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Beryllium nitrate inhibits fibroblast migration to disrupt epimorphic
regeneration
Adam B. Cook and Ashley W. Seifert*

ABSTRACT
Epimorphic regeneration proceeds with or without formation of a
blastema, as observed for the limb and skin, respectively. Inhibition of
epimorphic regeneration provides a means to interrogate the cellular
andmolecular mechanisms that regulate it. In this study, we show that
exposing amputated limbs to beryllium nitrate disrupts blastema
formation and causes severe patterning defects in limb regeneration.
In contrast, exposing full-thickness skin wounds to beryllium only
causes a delay in skin regeneration. By transplanting full-thickness
skin from ubiquitous GFP-expressing axolotls to wild-type hosts, we
demonstrate that beryllium inhibits fibroblast migration during limb
and skin regeneration in vivo. Moreover, we show that beryllium also
inhibits cell migration in vitro using axolotl and human fibroblasts.
Interestingly, beryllium did not act as an immunostimulatory agent as
it does in Anurans and mammals, nor did it affect keratinocyte
migration, proliferation or re-epithelialization, suggesting that the
effect of beryllium is cell type-specific. While we did not detect an
increase in cell death during regeneration in response to beryllium, it
did disrupt cell proliferation in mesenchymal cells. Taken together,
our data show that normal blastema organogenesis cannot occur
without timely infiltration of local fibroblasts and highlights the
importance of positional information to instruct pattern formation
during regeneration. In contrast, non-blastemal-based skin
regeneration can occur despite early inhibition of fibroblast
migration and cell proliferation.
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INTRODUCTION
Urodeles (salamanders and newts) are unique among tetrapods for
their almost limitless ability to regenerate complex tissues and
organs, including an entire limb (Butler and Ward, 1967; Wallace,
1981; Eguchi et al., 2011). Amazingly, this ability is not restricted to
a single regeneration event, as repeated bouts of newt limb
amputation continuously produce new limbs (Spallanzani, 1769).
This example underscores the robust nature of regeneration and
hints at the importance of local cells to continually divide and
supply the raw material to faithfully restore a functional appendage.
Limb regeneration in Urodeles represents an example of blastemal-
based epimorphic regeneration whereby cells aggregate at the injury
site to form a blastema, a transient mass of lineage-restricted
progenitor cells that undergo proliferation, organogenesis and
growth (Morgan, 1901; Chalkley, 1954; Endo et al., 2004; Kragl

et al., 2009). Correct blastema patterning and growth are absolutely
required for successful regeneration following amputation. In
contrast, skin regeneration does not appear to require a blastemal
intermediate (Seifert et al., 2012; Seifert andMaden, 2014). Instead,
local fibroblasts migrate into the wound bed, undergo some
proliferation and secrete an extracellular matrix (ECM) that
directly remodels into the new dermis as the epidermis
regenerates and makes new glands (Seifert et al., 2012).

Despite the robust nature of epimorphic regeneration, there are
four classically defined methods to inhibit appendage regeneration:
(1) severing the nerve supply, (2) removing or replacing the wound
epidermis, (3) disrupting positional information and (4) inhibiting
proliferation. There is a large body of literature documenting the
requirement for nerves during regeneration (reviewed in Singer,
1952; Stocum, 2011). These studies have shown that when nerves
are severed prior to limb amputation, a blastema fails to develop and
regeneration does not occur (Todd, 1823; Schotté and Butler, 1941;
Singer, 1951; Brockes, 1987). The effect of denervation, however,
is not permanent since axons regrow into the limb stump a short
time after the procedure and re-amputation of this previously
denervated limb will lead to normal regeneration (Salley and
Tassava, 1981). Innervation is required during blastema formation
to promote the formation of a functional wound epidermis that
secretes mitogenic factors to stimulate blastemal cell proliferation
(Globus and Vethamany-Globus, 1977; Globus et al., 1980). Once
the blastema reaches a critical mass, a neurotrophic factor is still
required to maintain cellular mitosis until cell differentiation begins
(Singer, 1952). The importance of the wound epidermis has been
revealed through numerous studies showing that its removal,
replacement or irradiation inhibits regeneration (Stocum and
Dearlove, 1972; Mescher, 1976; Lheureux and Carey, 1987).

Dermal fibroblasts play a fundamental role during blastema
formation and contain essential patterning information required for
limb regeneration (Lheureux, 1975a,b, 1977; Muneoka et al., 1986;
Bryant and Gardiner, 1989; Satoh et al., 2007). Following an injury
and peak inflammatory response, fibroblasts migrate to the wound
site, interact locally (with each other and inflammatory cells) and
begin depositing ECM to support regeneration (Onda et al., 1990;
Calve et al., 2010; Seifert et al., 2012). The interaction of cells from
different positions (i.e. dorsal, ventral, anterior, posterior) is
required for proper blastema formation (Carlson, 1974; Lheureux,
1975a,b; Stocum, 1978; Kim and Stocum, 1986; Ludolph et al.,
1990). Migration of cells with intact positional information
stimulates proliferation and organogenesis of the new limb.
Creating abnormal dorsal-ventral or anterior-posterior interactions
can cause aberrations in regeneration, ranging from supernumerary
limbs to the complete inhibition of regeneration (Lheureux, 1975a,
1977; Bryant, 1976; Maden, 1983; Slack, 1983).

In addition to the nervous control of cell proliferation, irradiation
and various chemical and molecular inhibitors have been used to
demonstrate that cell proliferation is required during epimorphicReceived 7 January 2016; Accepted 12 August 2016
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regeneration in Urodeles (Thornton, 1943; Singer et al., 1956;
Sobell, 1985; Singh et al., 2012). The inhibitory effects of
irradiation on appendage regeneration have been well documented
(Maden and Wallace, 1976). Irradiation of an uninjured limb such
that mesenchymal cells (along with epidermal cells) are exposed
followed by amputation completely inhibits regeneration (Maden
and Wallace, 1976). Thornton (1943) demonstrated that colchicine
can inhibit limb regeneration in larval salamanders, and this was
later shown to result from colchicine-induced nerve damage and
inhibited cellular proliferation (Singer et al., 1956). More recently, it
was shown that cyclopamine inhibition of hedgehog signaling
during newt limb regeneration reduces blastemal cell proliferation,
which causes severe patterning defects (Singh et al., 2012).
In 1949, C. S. Thornton demonstrated that briefly exposing

freshly amputated limbs to the alkaline earth metal beryllium,
completely inhibits limb regeneration in larval marbled salamanders
(Ambystoma opacum) whereas the contralateral limb regenerates
normally (Thornton, 1949). Beryllium is the only alkali or alkaline
earth metal that specifically inhibits regeneration without disrupting
normal physiological function (Needham, 1941). A recent study
using Xenopus suggests that beryllium acts as a potentiator of
inflammation to inhibit larval limb regeneration in Anurans, while
another study suggests that beryllium inhibits limb regeneration
by antagonizing the PIP3 inositol pathway and subsequent
proliferation (Tsonis et al., 1991; Mescher et al., 2013). Here, we
investigate how beryllium inhibits blastema-based regeneration
using axolotl (Ambystoma mexicanum) limb amputation as a model
system. In addition, we also test the hypothesis that beryllium
similarly affects blastema-independent regeneration using a full-
thickness excisional skin wound model (Seifert et al., 2012).

RESULTS
In order to investigate the effect of beryllium on regenerative ability,
we first sought to replicate previous experiments showing that a
short exposure to beryllium completely inhibits limb regeneration
(Thornton, 1949, 1950, 1951). Replicating the originally published
parameters and substituting juvenile axolotls (Ambystoma
mexicanum) for Ambystoma opacum larvae, we found that limb
regeneration was severely perturbed, but not completely inhibited in
response to beryllium nitrate (BeN) exposure (Fig. 1). Examining
control limbs after amputation, every animal formed a blastema and
ultimately regenerated a new limb (Fig. 1A-C). In contrast, BeN-
treated limbs formed a small edema at the amputation plane, which
persisted until control limbs had already formed digits (Fig. 1D).
Obvious blastema or cone stages were rarely observed by light
microscopy in treated limbs. Upon analyzing BeN treated limbs
98 days after injury (D98), we observed very small, mispatterned
limbs that were well-vascularized (Fig. 1E). By D200, some
melanocytes had migrated distally, but limbs remained
heteromorphic (Fig. 1F). We noted that melanocyte migration was
always disrupted distally (Fig. 1E,F). To more fully understand the
extent to which BeN affected patterning during regeneration we
analyzed skeletal preparations from control and treated limbs
(Fig. 1G-J and Table S1). While control limbs almost always
regenerated the complete compliment of amputated structures,
including stylopod, zeugopod and autopod, 94.7% of treated limbs
displayed patterning defects (Fig. 1G-I and Table S1). All treated
limbs, regardless of defect, were smaller compared with control
limbs and the patterning defects were more severe proximally in
∼70% of treated limbs (Fig. 1G-I and Table S1). Proximal defects
were associated with a stunted humerus, loss or fusion of the elbow
to the radius/ulna, loss or fusion or duplication of the radius and ulna

and altered carpal number (Fig. 1G-I and Table S1). Digit number
was also variable in BeN-treated limbs, ranging from 1 to 5 digits
(Fig. 1G-I and Table S1). We followed some animals for up to
2 years after BeN exposure and observed no adverse health effects,
supporting previous assertions that beryllium inhibited regeneration
locally, rather than altering whole organism physiology (Thornton,
1949).

In order to investigate how beryllium might inhibit non
blastemal-based regeneration, we turned to a full-thickness skin
wound. Our previous work showed that pedomorphic axolotls
completely regenerate a 4 mm full-thickness excisional skin wound
in 80 days (Seifert et al., 2012) and we observed a similar time
course during our experiments. We compared BeN-treated skin
wounds with control wounds and noted several important defects
(Fig. 2A-H). At D14, BeN-treated wounds showed a similar
response to BeN-treated limbs and were notable for a lack of
pigment cells migrating into the wound, persistent presence of
edema and increased wound size compared with the original wound
area (Fig. 2A,B). By D21, control wounds were significantly
smaller than BeN-treated wounds (9.93±0.91 mm2 and 28.77±
2.82 mm2, respectively; t=5.64, P<0.005) (Fig. 2I). In fact, wound
area in BeN-treated wounds had more than doubled compared with
the original wound area (original wound, 12.57 mm2; D21 BeN-
treated wound area, 28.77±2.82 mm2). Whereas the original wound
was difficult to visualize at D64 in control samples, treatment
wounds were still visible at this time point, but became harder to
detect by D80 (Fig. 2E-H). These results suggest that BeN exposure
inhibits wound contraction following injury.

In order to ascertain if beryllium affected re-epithelialization
during regeneration, we next examined the cellular structure of
healing wounds and found that keratinocytes re-epithelialized
treatment and control wounds in 24 h (Fig. 2J). A thin layer of
keratinocytes and Leydig cells covered all wounds within 24 h of
injury and wounding elicited a typical hemostatic response (Fig. 2J).
While blood cells were present in treatment and control wounds, a
large number of erythrocytes and plasma persisted in BeN-treated
wounds until D21 (Fig. 2B,D and Fig. 3). While we detected
collagen in control wounds beginning at D14, collagen deposition
was not detected in treatment wounds until after D21 (Fig. 3). In
D42 control wounds, the regenerating dermis began stratifying into
an upper stratum spongiosum and lower stratum compactum, and
new glands regenerating from the epidermis were evident (Fig. 3).
By D80, skin in control wounds had completely regenerated and
resembled unwounded skin (Fig. 3). In contrast, D42 BeN-treated
wounds developed a dense dermal ECM layer associated with the
basement membrane and no regenerating glands were present
(Fig. 3). Surprisingly, D80 wounds in BeN-treated skin resembled
D42 control wounds, whereby the collagen-rich dermal layer began
subdividing and new glands were evident descending from the
epidermis (Fig. 3). At D139, there was little noticeable difference
between treatment and control wounds. Together, these data
demonstrated that BeN exposure delayed, but did not inhibit skin
regeneration.

Our observation of reduced collagen deposition following BeN
treatment led us to ask whether other components of the extracellular
matrix (ECM) normally deposited during skin regeneration were
similarly affected (Seifert et al., 2012). Analyzing wound-bed tissue
at D14, we found that Fibronectin-1 (FN1) and Tenascin-C (TNC)
were deposited throughout the regenerating dermis (Fig. 4). We also
used Alcian Blue to show glycosaminoglycan (GAG) production,
which we detected throughout thewound bed in control skin (Fig. 4).
In contrast to control-treated wounds, FN1 and TNC were barely
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detectable in BeN-treatedwounds (Fig. 4). Similarly, GAGswere not
present in the wound bed of the treatment group at D14 (Fig. 4).
Together with our histological observations, these results indicate
that BeN inhibits ECM deposition (directly or indirectly) and this
is associated with a delay in the normal time course of skin
regeneration.
A lack of ECM production in BeN-treated wounds suggested

three hypotheses: (1) a persistent inflammatory response prevented
progression to a regenerative response; (2) fibroblasts were dying
and thus not able to produce new ECM; or (3) fibroblasts were not
migrating into the wound bed. We first tested if BeN treatment
increased cellular inflammation in the wound bed by assessing
leukocyte numbers using an antibody against L-plastin, a pan-
leukocytic marker (Jones et al., 1998; Seifert et al., 2012) (Fig. 5).

Calculating the percentage of L-plastin+ cells that infiltrated into the
wound bed following injury, we did not find significant differences
between BeN-treated and control wounds at any day examined: D3,
43.60±3.72% and 42.19±9.57%, t=0.14, P=0.8985; D7, 25.16±
7.05% and 37.72±6.28%, t=−2.13, P=0.0999; D10, 11.30±2.09%
and 16.77±4.49%, t=−1.95, P=0.1229 for treatment and control,
respectively) (Fig. 5A-D). We also examined leukocyte infiltration
past the amputation plane in control and BeN-treated limbs
(Fig. 5E-H). We counted L-plastin+ cells during late blastema
stage and cone stages, which was determined by the progression of
the contralateral untreated limb to these stages.We observed a small,
but significant decrease in L-plastin+ cells in BeN-treated versus
control regenerated tissue at the late blastema stage (4.63±0.80%
and 6.88±1.17%, respectively; t=−3.19, P=0.0333) (Fig. 5E,F).
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Fig. 1. BeN treatment disrupts blastema formation and alters patterning during axolotl limb regeneration. Amputated limbs treated with BeN were imaged
during regeneration alongside contralateral control limbs. (A,D) D24, control limbs showed normal differentiation of the digits, while BeN-treated limbs showed an
edema (red arrows) with no signs of blastema formation (D). (B) Untreated limbs had completely regenerated by 98 days. (E) D98 BeN-treated limbs exhibited
patterning defects and reduced melanocyte migration into the regenerate (red arrows). Compared with control limbs at D200 (C), BeN-treated limbs showed
permanent malformations including truncated proximal distal outgrowth, atypical digit formation and reducedmelanocyte numbers (F). (G-J) Skeletal preparations
of contralateral control (G) and treated limbs (H-J). Treated limbs showing spectrum of defects resulting from BeN treatment, where ∼70% of animals exhibited
more severe proximal malformations. Although at least one digit (roman numerals in G,J) formed in all treated limbs, 78.9% of treated animals had defects in the
elbow (H-J), fusions of the radius/ulna (H,J), duplications of the radius or ulna (I,J) and/or carpal malformation (H-J). For whole-mount images, data is
representative of n=5/group/day and for skeletal preparations n=19/group. h, humerus; r, radius; u, ulna. Scale bars: 1 mm.
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Although the percentage of L-plastin+ cells remained decreased at
the cone stage, it was not significantly lower (3.40±1.29% and
10.2±3.00%, respectively; t=−1.85, P=0.1620) (Fig. 5G,H).
These data clearly show that BeN does not stimulate increased
inflammatory cell influx into dorsal skin wounds or into
regenerating limb tissues, although erythrocytes and plasma
persist longer in the wound bed in BeN-treated wounds.
Dermal fibroblasts are the primary cell type involved in blastema

formation (Gardiner et al., 1986, Muneoka et al., 1986) and are
responsible for producing new ECM during limb and skin
regeneration (Gulati et al., 1983; Onda et al., 1990; Asahina et al.,
1999; Calve et al., 2010; Seifert et al., 2012). The relative absence of
ECM proteins in the wound bed of BeN-treated wounds suggested
that fibroblasts might be absent from the wound bed, either because
they failed to migrate into the wounds or because they failed to
survive after BeN exposure. In order to label and follow migrating
cells during regeneration, we took advantage of a transgenic axolotl
line in which all cells constitutively express GFP (Sobkow et al.,
2006). We transplanted full-thickness (epidermis and dermis) GFP+

dorsal skin onto wild-type (WT) host flanks (whose cells do not

express GFP), allowed the grafts to heal, and then made wounds in
the grafts to track cell migration into thewound bed (Fig. 6A-D). We
counted GFP+ cells at D14 when large numbers of fibroblasts are
normally observed in the wound bed and ECM molecules are
readily detectable (Figs 3 and 4).We found significantly more GFP+

cells in control compared with BeN-treated wounds (5.66±1.9%
and 0.33±0.11% GFP+ cells, respectively; t=−6.44, P<0.0001)
(Fig. 6B-D).

We also analyzed fibroblast migration into regenerating limbs by
grafting full-thickness posterior skin cuffs from GFP+ individuals
onto WT host forelimbs (Fig. 6E). After grafting, we allowed the
grafts to heal for 14 days, amputated the left limb through the center
of the GFP graft, treated this limb with BeN, then amputated the
right (control) limb and tracked GFP+ fibroblasts during limb
regeneration (Fig. 6F,G). After harvesting limbs at late blastema and
cone stages based on control limbs, we observed significant
migration of GFP+ fibroblasts out of the dermis, past the amputation
plane and towards the distal tip of the blastema (Fig. 6F). BeN-
treated limb equivalents showed some GFP+ cells deep within the
stump beneath the dermis in unwounded tissues; however, only a
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wounds were followed for 80 days. (A,C) Control wounds contracted during the first 21 days. (B,D) BeN-treated wounds expanded from initial biopsy area and
retained large numbers of blood cells through D21. Dotted circles show original wound area (C,D). (E,F) Pigment cell (iridophore) migration was reduced in
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Leydig cells. Data representative of n=5/group/day. WM, wound margin. Scale bars: 1 mm.
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few, loosely scattered GFP+ cells were present past the amputation
plane (Fig. 6G). To address the possibility that BeN treatment might
affect re-innervation and wound epidermis formation, we assessed
axon migration into control and BeN-treated wounds (Fig. S1). We
found labeled axons beneath the nascent blastema in BeN-treated
limbs as well as axons innervating the smaller blastemas at later time
points (and the wound epidermis) (Fig. S1). Lastly, we performed a
TUNEL assay on tissue harvested from control and BeN-treated
wounds at D1, D3 and D7 to test whether BeN treatment induced
cell death and found no significant difference between groups at any
time point (F=0.5668, P=0.5845) (Fig. 7A-C). Taken together, our
data show that BeN treatment primarily affects cell migration (either
directly or indirectly) and did not induce cell death within the
wound.
While our transplant experiment demonstrated that cells failed to

move into the wound bed, we could not rule out the possibility that
beryllium exposure might affect production of a chemotactic factor,
either from the epidermis or from other cells within the wound bed.
To directly test the effect of BeN on fibroblast cell migration, we
cultured axolotl AL1 cells (an axolotl fibroblast line) and exposed
them to three concentrations of BeN to determine a concentration
that did not induce cell death, thus mimicking our in vivo results (see
Materials and Methods). Based on these experiments we found that
10 mM BeN did not induce significant cell death in vitro. To assess
migratory ability of cultured cells, we created an in vitro wound
using a round sterile applicator in the center of each well of a 12-well

plate. Following cells every 24 h, we noted that control cells began
migrating into the in vitro wound on D2. By D14, large numbers of
control cells had migrated into the wound center (Fig. 8). In stark
contrast, by D14 we found that few BeN-treated fibroblasts had
migrated into the circular wound (Fig. 8). Because we conducted the
assay at ∼70-80% confluency, we assessed confluency outside the
scratch at D14 and found that cells were 100% confluent in control
and treatment groups, suggesting that BeN did not significantly
inhibit cell division (Fig. 8).

Based on our findings in salamanders, we were curious if
beryllium similarly affected mammalian cells and asked if BeN
treatment altered the migratory ability of human dermal fibroblast
(hADF) cells (Fig. 9). We performed the same in vitro assay as
above and followed hADF cells every 12 h because mammalian
cells divide much more quickly than axolotl cells (Fig. 9). Similar to
axolotl AL1 cells, we found that a 10 mM treatment with BeN
reduced cell migration into scratch wounds. Untreated hADF cells
successfully migrated and completely filled an in vitro wound by
96 h (Fig. 9). Few BeN-treated cells migrated into the scratched area
by 96 h and the area remained largely uninhabited by cells, even
15 days after treatment (Fig. 9 and data not shown). We also noted a
tendency of BeN-treated hADF cells to ball up (Fig. 9). Examining
cells outside the scratched areas, we noted that while control wells
reached 100% confluency, cells in treated wells remained at ∼70%
confluency, suggesting limited cell growth of mammalian cells
(Fig. 9).
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Although it appeared that AL1 fibroblasts continued growing
after BeN treatment, the failure to reach confluency in hADF cells
suggests that BeNmight affect cell cycle progression. Thus, we used
flow cytometry to calculate the relative fraction of cells in each
phase of the cell cycle and test if BeN disrupted cell cycle
progression. Following control or BeN treatment, we allowed AL1
cells to continue cycling for 48 h (equal to at least one complete cell
cycle) (Wallace andMaden, 1976; Maden, 1978) before performing
flow analysis based on DNA content (Table 1). We found that BeN
significantly altered cell cycle progression (χ2=7.34, P=0.026) and a
post hoc analysis indicated that BeN treatment led to a significant
increase in the percentage of cells in S phase and a significant
decrease in G2/M phase cells (Table 1). The percentage of cells in
G0/G1, however, was not different between treatment and control
(Table 1). This suggested that BeN treatment was delaying or
blocking the transition to G2/M in axolotl fibroblasts. We also
analyzed hADF cells and found that BeN disrupted the mammalian
cell cycle (χ2=62.55, P=0.00001) (Table 1). In contrast to AL1 cells,
we found a 20% increase in the percentage of cells in G0/G1,
whereas we observed a decrease in the percentage of cells in S phase
and G2/M, (Table 1). This data suggests that BeN affects cell cycle
progression, albeit differently in axolotl versus human cells.
Based on our in vitro results, we used EdU to analyze cells

progressing through S phase in regenerating limbs following control
or BeN treatment during early blastema, mid blastema and palette
stages (Fig. 10A). We found that BeN treatment reduced the
proliferative index during time points corresponding to blastema
stages, but not during the palette stage, when cells were
differentiating in control limbs (F=4.4, P=0.037) (Fig. 10A).
Among control limbs, there was no difference in proliferative index
between the observed stages (F=0.60, P=0.57). The difference in
proliferative index observed in response to BeN treatment between
blastema stages and the palette stage were driven by an increase in
the number of EdU+ cells (F=9.4, P<0.005), as the average cell
density in BeN-treated limbs was not different across stages (F=1.9,
P=0.19). We obtained a similar result comparing BrdU+ dermal

cells between BeN-treated and control skin wounds (Fig. 10B-D).
The proliferative index of dermal cells in BeN-treated wounds was
significantly reduced at D7 and D14 post injury (D7, t=−4.86,
P=0.008; D14, t=−3.36, P=0.028). We also analyzed keratinocyte
proliferation and found no difference in the proliferative index when
comparing BeN-treated and control epidermis (D7, t=−1.09,
P=0.337; D14, t=1.92, P=0.127) (Fig. 10E-G). These data
support our in vitro findings with AL1 cells where beryllium
treatment leads to an accumulation of cells in S-phase, but also show
that BeN does not affect keratinocytes.

DISCUSSION
Our results provide a cellular mechanism to explain the inhibitory
effect of beryllium on regeneration in salamanders. We found that
BeN inhibited the ability of local fibroblasts to migrate in response
to injury and this, in turn, disrupted regeneration. We also found that
beryllium disrupts cell cycle progression in vivo and in vitro. While
limb regeneration was permanently affected, we found that a similar
application of BeN to full-thickness skin injuries only delayed skin
regeneration. These results reveal that timely migration of
fibroblasts in response to injury is necessary for proper blastema
organogenesis during epimorphic regeneration, while this early
migration event is not necessary in the absence of a blastema (i.e.
skin regeneration). Despite inhibiting local fibroblasts from
migrating into skin injuries, some fibroblasts eventually invade
the wound bed and facilitate normal dermal regeneration.
Importantly, our observations of severe patterning defects (loss of
elements or duplications) in BeN-treated limbs supports the
importance of cell-cell interactions during limb regeneration and
highlights beryllium as a potential tool to further investigate
positional identity.

Although they were difficult to observe macroscopically,
blastemas eventually formed in BeN-treated limbs and were
smaller compared with control limb blastemas. We found axons
present beneath the wound epidermis in BeN-treated limbs and cell
proliferation reached comparable levels to untreated limbs during
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the differentiation stages of blastemal morphogenesis. Interestingly,
the effect of beryllium appeared to be cell type-specific as epidermal
cells and leukocytes migrated normally in the skin and limb.
Despite axonal outgrowth in BeN-treated limbs we were unable to
rule out the possibility of delayed Schwann cell migration, which
could have contributed to a delay in blastema formation. However,
our GFP transplant experiments tracking fibroblasts clearly show
that beryllium inhibits local fibroblast migration and this in vivo
data was supported by in vitro experiments using axolotl
fibroblasts.
Dermal fibroblasts are necessary for limb regeneration and

constitute up to 78% of early blastemal cells (Muneoka et al., 1986).
Previous work has shown that fibroblasts contain stable positional
information that is likely to be encoded in cell surface proteins and

that the normal interaction of cells from disparate positions is
required for blastema formation and proper limb patterning
(Carlson, 1974; Lheureux, 1975a,b; Nardi and Stocum, 1984;
Crawford and Stocum, 1988a,b; Echeverri and Tanaka, 2005; Kragl
et al., 2009). Our results suggest that inhibiting fibroblast migration
with beryllium interrupts the necessary interaction of cells from
disparate positions and support fibroblast identity/interaction as an
underlying cause of the observed patterning defects. That we
eventually observed cells past the amputation plane suggests that
some cells were capable of limited migration – an observation
supported by our in vitro experiments. While the identity of these
cells remains unclear, the range of skeletal malformations we
observed suggests a random integration of cells from different
positions. Given the unpredictable nature of cells ultimately
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arriving in the blastema and proliferating, the resultant interactions
produced cases indicative of this unpredictability: almost complete
inhibition of regeneration and loss of elements in some cases
and skeletal duplications with normal digit number in others.
Interestingly, beryllium appeared to disproportionately affect
proximal structures such that heteromorphic limbs never
regenerated a complete/normal stylopod or zeugopod. In
contrast, at least one digit formed, even in the most severe cases.
Development of genetic markers for different positions in the limb
will be necessary to definitively test our hypothesis concerning

positional information, such that the identity of cells interacting
past the amputation plane can be determined.

One concern with exposing organisms or cells to a highly reactive
element like beryllium is the risk of disrupting basic cellular
processes.We addressed this concern in threeways. First, we kept and
observed animals treated with beryllium for over 2 years and noted
that they grew normally and were capable of breeding. Second,
although beryllium toxicity has been suggested to activate a caspase-
dependent apoptotic pathway (Pulido and Parrish, 2003), we were
able to assess apoptosis through TUNEL labeling and determine that
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BeN exposure did not increase apoptosis in vivo. Our in vitro
experiments used a concentration of BeN that inhibited cell migration
without causing a detectable difference in cell death. Lastly, we
quantified cell proliferation and cell cycle progression and found that
beryllium exposure disrupted cell proliferation in vivo and in vitro.
Examining axolotl fibroblasts in vitro, we found a small, but
significant increase in S-phase cells and a decrease in the number of
cells in G2/M-phase following BeN treatment. We obtained similar
results in vivo by observing EdU incorporation and the proliferative
index of limb mesenchyme following amputation. While the

proliferative index of BeN-treated limb cells matched contralateral
control limbs at later time points, this result was driven by an
accumulation of EdU+ cells, not an increase in cell density. Following
BeN exposure in vivo, we also observed a transient reduction in cell
proliferation in skin fibroblasts. Interestingly, keratinocyte
proliferation was unaffected by BeN treatment, which supports a
targeted, cell type-specific effect of beryllium. Experimental
inhibition of cell proliferation during limb regeneration, either
through chemical means or through removal of thewound epidermis,
leads to precocious differentiation and formation of proximal
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structures first (Thornton, 1943; Alberch and Gale, 1983). That we
observed a bias in patterning defects to proximal structures suggests
that the cell cycle defect is secondary to the migration defect.
Previous work with mammalian cells suggested that beryllium

has an antagonistic effect on cellular proliferation (Witschi, 1968;
Skilleter et al., 1983). Our cell cycle analysis using hADF cells
closely mirror those found for rat liver cells exposed to beryllium in
that we saw a significantly higher percentage of cells in G1 phase,
and a significantly lower percentage of cells in S phase and G2/M
phase (Skilleter et al., 1983). Why beryllium exposure appears to
block cell cycle progression differently between axolotl and human
cells is unclear, although evidence suggests that cell cycle regulation
is different between taxa (Tanaka et al., 1997; Pajcini et al., 2010).

Importantly, our inclusion of hADF cells in this study shows that
beryllium similarly inhibits cell migration in mammalian cells, a
fact that is likely to be obscured by in vivo studies because of the
affect of beryllium on mammalian T-cells (Saltini et al., 1989).

Three classic regeneration studies (Thornton, 1949, 1950, 1951)
showed that limb regeneration of Ambystoma opacum larvae could
be completely inhibited with the application of BeN to a limb
stump. Because we did not observe complete inhibition of limb
regeneration, our results probably reflect differences in size and
stage (larvae versus juvenile) of animals across studies where larval
limbs contain far fewer connective tissue fibroblasts. Previous
studies showing that beryllium completely inhibits regeneration in
other Ambystoma species, newts and Xenopus larvae (Thornton,
1949, 1950, 1951; Scheuing and Singer, 1957; Tsonis et al., 1991;
Mescher et al., 2013), have also documented that the BeN effect is
size dependent (for a given concentration), with reduced effects
observed on larger organisms (Thornton, 1949). Axolotls used in
the present experiments were larger (7-9 cm) compared with larval
salamanders and tadpoles used in all previous experiments,
suggesting that a similar concentration of BeN may be insufficient
to achieve complete inhibition. However, this reduced effect in the
context of complete inhibition also revealed a mechanism of action
for beryllium in the context of cell migration.

Only one study has proposed a possible mechanism for the
beryllium effect in Urodeles: disrupted phosphatidylinositol
phosphate (PIP) metabolism (Tsonis et al., 1991). Normal inositol
1,4,5-trisphosphate (IP3) production rapidly increases and decreases
following amputation (Tsonis et al., 1991). BeSO4 exposure caused a
22% decrease in PIP metabolism 30 s after amputation, although
BeSO4 exposure at later time points had no effect on PIPmetabolism.
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Table 1. Flowcytometric analysisofAL1cells reveals thatberylliumnitrate
treatment increases the percentage of cells in S phase and decreases the
percentage of cells in G2/M, implicating an effect on S phase exit. In
contrast, berylliumnitrate treatment of hADFcells producesan increase in
G0/G1 cells, implicating an effect on the G1/S transition

Cell cycle
phase

Control (mean %±
s.e.m.)

BeN-treated (mean %
±s.e.m.) P

AL1
G0/G1 44.78±0.91 45.95±0.37 0.2977
S 34.31±0.56 39.16±0.64 0.0047
G2/M 20.91±0.36 14.89±0.31 <0.001

hADF
G0/G1 52.78±0.37 72.42±0.62 <0.001
S 6.19±0.21 2.69±1.35 0.042
G2/M 41.67±0.45 24.89±1.62 <0.001

AL1, n=3; hADF, n=4.
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Based on in vitrowork linking IP3 production to cell cycle activation
and proliferation (Berridge, 1987), this study suggested that BeSO4

exposure inhibited cell proliferation, although the authors provided
no cell proliferation data. Moreover, cell proliferation does not occur
on the timescale observed for PIP metabolism, making this link
tenable. Furthermore, Scheuing and Singer’s work (1957)with newts
seems to contradict the proposed PIP mechanism whereby fully
formed blastemas directly infused with BeN inhibited regeneration,
which occurredmany days after injurywhen IP3 levels are low.While
it is possible that beryllium has multiple effects on regeneration, both
immediately after amputation (PIP-IP3 metabolism) and at a later
time (BeN infusion of blastemas), it seems unlikely that beryllium
exerts its inhibitory effect through PIP metabolism.
Beryllium has been explored extensively in the context of chronic

berylliosis disease whereby inhalation of beryllium dust causes an

acute chronic inflammation of the lungs (Newman, 2007). In
mammals, this occurs via an acute immune response where
beryllium is identified by the major histocompatibility complex
and antigen-presenting cells, which themselves stimulate the
proliferation and accumulation of CD4+ helper T cells (Saltini
et al., 1989). Extended exposure of skin to beryllium also leads to an
accumulation of CD4+ cells at the point of contact (Saltini et al.,
1989; Fontenot et al., 2002). Interestingly, while much of the T-cell
receptor complex has remained conserved between amphibians and
mammals (Fellah et al., 1993), functional differences have arisen,
specifically in the V-beta region of the T-cell receptor (Fellah et al.,
1994). A recent study exposing larval Xenopus laevis to beryllium
showed that it increased the inflammatory response and attenuated
regenerative ability (Mescher et al., 2013). In contrast, our results in
salamanders exposing limb amputations and skin wounds to BeN
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suggested that a sensitized immune system is not present following
BeN exposure. While we observed an edema composed of plasma
and erythrocytes consistent with a prolonged hemostatic response,
an increase in the number of inflammatory leukocytes was not
detected at the treatment site. Recently, depletion of macrophages
was shown to inhibit limb regeneration in axolotls, although the
extent to which this result was due to the phagocytic versus immune
function of macrophages remains unclear (Godwin et al., 2013).
While we cannot rule out the effect of macrophage reduction on
regeneration, we infer that the effect of this deficit plays a minor role
when viewed in the context of our results and the role of fibroblast
migration in regeneration. Unfortunately, no reagents exist to
reliably detect T-cells or macrophages in salamanders so we could
not specifically assay for increased infiltration of these cells, and
more importantly, T-cell polarization. Taken together, the data
suggest that beryllium can act as an immunostimulatory agent in
frogs and mammals, but that immune stimulation does not underlie
the inhibitory effect of beryllium on regeneration in salamanders.
Thus, our study shows that beryllium appears to affect endogenous

tissue regeneration in two distinct ways: first, through a disruption of
cell migration and second, by interrupting cell cycle progression. At
present, it remains unclear ifBeNoperates as amechanical impairment
of the cell’s motility systems (extension and reduction of cytoskeleton
or integrin binding) or as a sensory impairment of surface receptors
andcell signalingmachinery.Ourexperiments have brought to light an
interesting phenomenon and underscore the importance of revisiting
classic experimental studies in development and regeneration biology.
Importantly, this study suggests that beryllium may prove to be a
useful tool in testing existing hypotheses about howpatterning systems
operate during tissue regeneration.

MATERIALS AND METHODS
Animals
Axolotls (Ambystoma mexicanum) were acquired from the Ambystoma
Genetic Stock Center (Lexington, KY, USA) and from our own laboratory
colony. Animals were maintained at 17-18°C in modified Holtfreter’s
solution andmaintained on California blackworms (Lumbriculus variegatus;
J. F. Enterprises). All procedures were conducted in accordance with, and
approved by, the University of Kentucky Institutional Animal Care and Use
Committee (IACUC Protocol: 2013-1174).

Full-thickness excisional (FTE) wounding and limb amputations
Axolotls (7-8 cm) were anesthetized by full submersion in 0.01% (aqueous)
Benzocaine (Sigma). Full-thickness excisional (FTE) wounds through the
skin into the dorsal muscle were created using 4 mm biopsy punches (Sklar
Instruments). Four dorsal skin wounds were created posterior to the
forelimbs and anterior to the hindlimbs (two treatment and two control). In
order to measure skin wound area, wounds were photographed and the area
of each wound was calculated using Olympus cellSens software. The
boundary between uninjured and neo-epidermis was used to define and
outline the wound margins. Limb amputations were made through the lower
humerus and the extending bone was trimmed. Left limbs and FTE wounds
were the treatment group and the wounds on the right served as contralateral
controls. Skin wounds were harvested at particular time points post injury
based on our previous analysis of skin regeneration in axolotls (Seifert et al.,
2012). Limbs were harvested according to well-established morphological
stages of regeneration (Wallace, 1981).

Beryllium nitrate (BeN) treatment
Either 100 mM or 140 mM beryllium nitrate solutions were prepared by
diluting a stock solution (35% w/v) (Sigma) in distilled water. A 140 mM
concentration was used in the original experiments (Thornton, 1947) and we
determined that 140 mM and 100 mM produced the same result in our
animals. Following a single limb amputation or FTE wound, animals were
submersed in 100 mM BeN for 2 min, after which they were continually

rinsed in running tap water for 10 min. After rinsing, either the contralateral
limb or a second wound corresponding to the mirror position across the
dorsal midline was made. In this way, each animal served as its own control.
For in vitro experiments, three dilutions of BeN were prepared (1 mM,
10 mM and 100 mM) and tested for cytotoxicity. Cytotoxicity and cell death
was assessed using the vital dye Trypan Blue (Hyclone). Based on these
tests, 10 mM BeN was used in all subsequent cell culture experiments.

Histology and immunohistochemistry
Freshly harvested tissues were fixed in 10% neutral buffered formalin (NBF)
(American Master Tech Scientific) overnight (∼16-24 h), washed in
phosphate buffered saline (PBS) three times, dehydrated in 70% ethanol
and processed for paraffin embedding. Limb samples were decalcified in
10% EDTA (pH 7.4) for 3 days at room temperature with daily changes
before processing. Tissue samples were sectioned at 5 µm. Tissue sections
were stained with Masson’s trichrome (Richard-Allen Scientific),
Picrosirius Red (American Master Tech) or Alcian Blue (Sigma). For
frozen sections, samples were fixed for 1 h in 10% NBF at 4°C, washed in
PBS, equilibrated in 30% sucrose and OCT freezing medium, and rapidly
frozen on dry ice for storage at −20°C. Frozen sections were cut at 12 µm.
Immunohistochemistry was performed as previously described (Seifert
et al., 2012) (see supplementary Materials and Methods for full details of
antibodies and antigen retrieval methods). BrdU and EdU
immunohistochemistry was performed as previously described (Calve
et al., 2010; Monaghan et al., 2014).

Cell lines and circular scratch assays
Two cell types were analyzed in vitro: human adult dermal fibroblasts
(hADF) (gift from Karen Echeverri, acquired from Lonza Group Ltd) and
axolotl fibroblasts (AL1) (gift from Stéphane Roy, Université de Montréal).
All available AL1 cells were maintained with a low level of contamination,
whereas hADF cells were contamination free. Both cell types were
expanded in T-25 and T-75 cell culture flasks (Greiner Bio-One). AL1
cells were grown in medium containing 60% L-15 (Leibovitz) medium
without L-glutamine (Sigma), 32% ddH2O, 5% fetal bovine serum (FBS)
(GE Healthcare Bio-Sciences), 1% insulin/selenium/transferrin (Life
Technologies), 1% penicillin/streptomycin/amphotericin-b (Sigma) and
1% L-glutamine (Life Technologies). hADF cells were grown in medium
containing 88% Dulbecco’s modified Eagle medium/F-12 (DMEM) (Life
Technologies), 10% FBS (GE Healthcare Bio-Sciences), 1% insulin/
selenium/transferrin (Life Technologies), 1% penicillin/streptomycin/
amphotericin-b (Sigma-Aldrich). Cells were passaged at 70-80%
confluency. Cells were passaged by rinsing with Dulbecco’s PBS solution
(DPBS) (Life Technologies), treating with 0.25% Trypsin-ETDA (Life
Technologies) for 3-5 min, and centrifuging for 3 min at 3000 rpm. Each
cell line was split 1:2 or 1:3 into new flasks with fresh medium until a large
stock of cells was obtained. Both cell types were grown in 12-well tissue
culture treated plates and allowed to reach ∼80% confluency prior to any
procedure. Half of the wells were treated with 10 mM beryllium nitrate for
2 min and rinsed three times with DPBS. An in vitro wound was created
with a cotton tip applicator in the center of each well. Cells were tracked and
images were taken every 12 or 24 h up to 96 h (hADF cells) or 14 days (AL1
cells) following treatment.

Analysis of cell death, proliferation and cell cycle progression
Cells undergoing apoptosis were detected using a TUNEL assay employing
a GFP tag (Roche Life Sciences). A cell death index was calculated for
dermal cells expressing GFP divided by the total number of cells (stained
with Hoechst 1:10,000 stock, Invitrogen) present in the same counting field.
To detect cells in S phase, 100 mg/kg BrdU or 10 µg/g EdU was IP injected
into axolotls and tissues were harvested after 24 h. Detection was carried out
on formalin-fixed, paraffin-embedded tissue sections and cells were
visualized using DAB (BrdU) or an Alexa Fluor azide (Invitrogen) (as
detailed in supplementary Materials and Methods).

Calculation of the proliferative index (PI) for BrdU-marked cells was
conducted on images taken from three random fields of view at 40×
magnification. The PI was equal to the number of BrdU+ cells divided by the
total number of cells. The calculation of PI for EdU+ cells within the
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regenerating limb was conducted at the same magnification from two random
fields of viewand followed the samemathematical formula. Calculationswere
carried out with cellSens microscopy software (Olympus).

For in vitro experiments, AL1 and hADF cells were used (see above). For
the cell cycle progression assay, cultured cells were fixed in complete
darkness with cold 70% ethanol for 1 h, centrifuged at 2000 rpm for 10 min,
rinsed in 1× PBS and centrifuged again until a pellet formed, treated with
1 mg/ml propidium iodide and 10 mg/ml RNase A (Sigma) in 1× PBS, and
incubated in darkness at 37°C for 30 min. Cells were not synchronized prior
to fixation. Samples were run on a Becton Dickinson FACSCalibur (BD
Biosciences) within 4 h of preparation. Cells containing DNA labeled with
propidium iodide were sorted into four groups based on their relative
fluorescence and DNA content frequency histograms were generated. Cells
with luminosity less than 1× were considered apoptotic, cells with 1×
luminosity had a normal level of DNA and were considered to be in G0/G1,
cells between 1× and 2× luminosity were undergoing DNA replication (S
phase) and cells with 2× luminosity had twice the amount of DNA and were
considered in G2/M. Cells that fell outside of the acceptable range of
fluorescencewere not counted. Each group of cells (biological replicate) was
analyzed independently and the data was considered clean if there were two
narrow and distinct luminosity peaks. Modfit software was used to
deconvolute the frequency histograms to obtain percentage of cells in
each stage for each biological replicate. The percentage of cells at each stage
was averaged across all replicates (AL1, n=3 and hADF, n=4) and the
standard error was calculated for each phase accordingly.

GFP tissue transplantations
To track dermal fibroblasts in vivo, full-thickness skin comprising dermis
and epidermis was extracted from the dorsal flank of axolotls constitutively
expressing GFP in all cell types (see Fig. 6A) (Sobkow et al., 2006).
Identical injuries were made on WT individuals of approximate age and
size. Two wounds were made on WT animals: one for treatment with BeN
and the other as a control. A GFP tissue graft was placed into the open
wound on WT animals and attached with Vetbond (3 M). Wounds were
allowed to heal and integrate with host tissue for 2 weeks. After 2 weeks, a
second injury was made in the center of the 8 mm GFP transplant using a
4 mm biopsy punch. The anterior-most transplant of each animal was
injured first and treated with 100 mM BeN for 2 min followed by a
10 minute rinse (see above). A biopsy was taken from the remaining
transplant and this wound served as the control. Each transplant was
harvested 14 days later using an 8 mm biopsy punch and preserved for
cryosectioning. Using this methodology, any GFP+ cells in the wound bed
would represent fibroblasts because: (1) GFP+ epidermis in the original
donor tissue was covered and replaced by host WT epidermis and epidermal
cells do not invade the mesenchymal compartment of the wound bed, (2)
circulating host blood and immune cells were not GFP+ and (3) the majority
of fibroblasts that infiltrate the injury site are locally derived from a 200-
500 µm area immediately surrounding the injury (Mchedlishvili et al.,
2007), and these constitutively expressed GFP.

To analyze fibroblast migration in regenerating limbs, we transplanted full-
thickness GFP+ skin cuffs (epidermis and dermis) from the forelimb of a GFP
animal onto WT forelimbs in the same position so as to maintain positional
continuity around the limb (see Fig. 6E). Rectangular skin cuffs were taken
from the mid dorsal region to the mid ventral region on the posterior side of
each limb. We carefully maintained the positional identity of each GFP cuff
before applying it to theWT individuals and allowed them to heal for 14 days
before amputating each limb through the center of the transplants. The left
limb was always amputated first and the animal treated with beryllium nitrate
for 2 min followed by a 10 min rinse. The control limb was then amputated
and each animal was allowed to heal until the desired stagewas reached on the
control limb, at which point limbs were re-amputated just proximal to the
transplant and prepared for cryosectioning.

Microscopy and image acquisition
Bright-field images were taken on a BX53 light microscope (Olympus)
using a DP80 CCD camera (Olympus). Whole mount images were taken
on an SZX10 light microscope (Olympus) using a DP73 CCD camera

(Olympus). All in vitro images were taken on an IX71 inverted microscope
(Olympus) with a DP72 CCD camera (Olympus).

Statistics
Basic comparisons between control and experimental groups were
conducted using JMP software (SAS, Cary, NC) to report standard
deviation, standard error of the mean and to conduct statistical tests.
Paired t-tests were used to measure differences in wound area of FTE skin
wounds and to quantify differences in numbers of leukocytes (in skin and
limb injuries because treatment and control wounds were made on the same
individuals). A chi-square test was used to determine if beryllium treatment
significantly altered cell cycle progression in AL1 and hADF cells.
Unpaired t-tests were used as a post hoc analysis to test for differences
among the percentage of AL1 and hADF cells in various stages of the cell
cycle. Unpaired t-tests were also used to measure differences in the number
of migrating fibroblasts in the regenerating dermis. A one-way ANOVAwas
used to analyze differences in apoptosis and cellular proliferation by taking
the difference between paired control and treatment groups at each time
point. All tests performed were two-tailed. The level of significance was set
at 0.05.
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