local environment has a crucial role

in mediating neurogenesis, although how this is achieved and the
extent to which it relies on cell-intrinsic properties of the neurogenic
cells remains unclear.

Intrinsic similarities and differences between parenchymal astrocytes
and adult neural stem cells
The astrocytic identity of adult neural stem cells is demonstrated by
the features they share with astrocytes in the brain parenchyma.
Neural stem cells express astrocyte-specific genes such as GFAP,
CX30 and GLAST (also known as SLC1A3) (Götz et al., 2015;
Magnusson et al., 2014), they have astrocytic ultrastructure as seen
in the electron microscope (Doetsch et al., 1997; Seri et al., 2001)
and they also share electrophysiological features, such as low input
resistance and highly negative resting membrane potential (Fukuda
et al., 2003). As suggested by RNA sequencing data, metabolic
characteristics, such as high glycolytic activity (Llorens-Bobadilla
et al., 2015), might also be a shared feature of neural stem cells and
parenchymal astrocytes (Fig. 3). As mentioned, the similarities
between parenchymal astrocytes and neural stem cells even extend
to an intrinsic capacity of parenchymal astrocytes to generate
neurons, at least when it comes to striatal astrocytes in vivo
(Magnusson et al., 2014; Nato et al., 2015; Duan et al., 2015;
Luzzati et al., 2014) and cortical astrocytes when isolated and
cultured in vitro (Buffo et al., 2008; Shimada et al., 2012; Sirko
et al., 2013). But the relatedness between the two cell types might go
even further than that. A recent study analyzed single-cell RNA-
sequencing data from adult neural stem cells in the mouse
subventricular zone and parenchymal astrocytes from the striatum
and somatosensory cortex. This analysis showed that there might in
fact not be a distinct line separating neural stem cells and
parenchymal astrocytes, but rather a continuum that goes from
parenchymal astrocytes, through quiescent stem cells, to activated
stem cells (Llorens-Bobadilla et al., 2015). Some differences could,
however, be found between the parenchymal astrocytes and the
neural stem cells in this study. Genes enriched in neural stem cells
compared with parenchymal astrocytes included Cd9, Cd81, Thbs4
and Rarres2. Previously, prominin-1 (CD133) was identified as
another selective marker that could be used to isolate adult neural
stem cells (Beckervordersandforth et al., 2010; Walker et al., 2013).
There are also morphological differences: the adult neural stem cells
do not have the branched, bushy morphology of parenchymal
astrocytes; in the dentate gyrus they instead display a radial
projection (Seri et al., 2001) and in the subventricular zone they
extend a basal process and an apical cilium to contact a blood vessel
and the lateral ventricle, respectively (Mirzadeh et al., 2008).

The similarities and differences between parenchymal astrocytes
and adult neural stem cells might be partly explained by their origin.
During fetal development, both cell types are produced by radial glial
cells, fromwhich they retainmany shared features (Götz et al., 2015).
Regional differences in the radial glia lead to regional differences in
the adult neural stem cells they produce (Merkle et al., 2007).
Parenchymal astrocytes are also generated region by region (Tsai
et al., 2012), but the extent to which this process leads to regional
differences among parenchymal astrocytes is not known. For
example, it is not known whether it contributes to differences in
the intrinsic neurogenic capacity of striatal and cortical astrocytes.

As a matter of fact, not much is known about the general
heterogeneity of parenchymal astrocytes within different brain
regions. Certainly, diversity does exist: there are morphological
differences between parenchymal astrocytes – for example, between
those in white and gray matter (Molofsky and Deneen, 2015).
Behavioral differences exist, too. For instance, live imaging of

Box 1. Are rodent astrocytes a good model for human
astrocytes?
It is not known whether rodent astrocytes are a good model for human
astrocytes. The complexity of glial cells appears to increase with brain
evolution (Hartline, 2011). Human astrocytes are around 17 times larger
than mouse astrocytes and are more variable in form (Oberheim et al.,
2009). A recent study found that human astrocytes respond to glutamate,
whereas mouse astrocytes do not (Zhang et al., 2016). Human
astrocytes even appear to function better: amazingly, human glial
precursors have been transplanted to themouse brain and been found to
increase the cognitive capacity of the recipient mice (Han et al., 2013).
Whether the increased complexity of human astrocytes comes with a
difference in neurogenic capacity is not known, and the literature is
ambiguous. Some studies report that cells from the human cortex can be
isolated and form neurons when stimulated by growth factors in vitro
(Palmer and Gage, 2001; Arsenijevic et al., 2001), whereas others report
that they cannot (Kirschenbaum et al., 1994; Sanai and Alvarez-Buylla,
2004). The reason for this discrepancy is not known but could be related
to differences in culturing protocol or post mortem time.
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astrocytes after acute stab injury in the mouse somatosensory cortex
revealed that different astrocytes reacted to injury in distinct ways
(Bardehle et al., 2013). Despite such variety, recent studies suggest
that parenchymal astrocytes are, in fact, a surprisingly
homogeneous population. One single-cell RNA-sequencing
analysis of cells from the somatosensory cortex and hippocampus
in mice identified only two astrocyte subpopulations, whereas it
detected 29 different populations of neurons (Zeisel et al., 2015).
This small number of astrocyte subpopulations was confirmed
in the study by Llorens-Bobadilla and colleagues, whose RNA-
sequencing study even seemed to suggest that astrocytes in the
cortex and striatummight be similar to one another, as they clustered
closely together in a principal-component analysis (Llorens-
Bobadilla et al., 2015). Intriguingly, a recent study showed that
neurons control many properties of astrocytes by local release of
Sonic hedgehog (Farmer et al., 2016). Studies like these suggest that
many differences between astrocytes, including their neurogenic
capacity, has more to do with differences in extracellular signals
than with cell-intrinsic heterogeneity.

The extracellular environment of neural stem cells and parenchymal
astrocytes
The transplantation studies mentioned above, where cells from both
normally neurogenic and non-neurogenic regions produce neurons
in some brain regions but not in others, undermine the notion of
‘stemness’ as an intrinsic and permanent cell feature. Indeed, it is
well known that the very concept of stemness cannot be discussed
outside the context of a cell’s environment – its niche. In the
subventricular zone and dentate gyrus, the stem cell niche consists
of growth factors and neurotrophins, a highly organized vasculature
and extracellular matrix, ependymal cells, neurons, immune cells,
astrocytes and the stem cells themselves (Ihrie and Álvarez-Buylla,
2011; Aimone et al., 2014). In parenchymal astrocytes, too,
neurogenic properties seem to be dependent on environmental
factors, many of which are the same as in the neurogenic niches.
These include Notch signaling (Imayoshi and Kageyama, 2011;
Magnusson et al., 2014), bone morphogenetic protein (BMP)
signaling (Mira et al., 2010; Lim et al., 2000; Niu et al., 2013) and
contact with blood vessels (Bardehle et al., 2013).

The processes by which this barrage of signals interacts with stem
cells are extremely complex. Conceptually, however, the purpose of
the niche is to connect the inside of a cell to its environment through
receptors and to support or maintain the cell’s identity. How can cell
identity be understood mechanistically? And thus, how might it be
possible for an astrocyte to activate latent neurogenic properties?

Cellular and molecular mechanisms underlying the
neurogenic potential of astrocytes
Cell identity is maintained by transcriptional networks
At the most fundamental level, cells can be defined by the genes
they express. During cell differentiation, many transcription factors
interact to build up a self-sustaining network that gives the cell its
properties and locks its identity in place (Sorrells and Johnson,
2015; Holmberg and Perlmann, 2012). Such a transcriptional
network is established sequentially: early sets of transcription
factors activate, and are often replaced by later sets, which, in turn,
activate still later sets, and so on. In mouse olfactory neuron
progenitors, for example, Ascl1 expression is followed by Ngn1
expression, which is then followed by expression of Neurod1
(Ernsberger, 2015). As differentiation proceeds, transcription
factors that specify competing lineages are repressed (Imayoshi
and Kageyama, 2014; Graf and Enver, 2009). The end product, a
differentiated cell, is constructed by a final transcriptional network
that is stabilized by self-regulating interactions of its component
factors (Hobert, 2008). In this way, the transcriptional networks that
define cell identity might be seen as stable states – each acting as an
attractor towards which the less-stable transcriptional networks
within immature cells will gravitate (Graf and Enver, 2009;
Holmberg and Perlmann, 2012).

Transcription factors that are important during differentiation
often remain expressed in the mature cell (Hobert, 2008). A cell can
be vulnerable to perturbations of such important factors and even
single gene deletions can cause it to switch into a different but
related cell type. For instance, ablation of Prox1 in lymphatic
endothelial cells leads to transdifferentiation into blood endothelial
cells (Johnson et al., 2008). Similarly, ovary cells are reprogrammed
to testis cells, and vice versa, by the deletion of Foxl2 or Dmrt1,
respectively (Uhlenhaut et al., 2009; Matson et al., 2011).

Marker profile
e.g. GLAST, GLT1, CX43

Ultrastructure
e.g. light cytoplasm,
irregular contours

Quiescence
May spend long
 periods without

dividing

Intrinsic 
neurogenic 

capacity
Displayed in vivo

or in vitro

Metabolism
e.g. high glycolytic activity

Electrophysiology
e.g. low input resistance,
highly negative resting 
membrane potential

Astrocyte Neural
stem cell

Fig. 3. Shared features of parenchymal astrocytes and
adult neural stem cells. Parenchymal astrocytes and
adult neural stem cells share a number of features,
including (clockwise from top) marker profile (Götz et al.,
2015) and ultrastructural characteristics (Doetsch et al.,
1997), as well as electrophysiological (Fukuda et al.,
2003) and metabolic properties, the latter being largely
inferred from single-cell RNA-sequencing studies
(Llorens-Bobadilla et al., 2015). Both parenchymal
astrocytes and neural stem cells have an intrinsic capacity
to generate neurons, although this capacity is latent in
parenchymal astrocytes. Adult neural stem cells
continuously produce neurons (at least when considered
on the population level), but individual stem cells, like
parenchymal astrocytes, might spend long time periods in
quiescence (Fuentealba et al., 2015; Furutachi et al.,
2015).
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Surprisingly, however, there are some cases where deletion of a
gene that is crucial for the development of a particular cell type has
little effect in the differentiated cell. For example, even though
knockout of the transcription factors Pet1 or Lmx1b in serotonergic
neurons during early differentiation causes a loss of this cell type
(Cheng et al., 2003; Ding et al., 2003), ablation of either factor in
fully differentiated serotonergic neurons causes only mild
abnormalities (Song et al., 2011; Liu et al., 2010). One
explanation for this phenomenon might be that redundant factors
act to stabilize transcriptional networks during differentiation. Such
a mechanism would benefit cells where phenotypic stability is
required for an entire lifetime, such as neurons. In these cells,
redundancies could act like buttresses that make the transcriptional
network resistant to perturbations.
Robust phenotypic stability is essential for some cells, but in

other cell types, maintaining a certain degree of plasticity might be
more important. In such cases, it might be that unstable
transcriptional networks represent a ‘deliberate’ mechanism of
plasticity (Holmberg and Perlmann, 2012). In such cells,
perturbations of a single key gene or signaling pathway might be
enough to throw their transcriptional network into flux and force it
toward the closest attractor state. Mechanistically, this would be
similar to reprogramming to induced pluripotent stem cells, where
an initially stochastic phase is followed by a highly orchestrated
establishment of cell fate (Buganim et al., 2013). It has been
proposed that cellular plasticity should be viewed as a metastable
state, in which cells co-express two or more mutually repressive
transcriptional networks (Graf and Enver, 2009). Such cells would
be balanced on the edge between two competing networks, ready to
execute an identity switch if triggered by small perturbations. In the
brain, one cell type that could potentially be set up in such a way are
astrocytes, because it has already been shown that injuries can
trigger at least some astrocytes to turn on a neurogenic program
(Magnusson et al., 2014).
Similar cell types share similar transcriptional networks (Neph

et al., 2012). Astrocytes and adult neural stem cells share many
attributes, which might be why small perturbations are enough to
nudge some astrocytes into behaving like neural stem cells. The
question is: how do striatal astrocytes orchestrate this identity switch
and could astrocytes in other regions also be instructed to do this?
To approach this question, we look at studies where glial cells have
been reprogrammed in vivo. These experiments suggest that glia can
be forced to produce neurons in two fundamentally different ways:
through direct transdifferentiation or via a transient progenitor state.

Making neurons: direct transdifferentiation versus activation of a
progenitor state
A number of studies show that overexpression of key transcription
factors can force astrocytes and NG2 glia to transdifferentiate into
neurons in vivo (Guo et al., 2014; Heinrich et al., 2010, 2014; Liu
et al., 2015; Su et al., 2014). The reprogramming factors used are
often chosen for their important roles in neuronal differentiation
during brain development. For instance, Ascl1 is a pioneer factor
that makes chromatin more accessible (Raposo et al., 2015),
allowing additional transcription factors to access relevant
promoters (Wapinski et al., 2013). Such additional factors, such
as Brn2, Myt1l, Zfp238, Ngn2, NeuroD1, Pax6 and Dlx2, are
expressed during normal neuronal differentiation and specify a
broad neuronal identity (Wapinski et al., 2013; Guo et al., 2014;
Pang et al., 2011; Heins et al., 2002; Grande et al., 2013; Heinrich
et al., 2010). Theywork by superimposing a neuronal transcriptional
network on to that of the starting cell, leading to transdifferentiation

within a few days. Although direct transdifferentiation is a powerful
approach, it occurs through mechanisms that are different to those
during normal differentiation (Péron and Berninger, 2015;
Holmberg and Perlmann, 2012). It is also different to the way
astrocytes produce neurons after stroke, which happens via
proliferative intermediate cells (Magnusson et al., 2014).
Transdifferentiation does not require cell division (Di Tullio and
Graf, 2012), which means that each generated neuron consumes one
starting cell. Clearly then, converting glia into neurons will disrupt
the ratio of glia to neurons, which is roughly 4:1 in the human cortex
(Lent et al., 2012). It is not known what the functional effect of this
would be, but it is likely that an appropriate ratio of glia to neurons is
required for proper neural circuit function and an aberrant ratio
might be implicated in many neurodevelopmental disorders (Sloan
and Barres, 2014). An attractive alternative then, is to generate many
neurons from a single starting cell, which would involve the creation
of a transient, proliferative progenitor cell type.

Instead of direct transdifferentiation, some single-gene
manipulations can cause cells to dedifferentiate to a multipotent
intermediate state. In the hematopoietic lineage, deletion of Pax5
in committed pro-B cells, or GATA2 in mast cells, activates a
multipotent phenotype (Mikkola et al., 2002; Ohmori et al., 2015).
In the mouse brain, deletion of the Notch mediator Rbpj or
overexpression of Sox2 activates a proliferative neurogenic state in
astrocytes in the striatum, and in the case of deletion of Rbpj, also in
a narrow band along the medial cortex (Fig. 2) (Magnusson et al.,
2014; Niu et al., 2013). This artificially induced neurogenesis
appears to be indistinguishable from how striatal astrocytes generate
neurons after stroke – a process that is indeed triggered by
downregulation of Notch (Magnusson et al., 2014). When activated,
a neurogenic astrocyte undergoes a proliferative burst to produce
30-40 neuroblasts (Magnusson et al., 2014). This means that
astrocytes could, in theory, produce many neurons without being
completely depleted in the process, at least within the striatum. But
what would it take to activate a similar neurogenic program in
astrocytes outside the striatum and medial cortex? To approach an
answer to this question, we will look to how this process occurs in
striatal astrocytes in order to understand how the latent neurogenic
program of astrocytes is regulated.

Striatal neurogenesis might occur through the activation of a
repressed transcriptional program
The stages through which deletion of Rbpj and overexpression of
Sox2 stimulate the generation of neurons from striatal astrocytes
appear identical. In both cases, astrocytes start proliferating after
2-3 weeks and generate clusters of Ascl1-positive transit-
amplifying cells and DCX-positive neuroblasts. It might seem
strange that two such different manipulations should trigger these
indistinguishable results. However, if one considers that quiescent
stem cells are defined by two competing transcriptional networks,
it makes sense. Within this paradigm, a cell-identity switch can
happen either if the current transcriptional network is destabilized
or if the competing network is stabilized. Rbpj deletion and Sox2
overexpression might illustrate these very two situations (Fig. 4).
Notch signaling promotes astrocyte differentiation, partly through
suppression of Ascl1, which regulates a large proportion of
neurogenic genes (Llorens-Bobadilla et al., 2015; Andersen et al.,
2014; Kanski et al., 2014). Notch then remains active in
differentiated astrocytes (Magnusson et al., 2014). Given the
central role of Notch in regulating cell fate decisions in many
different contexts (Artavanis-Tsakonas et al., 1999), it is tempting
to postulate that, in striatal astrocytes, it could be acting as a node

1080

REVIEW Development (2016) 143, 1075-1086 doi:10.1242/dev.133975

D
E
V
E
LO

P
M

E
N
T



around which two competing transcriptional networks can pivot. If
this were true, then Rbpj deletion or stroke-induced
downregulation of Notch might destabilize the astrocytic
network so much that the competing neurogenic network gains
the upper hand. As the Notch-mediated repression of Ascl1 is
lifted, Ascl1 reaches levels where it is capable of triggering a self-
sustaining feed-forward induction of the neurogenic network.
Newly expressed neurogenic factors, in turn, engage in cross-
repression of the astrocytic network, and the net effect of these
two mechanisms is enough to cause a stable cell-identity switch
from astrocyte to neural progenitor. Whereas deletion of Rbpj
might promote neurogenesis by destabilizing the astrocytic
network, Sox2 could work by stabilizing the neurogenic
network. This stem cell-associated transcription factor primes
neurogenic genes for activation (Amador-Arjona et al., 2015). In
striatal astrocytes, Sox2 could be a crucial component of the latent
neurogenic transcriptional network and, although it is expressed in
parenchymal astrocytes, Sox2 acts in a dose-dependent manner in
neural stem cells (Hagey and Muhr, 2014). Overexpression could
be what it takes to stabilize the neurogenic network enough to
repress the astrocytic network and initiate neurogenesis.
From this perspective, the activation of a latent neurogenic

program can be understood as the sudden switch to a repressed
transcriptional network. This paradigm presents several predictions.
First, although Rbpj and Sox2 have been shown to serve as
important ‘switches’ (Magnusson et al., 2014; Niu et al., 2013), any
gene that is important for stabilizing an astrocytic or neurogenic
transcriptional network could be manipulated to achieve the same
result. Candidates for such genes could be those that are important
for instructing the astrocyte phenotype, such as components of the
BMP, Sonic hedgehog and peroxisome proliferator-activated
receptor (PPAR) signaling pathways (Cahoy et al., 2008;
Michelucci et al., 2015; Gallo and Deneen, 2014). Second,
although irreversible genetic manipulations have been used to
activate a latent neurogenic program (Magnusson et al., 2014; Niu

et al., 2013), it should be possible to achieve a stable cell-identity
switch using only transient interventions; for example, treatment
with pharmaceutical compounds. Once an identity switch has
occurred, feed-forward and cross-repressive mechanisms should
operate to make the new network stable, provided that the
environment is permissive. This has been conceptually
demonstrated in the lung, where transient Notch manipulation
leads to permanent transdifferentiation of club cells to ciliated cells
(Lafkas et al., 2015). A similar process is likely to occur when Notch
signaling in astrocytes is reduced in response to stroke (Magnusson
et al., 2014). Third, astrocytes that are governed by a highly
redundant transcriptional network would be more resistant to
phenotypic change than thosewith relatively low redundancy. If this
is true, it might explain why deletion of Rbpj did not activate a
neurogenic program in astrocytes outside the striatum and medial
cortex (Magnusson et al., 2014). In other words, the lack of
neurogenesis in other regions is not necessarily because astrocytes
outside these regions lack an intrinsic neurogenic capacity (Buffo
et al., 2008; Sirko et al., 2013) but rather because their identity
might be supported by redundant signaling pathways, which would
require more than a single perturbation to disrupt. Identifying and
targeting additional pathways for manipulation may break through
this network redundancy and trigger neurogenesis from these
astrocytes.

A question of quiescence
Quiescence is a reversible cell cycle arrest where cells are poised
to rapidly re-enter the cell cycle in response to environmental
cues. For example, satellite cells in muscle, and astrocytes in the
striatum, react to certain injuries by initiating division within a few
days (Ogawa et al., 2015; Magnusson et al., 2014). The genes and
pathways that regulate the quiescent state are different in different
tissues. This is probably because evolution uses whatever
signaling pathways happen to be at hand and rewires them into
new functional circuits (Kashtan and Alon, 2005; Milo et al.,
2002). For instance, Notch signaling promotes quiescence in
muscle satellite cells and striatal astrocytes (Dumont et al., 2015;
Magnusson et al., 2014), but is not required for hematopoietic
stem cell maintenance (Maillard et al., 2008), and even promotes
exit from quiescence in interfollicular epidermis and hair follicles
(Estrach et al., 2008; Williams et al., 2011). Even so, it appears
that quiescent stem cells throughout the body share some common
features, including low rates of metabolism, low levels of protein
synthesis and expression of negative regulators of cell division,
although for neural stem cells, the low metabolic state is largely
inferred from RNA-sequencing data (Cheung and Rando, 2013;
Llorens-Bobadilla et al., 2015; Shin et al., 2015; Furutachi et al.,
2015).

Activation from quiescence
Quiescent stem cells must respond quickly to injuries and therefore
monitor environmental signals closely. Muscle stem cells, for
instance, appear ‘highly strung’ in that even distant injuries prompt
them to enter into an alert state in which they are poised for
activation (Rodgers et al., 2014). This is useful, because the first cell
division after activation takes a particularly long time to complete
(Siegel et al., 2011). In parenchymal astrocytes, too, injury signals
regulate the exit from quiescence (Bardehle et al., 2013). And in
addition, these signals modulate the intrinsic neurogenic capacity of
these cells (Sirko et al., 2015; Michelucci et al., 2015). In striatal
astrocytes, the latent neurogenic program is governed by Notch
signaling (Magnusson et al., 2014). In addition to Notch, however,

Proneural genes

Receptor

Fig. 4. A conceptual model of the mechanisms regulating neurogenesis
in parenchymal astrocytes. In a hypothetical and simplified model, proneural
genes (blue) in astrocytes are regulated by activators (green) and repressors
(red), which in addition repress each other. Depending on which regulators are
stronger, proneural genes are either suppressed or expressed. The regulators
can themselves be regulated by signals from the extracellular environment
(orange). In striatal astrocytes, decreased Notch signaling or Sox2
overexpression can activate proneural genes, but in non-striatal astrocytes,
proneural genes might also be additionally repressed by redundant, stabilizing
regulators (pink) that prevent activation of neurogenesis.
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other injury signals appear to be acting synergistically to bring out
this neurogenic capacity. After deletion of Rbpj in the uninjured
mouse brain, most astrocyte-derived neuroblasts appeared in the
medial striatum (Magnusson et al., 2014). But a small injury caused
by a needle insertion was enough to elicit the response by Rbpj-
deficient astrocytes in the lateral striatum. It is very interesting to
speculate that some striatal astrocytes had been ‘primed’ for
neurogenesis by Notch inactivation, but that an additional push,
such as the exit from quiescence promoted by injury signals, was
necessary to initiate neurogenesis. Intriguingly, however, reactive
astrogliosis, an astrocyte response to injury, is not a prerequisite for
activation of the neurogenic program. In the uninjured striatum,
Rbpj-deficient astrocytes entered the neurogenic program without
any signs of reactive astrogliosis, such as GFAP expression or
hypertrophy (Magnusson et al., 2014). Even after stroke, some
Ascl1-positive astrocytes lacked signs of reactive astrogliosis,
whereas others were reactive. Conversely, of all reactive astrocytes
after stroke, only a minority expressed Ascl1. This shows that the
transcriptional programs that govern reactive astrogliosis and
neurogenesis in striatal astrocytes are not necessarily coupled,
although they seem to be mutually compatible. It could therefore, in
theory, be possible to modulate these two programs separately in
order to strike the right balance between astrocyte-mediated scarring
and neurogenesis.
The mechanisms by which environmental signals regulate

activation from quiescence are likely to be complex. A multitude
of environmental inputs feed into intracellular signaling circuits that
compute an output – in this case whether or not to remain quiescent.
Reductionist experimental approaches with single-gene deletion or
overexpression do not recreate this fine-tuned complexity, but are
beginning to carve out some of the major signaling pathways
involved. Notch and BMP are two important pathways in neural
stem cells (Mira et al., 2010; Imayoshi and Kageyama, 2011;
Magnusson et al., 2014; Niu et al., 2013; Lim et al., 2000). Another
important player is Sonic hedgehog, which is present in the
cerebrospinal fluid after invasive injury. This signaling molecule
also activates the neurogenic properties of astrocytes in vitro (Sirko
et al., 2013), perhaps by interacting with the Notch pathway (Kong
et al., 2015). Galectins are another example, because they have been
shown to be important for proliferation of reactive astrocytes (Sirko
et al., 2015). The single-cell RNA-sequencing study by Llorens-
Bobadilla et al. identified, among others, Sox9, Id2 and Id3, as
genes characteristic of the quiescent state in neural stem cells,
whereas the activated state was found to be associated with the
expression of Egr1, Fos, Sox4, Sox11 and Ascl1 (Llorens-Bobadilla
et al., 2015).
After initiation of neurogenesis, the later stages of neuronal

maturation also require permissive environmental signals. Indeed,
ectopic neuroblasts often die or mature into glia in the brain
parenchyma (Arvidsson et al., 2002; Li et al., 2010). Furthermore,
despite the appearance of thousands of striatal neuroblasts after
stroke, only a small percentage of them survive as neurons in rodents
(Magnusson et al., 2014; Arvidsson et al., 2002). In the dentate
gyrus and olfactory bulb, that number is around 50% (Dayer et al.,
2003; Petreanu and Alvarez-Buylla, 2002). Even worse is the
maturation capacity in the medial cortex, where neuroblasts
generated by Rbpj-deficient astrocytes do not develop even
beyond a tightly packed cluster stage (Magnusson et al., 2014).
Neuronal differentiation can, however, be improved by supplying
signals that promote neuronal maturation (e.g. BDNF or histone
deacetylase inhibitors) or inhibit glial differentiation (e.g. the BMP
antagonist Noggin) (Niu et al., 2013; Lim et al., 2000). Overcoming

the anti-neurogenic environment is one of the biggest hurdles on the
way towards regenerative therapies in the brain.

It is not known whether striatal astrocytes can re-enter quiescence
after having activated their neurogenic program, or if they are
irreversibly consumed by this process. As mentioned previously, it
is not clear whether all adult neural stem cells exhaust their stem cell
potential after a few rounds of division (Encinas et al., 2011;
Calzolari et al., 2015), or whether somemight be able to go back to a
quiescent state (Bonaguidi et al., 2011). In muscle, environmental
signals can make satellite cells re-enter quiescence after being
activated. This re-entry process depends on a reactivation of the
Notch signaling pathway (Kuang et al., 2007). Because the latent
neurogenic potential of striatal astrocytes is triggered by a
downregulation of Notch signaling, it is interesting to speculate
whether reactivation of Notch could return these astrocytes to the
quiescent state, from which they might be capable of being
reactivated over and over again.

Conclusions
All cells in the body share the same genetic information; therefore,
theoretically, every cell has the potential to change phenotype and
function at any point in time. And yet, for the most part, they do not.
Most cells secure their differentiated state with transcriptional
networks stabilized by redundancies and epigenetic modifications.
Even so, some differentiated cell types are particularly amenable to
cell cycle re-entry and activation of progenitor properties. These
quiescent stem cells have latent transcriptional networks that are
poised for activation, possibly held in check by ‘nodes’, which are
proteins vulnerable to fluctuations in environmental signals.
Relatively labile cell identities, such as astrocytes, have now
begun to be identified.

Neural stem cells in the subventricular zone and dentate gyrus are
specialized astrocytes that are quite clearly supported by a
transcriptional network that facilitates exit from quiescence and
subsequent neurogenesis. In the striatum, the transcriptional
network that underlies neurogenesis is latent and becomes
activated only after certain injuries. In most of the neocortex and
elsewhere, the intrinsic neurogenic potential of astrocytes remains
hidden and is seen only when cells are stimulated in vitro or
genetically manipulated in vivo. Thus, having the right
transcriptional network to enable neurogenesis is only part of the
mechanism underlying neurogenesis. As discussed in this Review,
the environment in which cells are located and the signals with
which they are presented following injury feed directly into this
network to either permit or block neurogenesis. Understanding what
these signals are, how they vary according to brain region and how
they integrate into the transcriptional network in order to control
neurogenesis will be an interesting challenge for the future.

Classical experimental approaches where one or a few genes are
overexpressed or deleted are very valuable for understanding the
role of individual genes in complex cellular processes such as
differentiation and stem cell maintenance. Recent work has
identified switching mechanisms that activate a latent neurogenic
program in striatal astrocytes (Magnusson et al., 2014; Niu et al.,
2013). Redundancies in the transcriptional network might be
contributing to increased phenotypic stability in astrocytes in other
regions. If it were possible to uncover these redundancies, then it
might be possible to destabilize the differentiated state and activate a
latent neurogenic program in many parts of the brain. Such an
advance would mark an important step toward the use of
endogenous glial cells as a reservoir for neurogenesis in the
injured brain. Today, with approaches such as single-cell RNA
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sequencing, we are beginning to learn howwhole transcriptomes are
regulated in the context of complex cellular behaviors. However, the
signaling networks that occur in nature have been generated by
natural selection – a process hypothesized to have generated
networks with many non-functional interactions and redundancies
(Sorrells and Johnson, 2015). Such functional and non-functional
complexity would make it difficult to extract the relevant
information from transcriptome data. We believe that although
these experimental approaches will continue to provide much
valuable information, important conceptual insights could also be
made by attempting to construct, from the bottom up, minimal
synthetic signaling networks capable of performing the same
computational tasks as those observed in nature (Bashor et al.,
2010). If we can construct the networks that govern complex
behaviors such as cell differentiation, surely we can then be said to
understand them, and in turn, begin to manipulate them towards
better outcomes for neuronal repair.
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