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Making sense out of spinal cord somatosensory development
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ABSTRACT

The spinal cord integrates and relays somatosensory input, leading
to complex motor responses. Research over the past couple of
decades has identified transcription factor networks that function
during development to define and instruct the generation of diverse
neuronal populations within the spinal cord. A number of studies
have now started to connect these developmentally defined
populations with their roles in somatosensory circuits. Here,
we review our current understanding of how neuronal diversity in
the dorsal spinal cord is generated and we discuss the logic
underlying how these neurons form the basis of somatosensory
circuits.
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Introduction

Somatosensation collectively refers to the bodily senses of
nociception (pain), thermosensation (temperature), pruriception
(itch), mechanosensation (cutaneous/touch) and proprioception
(limb and body position). These senses are largely relayed and
processed in the dorsal spinal cord. Primary sensory neuronal axons
from the periphery enter the dorsal spinal cord through the dorsal
root where they synapse on projection neurons, local circuit
interneurons, or even directly onto motor neurons, providing the
first level of circuit integration and processing for somatosensory
information. Broadly, the circuitry is spatially organized with
nociceptive and thermosensitive afferents targeting the superficial
dorsal laminae, cutaneous afferents targeting more ventral dorsal
laminae, and proprioceptive afferents targeting cells more ventrally
in the intermediate and ventral spinal cord (Fig. 1) (Todd, 2010).
Spinal cord neurons use excitatory or inhibitory neurotransmitters,
combined with multiple neuropeptides, to transmit and modulate
these signals. How the diversity of neurons in the dorsal spinal cord
configure somatosensory circuits and how these neurons function to
integrate and relay somatosensory information is beginning to be
uncovered.

The spinal cord is generated from the developing vertebrate
neural tube (Fig. 1), which forms by invagination of the
neuroepithelium followed by its closure into a tubular structure
that will form the central nervous system. Rostral parts of the neural
tube develop into the brain while caudal parts become the spinal
cord. Over the past 20 years, the caudal neural tube has been used as
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a model system for understanding the spatial and temporal genetic
principles that govern neuronal cell type specification. These studies
have shown that cells within the caudal neural tube differentiate into
diverse populations of neurons (Alaynick et al., 2011; Helms and
Johnson, 2003; Jessell, 2000; Lee and Jessell, 1999; Lu etal., 2015).
Although different cell types extend along the rostral-caudal axis, as
demonstrated for motor neurons that reside in different columnar
motor pools, dorsal-ventral patterning is a major determinant of cell
identity in the developing spinal cord. Indeed, cross sections
through the neural tube demonstrate the existence of discrete
domains of combinatorial transcription factor (TF) expression that
define particular cell types (Fig. 2).

Several dynamic processes have been shown to influence the
number and type of neurons that form during the early stages of
spinal cord neurogenesis and neuronal specification. These
processes include interplay between signaling pathways and TF
function, regulation of the timing of neurogenesis, mechanisms of
cross-repression between TFs and the expression of TF-driven gene
programs that are specific to neuronal identity. While these
developmental mechanisms that generate specific cell types in the
caudal neural tube are still under investigation, an open question is:
how do the development and function of these neurons relate? With
the advent of genetic techniques in mice to trace the lineage of
various progenitor populations into adulthood, the field is now
beginning to understand how neurons born in different progenitor
domains give rise to the spinal interneurons that contribute to
different aspects of somatosensation. The caudal neural tube is thus
emerging as an important model system with which to understand
not only how progenitor domains are established during
development, but also if there is some logic tying the
development of a neuron to its function.

In this review, we first provide an overview of the molecular
mechanisms that specify cell fate and generate neuronal diversity in
the developing spinal cord. We then explore how different
developmental populations produce subsets of neurons with
particular somatosensory functions. We do not cover ventral
spinal cord development and diversity as this topic has been
reviewed elsewhere (Alaynick et al., 2011; Arber, 2012; Goulding,
2009; Jessell, 2000; Lu et al., 2015; Matise, 2013); however, we will
refer to ventral spinal cord populations when they lend insight into
themes of neuronal migration and patterning.

Principles guiding the generation of neuronal diversity in the
dorsal neural tube

Transcription factor codes define neuronal populations

As the caudal neural tube develops into the spinal cord, cells within
progenitor domains in the ventricular zone (Fig. 2), defined mainly
by TF expression, differentiate into diverse populations of
postmitotic neurons. Examinations of the combinatorial
expression of multiple families of TFs, largely homeodomain
(HD) and basic helix-loop-helix (bHLH) factors, have led to the
description of 11 early-born [embryonic day (E)10-E12.5] neuronal
populations. Six of these (dorsal interneurons 1-6, dI1-6) are found
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Fig. 1. Development of the spinal cord. During development, an invagination
of the neural plate closes to form the neural tube, which will become the central
nervous system. The most caudal parts of the neural tube will become the
spinal cord. Rexed laminae I-X in the adult spinal cord are determined by
cytoarchitectonic parameters. Broadly, pain and thermosensitive afferents
(C-, Ad-fibers) from the dorsal root ganglion (DRG) target laminae I-I, touch
afferents (A8-, Ap-fibers) target laminae Il;,,o,-V and proprioceptive afferents
(AB-, Aa-fibers) target more ventral laminae and MNs (see Boxes 1 and 2 for
afferent fiber termination markers and definitions). Commonly used anatomical
names for Rexed laminae regions are described: marginal layer (ML, lamina l),
substantia gelatinosa (SG, lamina Il), nucleus proprius (NP, laminae llI-V),
motor neurons (MNs, lamina IX). Clarke’s column, or the dorsal nucleus of
Clarke (CC), resides in the medial aspect of lamina VII mainly in the thoracic
spinal cord.

in the dorsal neural tube, and the remaining five (V0-V3 and MN)
are found in the ventral neural tube (Fig. 2). In addition, there are
two late-born (E11-E13) dorsal domains (dIL, and dILg). These
defined populations can be further divided into subtypes using
criteria such as axonal projections, resulting location in the spinal
cord and neuropeptide expression. For example, the dI1 population
can be split into two populations that are distinguished by their
spatial location and axonal projections: dIli (ipsilaterally
projecting) and dIlc (contralaterally projecting) (Miesegaes et al.,
2009; Wilson et al., 2008; Yuengert et al., 2015). These 13 main
population designations are central to understanding how TF
expression is patterned in response to morphogens and how TFs
specify neuronal identity. Importantly, most of the TFs that mark
these populations are required within the lineages where they are
expressed. In particular, the bHLH factors, ATOH1, NEUROG1/2,
ASCL1 and PTF1A are all necessary and sufficient to specify
particular dorsal interneuron populations (Bermingham et al., 2001;
Glasgow et al., 2005; Gowan et al., 2001; Helms et al., 2005;

Mizuguchi et al., 2006; Wildner et al., 2006). This is in contrast to
the ventral neural tube where HD TFs, rather than bHLH TFs, play
the major specification function (Briscoe et al., 2000; Ericson et al.,
1997; Pierani et al., 2001; Sander et al., 2000).

Although the TFs that define spinal cord neuronal populations are
often depicted in a single static figure (as in Fig. 2), it should be noted
that TF expression is dynamic and, in many cases, transient. Thus,
just because a TF functions as a lineage marker at one stage does not
mean that it serves that function throughout the development of the
lineage. The bHLH factors ASCL1, ATOHI and NEUROG] are
examples of TFs that are present in subsets of proliferating
progenitors but that are rapidly lost as cells differentiate and
become postmitotic (Fig. 3). In contrast, some of the HD TFs, such
as PAX2 and TLX3, appear only when cells become postmitotic and
are retained into postnatal stages (Fig. 3). HD factors are, therefore,
particularly useful as markers for defining neuronal populations in
the dorsal spinal cord (Fig. 2, blue text). Nevertheless, even the HD
factors are not necessarily maintained into mature stages, and
additional factors such as neurotransmitters and neuropeptides are
needed to mark specific populations of neurons (Box 1).

Signaling pathways direct expression of transcription factors to
pattern the neural tube

Multiple signaling pathways are active in the developing neural tube
prior to the emergence of the TF-based patterning discussed above.
These signals, such as fibroblast growth factor (FGF), act to
maintain cells as progenitors, or they act during neuronal
specification, as is the case for sonic hedgehog (SHH), bone
morphogenetic proteins (BMPs), WNTs, retinoic acid (RA) and
FGF (Fig. 4). As the role of morphogens and their signaling
pathways have been recently reviewed (Briscoe and Small, 2015;
Gouti et al., 2015; Le Dreau and Marti, 2012), we highlight here
only some of the major concepts.

During patterning of the dorsal-ventral axis of the spinal cord,
SHH produced at the floor plate is instrumental for the formation of
ventral cell type identities and it acts by activating or repressing the
expression of TFs (largely HD TFs) in a concentration-dependent
manner (Briscoe et al., 2000). Thus, the gradient of SHH from the
floor plate sets up the initial pattern of TF expression that is later
refined through cross-regulatory mechanisms between TFs (Ericson
et al., 1997; Novitch et al., 2001; Sander et al., 2000). In contrast,
BMPs and WNTs comprise the predominant signaling pathways
that pattern the TFs that set up dorsal cell type identity. These
signals are produced largely in the roof plate, involve multiple
family members and regulate proliferation as well as specification of
the progenitors (Chesnutt et al., 2004; Chizhikov and Millen, 2005;
Hazen et al., 2012; Ikeya et al., 1997; Liem et al., 1997; Muroyama
etal., 2002; Nguyen et al., 2000; Tozer et al., 2013; Wine-Lee et al.,
2004). In particular, BMPs and WNTs are crucial for generating the
dorsal interneuron populations shown in Fig. 2. Alterations to BMP
levels, for example through mutations or ablation of the roof plate,
demonstrate that specification of the dorsal dI1-dI3 (termed class A)
populations are dependent on these signals, whereas the more
intermediate dI4-d16 (class B) populations form independent of
BMP signaling (Fig. 4) (Lee et al., 2000; Miiller et al., 2002).

Patterning of the rostral-caudal axis, by contrast, involves the
graded expression of FGF, RA and the TGFp family factor GDF11,
all of which provide positional identity along this axis (reviewed in
Philippidou and Dasen, 2013). The transcriptional output from these
signals results in different combinations of HD-containing homeobox
(HOX) TFs being expressed in progenitors and postmitotic neurons.
For example, Hox4-Hox8 are expressed at the cervical and brachial
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Fig. 2. Summary of the transcription factors that set up spinal cord neuronal diversity. The key transcription factors (TFs) that coordinate neuronal diversity
in the developing spinal cord are shown, highlighting those that are expressed in the various progenitor domains (dP1-dP6, p0-p3 and pMN) in the proliferating
ventricular zone of the developing spinal cord and those that define mature neuronal populations (dI1-6, VO-3 and MN) and their subsets in the differentiating
mantle zone. TFs containing a homeodomain are indicated in blue text. Old gene symbols Hb9 (Mnx1), Chx10 (Vsx2), Brn3a (Pou4f1) are shown. Dorsal
progenitor (dP), dorsal interneuron 1 contralaterally and ipsilaterally-projecting (dI1,, dl1;), dorsal interneuron late born populations (dIL4, diLg), VO or V3 dorsal,
ventral, or cholinergic and glutamatergic (V0p, VOy, VOcg, V3p, V3y), la interneuron (1aIN), V, is an HB9™ population of cells of unknown developmental origin.
Msx1, Msx2 (Timmer et al., 2002), Gdf7 (Lee et al., 2000), Atoh1, Neurog1/2, Ascl1, Ptf1a, Pax2, Pax3, Pax6, Pax7, Lbx1, Foxd3, Brn3a, Lhx1/5, Lhx2/9, Barhl1,
Barhi2, Isl1, Lmx1b, Phox2a (Bermingham et al., 2001; Ding et al., 2004; Glasgow et al., 2005; Gowan et al., 2001; Gross et al., 2002; Liem et al., 1997; Miiller
et al., 2002; Saba et al., 2005; Wilson et al., 2008), Dbx1/2, Evx1/2, En1 (Burrill et al., 1997; Moran-Rivard et al., 2001; Pierani et al., 1999, 2001), Olig2/3
(Mizuguchi et al., 2001; Muller et al., 2005; Novitch et al., 2001; Takebayashi et al., 2002), Neurog3 (Sommer et al., 1996), Gsx1/2 (Kriks et al., 2005; Mizuguchi
et al., 2006), Lmx7a (Millonig et al., 2000), Nkx6.1/6.2, Nkx2.2/2.9, Irx3, Lhx3, Chx10, Sim1 (Briscoe et al., 2000; Ericson et al., 1997; Fan et al., 1996; Persson
etal., 2002), Prdm13 (Chang et al., 2013), Prdm12 (Thelie et al., 2015), Prdm8 (Komai et al., 2009), Gata2/3, Foxn4, Bhlhb5, Pitx2, Foxp1/2, Olig3 (Francius etal.,
2013, 2015; Lietal., 2005; Morikawa et al., 2009; Nardelli et al., 1999; Rousso et al., 2008; Skaggs et al., 2011; Zagoraiou et al., 2009), FoxaZ2 (Ruiz i Altaba et al.,
1993), TIx1/3 (Qian et al., 2002), Prrxl1 (Rebelo et al., 2010), Gbx1 (John et al., 2005), Dmrt3, Wt1 (Andersson et al., 2012; Dyck et al., 2012), Sox1, Sox14, Sox21

(Hargrave et al., 2000; Panayi et al., 2010; Sandberg et al., 2005), Sc/ (Smith et al., 2002), Hb9, Is/1/2 (Pfaff et al., 1996).

levels, while Hox8-Hox9 are expressed in thoracic regions and
Hox10-Hox13 in lumbar regions. Graded expression of RA induces
HOX gene expression in cervical and brachial regions, whereas
GDF11 functions at the most caudal regions (Bel-Vialar et al., 2002;
Dasen et al., 2003, 2005; Liu et al., 2001). The combinations of HOX
genes induced have also been shown to pattern motor columns in the
ventral spinal cord, such that motor neurons at limb levels are different
from those at intercostal or abdominal levels. The mechanisms that
regulate rostral-caudal identity in the dorsal spinal cord projection
neurons and interneurons are less well understood, although HOX
genes are likely players there as well.

Although the signaling molecules mentioned above are the primary
ones influencing the patterning of neurons generated along the dorsal-
ventral and rostral-caudal axes, they are not the only players. Notably,
the responsiveness of progenitors to these patterning signals changes
over time, probably as a result of the TFs themselves altering
components in the signaling pathways to enhance or attenuate the
signals (Nishi et al., 2015). Furthermore, it should be pointed out that
although SHH, BMPs, WNTs, FGF and RA are essential for
patterning TFs in the neural tube, they have additional functions at
later stages, such as providing axon guidance signals (Butler and
Dodd, 2003; Lyuksyutova et al., 2003; Yamauchi et al., 2013).

Oscillations in Notch signaling and transcription factor expression
control neurogenesis

What are the mechanisms that signal progenitor cells to exit the cell
cycle and begin the process of neurogenesis? Recent studies suggest
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that this is controlled by the balance between Notch signaling
molecules and bHLH factors such as ASCL1 and NEUROG?2
(called proneural bHLH factors). Together, these factors are key for
influencing the number of neurons generated. In general, a high
level of Notch signaling maintains cell proliferation, whereas high
proneural bHLH levels drive differentiation of that cell.

There are many complexities in the Notch pathway, including
extensive  post-translational —modifications, localization of
components in the endoplasmic reticulum (ER) versus the cell
surface and crucial protease cleavage steps (see review by Kopan
and Ilagan, 2009), but the core of the canonical signaling pathway is
as follows. Activation of Notch signaling through binding one of its
ligands, such as DLLI, in trans with a NOTCH receptor on another
cell results in release of the NOTCH intracellular domain (NICD)
and its translocation to the nucleus (Fig. 3). NICD forms a
transcriptional activator complex that, among other things, activates
transcription of the HES1 transcriptional repressor. An important
HESI function is to repress the expression of proneural bHLH
factors such as ASCL1 and NEUROG?2, which have specific
functions in neuronal subtype fate specification, as mentioned
above (Fig. 2). Because high levels of the proneural bHLH factors
drive neuronal differentiation, repression of these factors biases
cells to the progenitor stage. Importantly, in a feedback mechanism,
the proneural bHLH factors activate the expression of Notch ligands
such as DLL1. Thus, one might expect that some proneural bHLH
activity in surrounding cells is needed to keep Notch signaling
active in the progenitor cell. A model emerges whereby low levels of

DEVELOPMENT



REVIEW

Development (2016) 143, 3434-3448 doi:10.1242/dev.139592

A
Progenitor TFs
dP1
/\ATOH1
o Proliferating Differentiating
°©
>
o L
c
9 1 9P4  pTF1A
8 [—aAscL1
3 ,
)
Ventricular Mantle
‘ zone zone
@?3_7:&‘9
B Oscillating Notch signaling

‘/ \/ \/ ¥HES1

Time
NICD
RBPJ
2
—®
HES1,’

7
Nucleus*

Neural stem cell

proneural bHLH activity are in a balance with active Notch
signaling to maintain progenitor cells (Castro et al., 2011). When an
imbalance allows elevated levels of proneural bHLH expression, the
progenitor differentiates. Because of feedback regulation of HEST1,
cross-regulatory relationships as stated above and instability of the
factors involved, the levels of the TFs and Notch ligands oscillate.
Indeed, an emerging model is the oscillation model for maintaining
progenitors (Kageyama et al., 2008; Shimojo et al., 2016, 2008). In
this model, progenitors are maintained in a proliferative state. When
expression of the neural bHLH factors is elevated and sustained, the
progenitors undergo cell cycle exit and neuronal differentiation. For
details on this Notch signaling oscillation-based model and a
description of the live cell imaging experiments that support the
model, see recent reviews by Imayoshi et al. (2015) and Isomura and
Kageyama (2014).

Cross-repression between transcription factors specifies distinct
neuronal identities

Repressing inappropriate gene expression programs in a lineage is
just as crucial to specifying appropriate cell fate as inducing the
proper cell type-specific genes. Indeed, cross-repression between
TFs has emerged as a major principle in setting up boundaries that
delineate either progenitor domains or their resulting neurons
(Fig. 4). This concept was first described in the ventral neural tube
where neighboring progenitors repressed each others’ expression of
class I or class Il HD TFs to generate discrete progenitor boundaries
(Briscoe et al., 2000; Ericson et al., 1997). In the dorsal neural tube,
cross-repression is also evident and has been shown to occur

Fig. 3. Dynamic expression of transcription factors in
the developing spinal cord. The expression of

Postmitotic TFs transcription factors (TFs) in the developing neural tube
dn LHX2 is highly dynamic. (A) Peak expression of the basic helix-
LHX9 loop-helix (bHLH) transcription factors ATOH1,

NEUROGH1, ASCL1 and PTF1A within various
progenitor domains (dP1-5) in the proliferating
ventricular zone occurs at E10.5 and then declines. As
these neuronal populations become postmitotic and
migrate into the mantle zone, they begin expressing
transcription factors that either decline (LHX2/9) or
increase (TLX1/3, ISL1, PAX2, LMX1B) over
developmental time. It is unknown how FOXD3
expression changes at later development time points
(dashed line) (Gross et al., 2002). (B) The interplay
between activating bHLH TFs such as ASCL1 and
repressive TFs such as HES1, mediated through Notch
signaling, results in oscillatory expression of these TFs in
neural stem cells; these oscillations control the timing of
neurogenesis. Eventually, sustained expression of
ASCL1 leads to neuronal differentiation.

Differentiating neuron

between bHLH factors. For example, ATOHI1- and NEUROGI1-
expressing progenitors give rise to dI1 and dI2 neurons, respectively
(Fig. 4). Cross-repression is evidenced by the fact that dI1 neurons
are lost in Atohl mouse mutants while NEUROG]1 expression is
expanded and excess dI2 neurons are generated (Gowan et al.,
2001). Similarly, PTF1A-dependent dI4/dIL, populations and
ASCL1-expressing progenitors of dI5/dILg neurons demonstrate
cross-repression; in the absence of PTF1A, dI4/dIL, neurons are
lost and unopposed ASCLI1 activity results in excess dI5/dILg
neurons (Glasgow et al., 2005; Mizuguchi et al., 2006; Wildner
et al., 2006).

How can these bHLH factors, which are activators of
transcription, repress fate in neighboring cells? Recent studies of
PTF1A-dependent populations show that repression of dI5 fate is
mediated through a member of the PRDM family of TFs. PRDM
TFs contain zinc finger domains and a domain with similarity to the
SET domain that has histone methyltransferase activity (Hohenauer
and Moore, 2012). A recent study demonstrated that PRDM13 is a
PTF1A target that represses expression of the dI5-specific HD factor
TLX3 in dI4 neurons (Chang et al., 2013). Furthermore, PRDM13
may function through switching ASCL1 from an activator of 7/x3
expression to a repressor as a means to shut down gene programs for
alternative fates within a differentiating neuron. As another
example, PRDM 12 was shown to be a factor that supports the V1
lineage by repressing VO genes in the progenitors of these neurons
(Thelie et al., 2015).

Until recently, the cross-repressive mechanisms elucidated in the
developing neural tube have been limited to gene programs in
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Box 1. Expression of terminal markers in the spinal cord
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While transcription factors have been shown to define discrete domains during spinal cord development, the molecular markers that define a particular
Rexed lamina are less well-described, in part because particular laminae may have different sensory afferent terminations with several different neuronal
cell types. Nonetheless, recent studies have been able to molecularly refine subpopulations within a given laminae. For example, lamina Il is subdivided into
an outer (ll,, CGRP™ afferents), inner dorsal (Il,, IB4" afferents) and inner ventral (11, PKCy") lamina. These molecular designations are summarized in the
above image. Expression patterns were determined using antibody staining (capitalized protein symbol), mRNA detection (italicized gene symbol) or
genetically modified mice (green boxes). Terminal markers for excitatory (no outline), inhibitory (black outline), mixed excitatory/inhibitory (dashed outline),
unknown excitatory/inhibitory (gray outline), mostly excitatory (*), and mostly inhibitory (**) neurons are shown. TRPM8 (Bautista et al., 2007), TRPV1
(Villeda et al., 2006), MRGPRD (Zylka et al., 2005), SP, CGRP, IB4, TRKA (Snider and McMahon, 1998), VGLUT3 (Seal et al., 2009), TRKB, NPY2R (Li
etal, 2011), TRKC, PV (Arber et al., 2000), VGLUT1, Vglut1 (Alvarez et al., 2004; Hantman and Jessell, 2010; Llewellyn-Smith et al., 2007), NK1R, PKCy
(Todd, 2010), Grpr (Sun and Chen, 2007), Som, Dyn (Duan et al., 2014; Xu et al., 2008), LMX1B, RORa, MAFA, LBX1, TLX3, PAX2, GBX1 (Bourane et al.,
2015b; Del Barrio et al., 2013; Szabo et al., 2015), Npy (Bourane et al., 2015a).
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neighboring progenitor populations. However, unbiased approaches
for identifying specific targets of TFs, such as RNA-seq coupled
with ChIP-seq, are beginning to uncover broader programs of
repression than previously appreciated. This emphasizes the
concept that there is broad transcriptional activation throughout
the neural tube, possibly involving SOXB1 factors (Bylund et al.,
2003; Kutejova et al., 2016), that requires progenitor-specific active
repression of genes for alternative cell identities. In particular, two
recent studies of three ventral neural tube TFs — NKX2.2, NKX6.1
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Fig. 4. Cross-repression between TFs in the developing neural tube.
Morphogens released from the roof plate (BMP, WNT) and floor plate (SHH)
set up gradients that impact the expression of TFs in the developing neural
tube. For example, dI1-3 (class A) neurons are influenced by BMP signaling,
while dl4-6 (class B) neurons are not. Furthermore, cross-repressive activities
between individual TFs, both direct and indirect, play an important role in
setting up boundaries between interneuron domains.
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and OLIG2 — revealed that they directly repress all alternative fates,
including dorsal cell fate programs, in the ventral neural tube
(Kutejova et al., 2016; Nishi et al., 2015). Additionally, these
repressor networks target multiple SHH signaling components,
providing negative feedback to ongoing SHH signaling,
emphasizing the dynamic relationship between TFs and signaling
pathways (Nishi et al., 2015) (Fig. 4).

Lastly, cross-repression between TFs is not just seen in setting up
progenitor domain boundaries, but is also a mechanism used in
early postmitotic populations. An example is seen in the case of the
HD factor network that includes LBX1, TLX3 and PAX2, and
defines dI4-d16 populations (Gross et al., 2002; Miiller et al., 2002).
LBX1 marks all three of these populations and is involved in
regulating PAX2 expression. However, PAX2 is only expressed in
dI4 and dI6 inhibitory neurons, while the excitatory neuronal dI5
population expresses TLX3. It turns out that TLX3 inhibits LBX1
activity, resulting in a decrease in PAX2. Thus, TLX3 provides a
switch that specifies the excitatory neuronal phenotype while
repressing inhibitory neuronal programs in these postmitotic
populations (Cheng et al., 2004, 2005). Extrinsic signaling can
also influence the levels of these TFs. For example, altering
spontaneous Ca" currents in the developing Xenopus neural tube
was shown to influence the generation of inhibitory versus
excitatory neurons and this process involved regulation of 77x3
expression by phosphorylated JUN (Marek et al., 2010; Spitzer,
2012). Thus, cross-repression between TFs that specify neuronal
subtypes in progenitors and postmitotic neurons, which can be
influenced by activity-dependent processes, is a key mechanism in
generating neuronal diversity and ensuring definitive cell identities
in the spinal cord.

Transcription factors drive genetic pathways important for terminal
neuronal phenotypes

As mentioned above, bHLH and HD TFs have been used
extensively to define and couple progenitor populations to their
terminal neuronal populations, but less is known about the identity
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of the direct downstream targets of these TFs that could connect
them to terminal differentiation processes such as axon guidance
and neurotransmitter or neuropeptide fate (Avraham et al., 2009;
Brohl et al., 2008; Cheng et al., 2004, 2005; Hobert, 2011; Pillai
et al., 2007). However, for both bHLH and HD TFs there are a few
examples of how these TFs direct terminal gene programs to specify
cell identity. For example, the HD TFs LHX2 and LHX9 in the dI1
population regulate the expression of Robo3 (previously known as
Rigl), a gene that is important for axon guidance and determining
whether axons project ipsilaterally or contralaterally (Wilson et al.,
2008). In addition, hexameric complexes containing the HD factors
ISL1 and LHX3 in the ventral neural tube have been shown to
directly regulate a battery of cholinergic pathway genes, such as
those encoding acetylcholine synthesizing enzymes and
transporters in developing motor neurons (Cho et al., 2014).
Thus, terminal neuronal phenotypes can be directly regulated by
sustained expression of HD factors in mature neurons. Furthermore,
transiently expressed TFs, such as the bHLH TFs ATOH1, PTF1A
and ASCL1, have been shown to directly regulate genes that control
terminal neuronal phenotypes in addition to their role in regulating
the expression of HD TFs (Borromeo et al., 2014; Lai et al., 2011;
Russ et al., 2015; Wildner et al., 2013). For example, PTF1A
directly regulates genes encoding GABA synthesizing enzymes and
GABA and glycine transporters required for inhibitory neuronal
functions, but it also regulates the expression of PAX2 (Borromeo
et al., 2014). Given the transient nature of expression of the bHLH
regulators, as opposed to the more sustained expression of some HD
TFs, it is possible that bHLH TFs act to set up chromatin
accessibility for later persistently expressed TFs that maintain the
expression of cell type-specific genes (Borromeo et al., 2014).

In summary, the past two decades of research have yielded
multiple fundamental principles that guide the development of
neuronal diversity in the neural tube. The use of TFs as markers to
define progenitor and neuronal populations has been essential
for uncovering strategies that direct neuronal diversity in the
developing neural tube. The combined roles of extrinsic signaling
gradients to set up patterned TF expression and oscillations in TF
expression provide instructions for generating the correct number
and composition of neurons needed for neural circuit formation.
Finally, current unbiased approaches for identifying transcriptional
targets for these TFs are extending our understanding of the
importance of repressing gene programs for all alternative fates to
eliminate ambiguities in neuronal identity. Together, these studies
have fueled our understanding of how neuronal diversity is
established in the developing spinal cord. As we move on to
discuss below, some recent and exciting studies are now beginning
to reveal how these diverse neuronal populations mature and migrate
to their final position in the spinal cord, and how their generation is
linked to their ultimate function within spinal cord somatosensory
circuits.

The migration of neurons during spinal cord circuit formation

Given the discrete molecularly defined domains that originate in the
developing neural tube during neurogenesis, one might expect that
this patterning defines the spinal cord laminar designations
described by Bror Rexed (1954). However, lineage-tracing
experiments have revealed that during development spinal cord
neurons in fact migrate long distances along the dorsal-ventral
axis from their original progenitor positions in the ventricular
zone. The mechanisms regulating this migration remain largely
underexplored. Overall, while dorsal-born neurons stay mostly in
the dorsal horn and ventral-born neurons stay mostly in the ventral

horn, the laminar structure defined by specific TF expression in the
ventricular zone during development (dI1-V3) is not maintained
into maturity and does not necessarily correspond one-to-one with
the Rexed laminae I-X defined by cytoarchitecture (Rexed, 1954)
(Fig. 5). Indeed, Afohl lineage neurons (dI1), which are born from
the dorsal-most progenitor domain, migrate ventrally to the
intermediate gray area of the spinal cord (laminae V-VII) with a
smattering of neurons even reaching the ventral horn (Miesegaes
et al., 2009; Wilson et al., 2008; Yuengert et al., 2015). In addition,
dI2 and dI3 neurons settle in the intermediate to ventral parts of the
spinal cord (Bui et al., 2013; Hadas et al., 2014; Quinones et al.,
2010). In contrast, Siml lineage neurons (V3), which mark the
ventral-most derived neurons, reside mainly in laminae VIII but
can migrate dorsally as far as laminae IV (Borowska et al.,
2013). Meanwhile, interneurons born from dorso-intermediate
regions of the neural tube (dI4/dILA-dIS/dILg) migrate both
dorsally and laterally (Glasgow et al., 2005; Gross et al., 2002;
Miiller et al., 2002; Xu et al., 2008) and interneurons born
from ventro-intermediate regions (V0-V2) migrate ventrally
and laterally (Bikoff et al., 2016; Crone et al., 2008; Gosgnach
et al., 2006; Lanuza et al., 2004; Zagoraiou et al., 2009; Zhang
et al., 2014).

This non-radial migration of developing spinal cord neurons is
different from the migration observed during cortical neurogenesis,
where a laminar structure forms from radial migration, with
neuronal specification of excitatory projection neurons resulting
from a combination of birth date and the expression of cell fate
determinants (Franco and Muller, 2013). In the cortex, inhibitory
neurons migrate from distant sites in the ventral telencephalon, far
away from those giving rise to excitatory cortical neurons (Kepecs
and Fishell, 2014). By contrast, excitatory and inhibitory neurons in

Dorsal

Ventral

Embryonic

Adult

Fig. 5. Migration of neurons during spinal cord development. Neurons
derived from discrete progenitor domains in the developing neural tube migrate
quite extensively from their original birth location and do not follow a one-to-one
correspondence with Rexed laminae (Fig. 1). For example, while dI1-dI5
neurons remain largely in the dorsal and intermediate spinal cord, dI1-dI3
neurons travel ventrally to the intermediate spinal cord, while dl4/dIL, and dI5/
diLg neurons migrate dorsally and laterally. VO-V3 populations remain largely
ventral, but the V3 domain generates neurons that extend into the dorsal horn.
Although dI6 is considered to be dorsally derived, neurons from this domain
migrate ventrally (Andersson et al., 2012). Molecular maps represent the
current known state of the field.
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the spinal cord are born from neighboring and interspersed
progenitor domains in the ventricular zone. Indeed, the Rexed
laminae of the spinal cord (I-X) do not follow any known logical
birth dating pattern like that seen in cortical lamination (Altman and
Bayer, 1984). However, the date of birth of a particular progenitor
pool has been shown to correlate with the functional properties of
that set of neurons. For example, excitatory and inhibitory neurons
derived from the LbxI lineage (dI3, dI4/dIL, or dIS/dILg) form
neurons presynaptic to motor neurons. Those innervating a flexor
muscle group are mostly born at E10.5 while those innervating an
extensor muscle group are mostly born at E12.5. Therefore, function
can partially be separated by birth date, but again the neurons reside
scattered across lamina V-VII following no particular laminar
distribution (Tripodi et al., 2011). Similarly, birth date can
distinguish the formation of Renshaw cells and Ia inhibitory
interneurons that derive from the V1 progenitor domain in the
ventral spinal cord (Benito-Gonzalez and Alvarez, 2012; Stam et al.,
2012). Altogether, although the organization of the progenitors does
not prefigure the organization of the spinal cord with regards to
lamina distribution, they do predict where particular developmental
lineages settle in the adult spinal cord and dictate some functional
properties of these neurons. Based on this, we outline a molecular-
lineage map of the spinal cord (Fig. 5), which provides a useful
framework for describing functional populations in the spinal cord.
Such a map explains why functional sets of neurons in any
particular laminae are difficult to distinguish, since several
developmental lineages can be co-mingled in a given area. While
these maps are focused on dorsal-ventral and medio-lateral
distribution, it should be noted that there are significant rostral-
caudal differences in the expression of particular neuronal subsets.

Connecting developmental identity to functional identity
within somatosensory circuits

Current molecular genetic tracing techniques in mice allow
researchers to classify neurons based on anatomical connectivity,
electrophysiological  signature, neurotransmitter/neuropeptide
expression and developmental lineage. Indeed, much of the
progress in the last several years has shown that any given
developmental lineage in the dorsal spinal cord appears to be partly
unified by its association with a particular sensory modality, even
though it may give rise to neurons with different axonal projections,
firing types and neuropeptide expression. These studies suggest,
therefore, that developmental lineage is roughly tied to sensory
function. In particular, such studies have demonstrated that
molecular markers can define specific subsets of neurons of a
particular sensory modality and that neurons that were previously
thought to be similar based on anatomical connectivity can develop
from different progenitor domains. For example, a GRPR " subset of
the dIS/dILg lineage is involved in chemical itch sensation and a
NPY " subset of the dI4/dIL , lineage is involved in mechanical itch
pathways, giving credence to the idea that there are distinct
somatosensory submodalities that are integrated via distinct spinal
microcircuits (Bourane et al., 2015a; Ma, 2012; Sun et al., 2009).
However, neurons that have been defined by anatomical
characteristics may arise from more than one developmental
population. For example, dorsal spinocerebellar tract (DSCT)
neurons derive from at least two developmental sources: dI1i and
as yet unknown sources (Yuengert et al., 2015). Similarly, Ia
inhibitory interneurons in the ventral spinal cord derive from both
V1 and V2b (Zhang et al., 2014), and propriospinal neurons that
target motor neurons and the lateral reticular nucleus have been
shown to derive from several developmental populations (dI3, V1,
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V2, V3) (Pivetta et al., 2014). These examples suggest either
evolutionary convergence of different developmental populations to
a common function or as yet unidentified divergent functions of
anatomically similar neurons. How particular developmental
populations relate to different functional sets of neurons in the
mature spinal cord is still under active investigation and the
principles behind the developmental progression of these functional
units is still emerging.

Below, we review the connectivity and function of these different
sets of neurons (summarized in Fig. 6), organized by sensory
modality. In general, dorsal developmental populations (dI1-3) and
some of the dI4/dIL, populations form networks involved in
proprioceptive and touch-activated or motor pathways involved in
smooth movement, while the dI4/dIL, and dI5/dILg populations
form much of the circuits and gate control pathways involved in
pain, thermosensation, itch and touch. The dI6 population appears
to be more ventral-motor related as it is involved in rhythmicity of
gait.

Proprioception

Proprioception, the sense of limb and body position, is important for
the timing of rhythmic movements such as walking and swimming
as well as coordination of muscle activity across joints (Akay et al.,
2014). This sense is detected by sensory neurons (see Box 2) such as
group Ia, Ib, and II fibers that detect changes in muscle length and
tension. Spinal targets of these sensory neurons, largely labeled by
parvalbumin (PV) (Arber et al., 2000; de Nooij et al., 2013), include
secondary neurons in spinal cord that send this information up to the
cerebellum (via spinocerebellar tracts, SCTs) (Brown, 1981;
Oscarsson, 1965; Yuengert et al., 2015) and motor neurons for
monosynaptic reflex arcs (Arber et al., 2000). SCTs consist of an
ipsilateral-projecting population (the dorsal SCT, DSCT) and a
contralateral-projecting population (the ventral SCT, VSCT).
Studies have shown that dIli and dI1c neurons contribute to both
the DSCT and VSCT, respectively (Bermingham et al., 2001;
Miesegaes et al., 2009; Wilson et al., 2008; Yuengert et al., 2015).
However, recent work using Afohl lineage tracing shows that the
dI1 population only makes a subset of the DSCT and VSCT,
suggesting that there are other developmental sources for these tracts
(Yuengert et al., 2015). In addition, the conditional knockout of
Atohl caudal to the lower medulla results in mice that can walk
relatively normally, but have a loss of coordinated motor function,
consistent with the idea that only a subset of proprioceptive relay
neurons have been lost (Yuengert et al., 2015). The dI2 population,
which is mostly contralateral-projecting but has some ipsilateral-
projecting neurons, is a potential candidate for the other
developmental source (Avraham et al., 2009; Sakai et al., 2012).
Analysis of dI2 axonal projections using dI2 enhancers driving
fluorescent reporters in chick shows that they can project rostrally to
the cerebellum (Avraham et al., 2009; Sakai et al., 2012) via the
lateral funiculus. In addition, dI1 and dI2 neurons have been
suggested to also contribute to the spino-olivary or anterolateral
system since their axons can project past the isthmus of the
hindbrain-midbrain border via the ventral funiculus (Gross et al.,
2002; Sakai et al., 2012); however, a more detailed analysis is
necessary to pinpoint their precise synaptic targets.

Touch

The sensation of touch plays important roles in motor control, social
interaction, and distinguishing different textures (Abraira and Ginty,
2013). This information is relayed from the skin through low
threshold mechanoreceptor (LTMR) primary sensory afferents (see
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Fig. 6. Function of neurons arising from dorsal progenitor cells. Neurons derived from a common progenitor source tend to form neurons involved in circuits
associated with a particular somatosensory function. Details of these circuits are still under active investigation. (A) Neurons from dl1, dI3 and some of the dl4
domain form networks involved in proprioception, touch-related gross motor and smooth motor control. It is unknown which circuits dI2 lineage neurons produce
(dashed line), although some groups suggest they may form SCTs or components of the ALS. By contrast, dl4/dIL, and dI5/dILg lineage neurons form circuits
involved in pain, temperature, itch and touch. Although dI6 lineage neurons are associated with the developing dorsal neural tube, their known function is in gait
motor control in the ventral spinal cord. (B) Summary of the circuits formed by dl1, dI2, dI3, dl4 and dI6 lineage neurons. It is unknown how dI1 and dI2 neurons
might project to the medulla, pons, thalamus or other targets of the ALS (?, see text for details). Itis also unknown how the axons of dI3 propriospinal neurons travel
tothe LRt (?, see text for details). (C) Summary of networks formed by dl4/dIL, and dI5/dILg neurons. A putative STT in lamina Ill-VI is of unknown developmental
origin (gray circle). Circles outlined in black represent neurons whose soma location is unknown. Excitatory synapses are indicated by solid triangles for
monosynaptic connections and open triangles for polysynaptic or unknown monosynaptic connections. Inhibitory synapses are indicated by perpendicular lines
at the end of axons. A dashed line indicates the inhibition is indirect. C, contralateral; |, ipsilateral; A, ascending; D, descending; DSCT, VSCT, dorsal/ventral
spinocerebellar tract (SCT); ALS, anterolateral system; STT, spinothalamic tract; Prop, proprioceptive; Cut, cutaneous; MN, motor neuron; LRt, lateral reticular
nucleus; PSDC, postsynaptic dorsal column; DF, dorsal funiculus; LF, lateral funiculus; VF, ventral funiculus; L, LMX1B" in lamina I; S, SOM*; R, RORa"; G,
GRPR"; V, VGLUT3"; D, DYN™; N, NPY".
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Box 2) of varying size and conduction velocities (Abraira and
Ginty, 2013). The central terminals of cutaneous low threshold
sensory afferents ascend ipsilaterally through the dorsal funiculus
(dorsal column-medial lemniscus pathway), but also send out
branches that terminate in inner laminae II (I[;) to V (Li et al., 2011).
While our understanding of how these cutaneous afferents are
processed within the dorsal horn is still incomplete, recent studies
have provided insight into the developmental origins of the neuronal
populations involved.

Two populations of dorsal interneurons have been implicated in
receiving touch information in the spinal cord. The first — dI3
neurons — mediate touch-activated grasping behavior (Bui et al.,
2013). These neurons, which are located in laminae V-VII, receive
both proprioceptive and AB-LTMR inputs and send axonal
projections ipsilaterally to motor neurons and the lateral reticular
nucleus (LRt) (Bui et al., 2013; Goetz et al., 2015; Pivetta et al.,
2014; Stepien et al., 2010). However, it is unclear if the dI3 axons
projecting to motor neurons and the LRt are the same cell with axon
collaterals traveling ipsilaterally in the dorsal and ventrolateral
funiculus, or if there are two subtypes of dI3 neurons whose axons
travel in the different funiculi (Alstermark and Ekerot, 2013;
Avraham et al., 2010; Pivetta et al., 2014). Consistent with their role
in grasping behavior, dI3 neurons synapse preferentially on motor
neurons that innervate limb muscles over those that innervate axial
muscles (Goetz et al., 2015).

A second population of neurons defined by RORa expression is
reported to be involved in detecting cutaneous inputs necessary for
light touch and corrective foot movements (Bourane et al., 2015b).
These RORo* cells are located in lamina II;,/I1I and are innervated
by primary sensory neurons that terminate in Meissner corpuscles,
Ruffini corpuscles and Merkel cells as well as D-hair afferents and
AP and A$ afferents that terminate as transverse lanceolate endings
in hairy skin. The RORa neurons are also indirectly activated by C-
fibers. Since these neurons are mostly LMX1B"* and PAX2™, they
are probably a subset of dI5/dILg VGLUT2" neurons (Bourane
et al., 2015b; Del Barrio et al., 2013). Consistent with the function
of their sensory inputs, the ablation of ROR«a" neurons in the mouse
spinal cord causes deficiencies in dynamic and static light touch, but
not pain, thermosensation or itch. In addition, even though RORo"
neurons synapse on limb MNs, VO, cholinergic neurons and V2a
interneurons, the ablation of these neurons has no effect on
locomotion, although impaired corrective foot movements on raised
beam tests are observed, suggesting that cutaneous information is
needed for fine motor control.

Altogether, these data suggest that there are layers of touch-
responsive networks that feed into gross and fine motor behavior
that ultimately connect to limb motor neurons for appropriate motor
control. Notably, eliminating Vglut2 (Slc17a6) neurotransmission
in dI3 neurons and other neurons marked by Islet/<"*" in mice,
impaired their ability to cross a horizontal ladder, decreased time
hanging from a wire grid and decreased grip strength (Bui et al.,
2013). These behavioral defects are similar to those seen in caudal
Atohl conditional knockouts (Yuengert et al., 2015), indicating that
both dI1 and dI3 neurons may feed into similar proprioceptive and
cutaneous networks that execute proper gross motor control. By
contrast, Merkel cells (light touch sensory inputs) and RORa
interneurons, which relay light touch inputs, are not required for
gross motor behavior (Bourane et al., 2015b; Maricich et al., 2012),
but RORa interneurons have been shown to play a role in fine motor
control. Therefore, it will be interesting to see how dIl and dI3
neurons may receive different sensory inputs compared with RORa.
neurons and how they might differentially send this information to
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motor neurons, potentially providing insights into circuits that direct
gross versus fine motor control.

Pain, temperature and itch

Pain, temperature and itch are first detected in the periphery by
primary sensory neurons that project primarily to laminae I/II of the
dorsal horn (Todd, 2010). The information is then relayed to
supraspinal locations by projection neurons of the anterolateral
system (ALS) whose soma reside in laminae 1 or III-V.
Importantly, excitatory and inhibitory interneurons located
throughout the dorsal horn (laminae I-V) are also required for
local processing of these sensory modalities. These excitatory
interneurons are derived mainly from the dI5/dILg lineages, which
reside throughout the dorsal horn with some ventral expression
(Szabo et al., 2015; Xu et al., 2008). Genetic manipulation of dI5/
dILg neurons as a whole (via elimination of spinal cord TLX3)
leads to defects in dynamic light touch, noxious thermosensation,
mechanical and chemical pain, and itch, but not in motor control
(Xu et al., 2013). Further dissection of dIS/dILp lineages has
shown that the RORo" subset is in part responsible for dynamic
light touch, as discussed above (Bourane et al., 2015b), while
noxious thermosensation appears to derive from a LMXIB"
population — potentially the neurons in lamina I that contribute to
the spinothalamic tract (STT) division of the ALS (Szabo et al.,
2015; Todd, 2010). Meanwhile, at least three subpopulations
(positive for somatostatin, SOM, in laminae II-III, calretinin in the
inner part of lamina II and the transient vesicular glutamate
transporter 3, VGLUT3, in laminae II-III) are important for
mechanical allodynia, a condition in which touch becomes painful
after injury (Duan et al., 2014; Peirs et al., 2015). Assignment of
the SOM" and transient VGLUT3 populations to the dI5/dILg
lineage is based on their excitatory nature and their expression of
Lbx1 during development. The origin of the excitatory calretinin
population is mixed because most, but not all cells are derived from
the LbxI lineage (Duan et al., 2014; Peirs et al., 2015). The SOM™
population makes up a large proportion (~59%) of the excitatory
interneurons in lamina II (Gutierrez-Mecinas et al., 2016). Those
residing at the lamina II/III border overlap with PKCy neurons, a
population also implicated in mechanical allodynia (Malmberg
et al., 1997; Petitjean et al., 2015). SOM™ neurons in the outer part
of lamina II and at the II/IIl border are not normally activated by
ApB low threshold mechanosensory input (touch) because of a feed-
forward inhibitory mechanism (discussed below). However, in the
context of mechanical allodynia and in accordance with the gate
control theory, it is predicted that injury diminishes the feed-
forward inhibition (Fig. 6), thus allowing AP activation of SOM™*
neurons to turn touch into pain (Duan et al., 2014). Transient
VGLUTS3 cells, which reside predominantly in lamina III, an area
of the dorsal horn associated with touch, have been suggested to
reside at an entry point to the mechanical allodynia pathway (Peirs
et al., 2015).

The neurons that relay chemical itch signals (histaminergic and
nonhistaminergic) are GRPR* and are likely dI5/dILg derived since
they reside in the superficial laminae and since conditional
knockout of TLX3 causes complete elimination of GRPR in the
spinal cord (Xu et al., 2013). The GRPR" neurons receive inputs
from unmyelinated C-fiber sensory neurons and are selectively
required for itch, as pain sensation is normal in the GRPR knockout
mouse and when GRPR™ neurons are ablated (Sun and Chen, 2007;
Sun et al., 2009). Although GRPR" neurons reside in lamina I, they
appear to be distinct from STT neurons. Further work is necessary to
understand how itch and pain sensations relate (Braz et al., 2014;
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Box 2. Major classes of primary sensory neurons
Sensory End Molecular
fiber organ Stimulus markers
Muscle
S & Aa-fibers (>40 m/s) 5 oy TRKG
E=l0) . ynamic s
g g la Muscle spindle stretch VGLUT1
0 T
5 @ Ib Golgi tendon organ Tension PV, TRKC
2 . VGLUT1
L Ap-fibers (? m/s)
. Static
1l Muscle spindle PV, TRKC
stretch VGLUTA
Cutaneous
AB-fibers (13.8-40 m/s)
Meisner's corpuscles | jght stroking
AB-RA1 Longitudinal Slow vibration NPY2R
laneolate ending
AB-RA2  Pacinian corpuscles Fast vibration NPY2R
Sustained
AB-SA1 Merkel cells indentation TRKC
AB-SA2 Ruffini endings Stretch
Ap-fielg Circumferential ending 4 qoking TRKC
(transverse lanecolate)
Ad-fibers (1.3-13.6 m/s)
. Noxious ; ;
Free nerve ending Peptidergic
A3-HTMR ; Heat
hairy and glabrous Mechanical CGRP
AS-LTMR Longitudinal Light stroki
- lanceolate ending Ight stroking TRKB
(D-hair) hairy skin Cooling
C-fibers (0.2-1.3 m/s)
~ Free nerve ending . Non-peptidergic
c-C hairy and glabrous Cooling (TRPM8)
. Peptidergic
Free nerve ending
C-H ; Heat (CGRP, TRKA,
hairy and glabrous SP, TRPV1)
. ) Non-peptidergic
Free nerve ending Noxious
C-polymodal hairy and glabrous Polymodal (MRGPRD,
B4, RET)
Longitudinal Light slow stroking Non-peptidergic
C-LTMR lanceolate ending Indentation (TH, VGLUTS,
hairy skin Cooling TAFA4)
Several different types of primary sensory neurons transmit
somatosensory information from the skin and deep tissues centrally to
the spinal cord and/or dorsal column nuclei of the dorsal column-medial
lemniscus pathway. General classification is based on size and degree
of myelination, varying from the large and heavily myelinated Ao neurons
that innervate muscle and transmit proprioception, to the small
unmyelinated C-fibers that transmit temperature, pain, itch and some
forms of touch. These classes are further divided into groups based on
their response to innocuous and noxious mechanical, chemical and
thermal stimuli in vivo, whether they express neuropeptides or bind 1B4,
and their pattern of peripheral innervation (Cain et al., 2001; Koltzenburg
et al., 1997; Li et al., 2011; Molliver et al., 1997). Most AB-LTMRs
innervate end organs such as Meissner's corpuscles, Pacinian
corpuscles, Ruffini endings and Merkel cells. Others surround hair
follicles as longitudinal lanceolate or circumferential endings. With the
exception of C-LTMRs and As-LTM (D-hair), which also form longitudinal
lanceolate endings, most C- and Ad-fibers innervate skin as free nerve
endings. RA, rapidly adapting; SA, slowly adapting; HTMR, high-
threshold mechanoreceptor; LTMR, low-threshold mechanoreceptor.

Jeffry et al., 2011; Ross, 2011), and identifying further
subpopulations of the dI5/dILg lineage should help catalyze this
discussion.

Lastly, while it is now known that many of the neurons relaying
pain and itch sensations are dI5/dILg derived, the origin of STT
neurons from deeper laminae (II1-V) are still unknown (Szabo et al.,
2015). Additionally, although our discussion has focused on
neuronal populations whose developmental lineage is most
evident, the developmental source of neurons relaying major
pathways for pain and thermosensation is still not completely
understood. Teasing out the functional contributions of additional
subsets of dI5/dILg lineage neurons will require a careful molecular
and temporal (early versus late born) analysis to fully understand the
developmental origins of functional circuit units as has been done
for some of the neurons contributing to mechanical pain and itch.

Inhibitory neurons

Inhibitory neurons are necessary to gate the flow of excitatory
information coming in from the different somatosensory modalities
(pain, thermosensation, itch, touch and proprioception). The entire
set of inhibitory neurons in the dorsal spinal cord is derived from a
Ptfla-expressing population that makes dI4 and late-born dIL,
neurons (Glasgow et al., 2005). These Ptfla lineage neurons are a
mixture of GABAergic and glycinergic neurons. Ablation of a
subset of GABAergic neurons leads to defects in goal-directed
reaching behavior and increased scratching behavior (Fink et al.,
2014), while ablation or inhibition of glycinergic neurons (many of
which also release GABA) leads to increased sensitivity to
mechanical pain, thermal sensation and itch (Foster et al., 2015).
While these studies have provided important insights, it should be
noted that the manipulations could affect a large number of
inhibitory neurons that comprise numerous subpopulations. As
such, researchers have begun to dissect out the different
contributions of subsets of dI4/dIL, neurons to these different
somatosensory behaviors, as has been done for the dI5/dILg
population. For example, the defect in goal-directed reaching
behavior has been attributed to a set of GABApre, GlyT2™ neurons
that control the gain of proprioceptive sensory neurons through
presynaptic inhibition (Betley et al., 2009; Fink et al., 2014)
(Fig. 6B). Furthermore, combinatorial transcription factor
expression within the Ptfla lineage directs the expression of
distinct neuropeptide fates. Expression of Lhx1/5 is required for the
NPY" fate, while expression of Neurodl/2/6 is required for the
dynorphin-expressing (DYN") fate (Brohl et al., 2008). The NPY™*
dI4/dIL 4 lineage mainly in laminae III-IV has recently been shown
to gate itch behaviors, specifically mechanical itch as opposed to
chemical-evoked itch (histaminergic and non-histaminergic)
(Bourane et al., 2015a) whereas the DYN' fate has been
implicated in gating mechanical pain and chemical itch (discussed
in the next section).

Manipulations of the dIL , dynorphin-expressing (DYN™) subset
of inhibitory neurons in laminae I-III by two different groups
suggest two potential roles for these neurons (Duan et al., 2014;
Kardon et al., 2014; Liu et al., 2007; Ross et al., 2010; Xu et al.,
2008). Genetic ablation of all developmental and adult DYN™
inhibitory interneurons in the dorsal horn produced a selective and
marked increase in mechanical pain sensitivity (Duan et al., 2014)
consistent with a role for the cells in gating mechanical allodynia. In
contrast, deletion of the BhlhbS5 transcription factor in the dorsal
horn of mice resulted in the developmental apoptosis of mainly the
DYN* inhibitory population [~90% reduction in DYN™ cells when
assessed by immunohistochemistry (Kardon et al., 2014) and ~50%
reduction when assessed by in situ hybridization (Duan et al.,
2014)]. Interestingly, the most striking somatosensory phenotype of
the Bhlhb5 knockout mice was an increase in spontaneous
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scratching and histamine-dependent and independent itch (Ross
et al, 2010). In terms of pain, the second phase (central
sensitization) of the formalin test was increased, which may also
reflect an increase in itch (Ross et al., 2010). A role for the DYN"
inhibitory interneurons in suppressing itch was suggested by the
observation that intrathecal delivery of kappa opioid agonists and
antagonists inhibit and activate chemical-induced itch, respectively
(Kardon et al., 2014). The connectivity of DYN" neurons with
peripheral sensory neurons was also examined in each study. Duan
et al. reported that DYN™ neurons receive AB low threshold input
and likely form a feed-forward inhibitory gate onto the dI5S/dIL A
SOM* pain neurons, consistent with the emergence of mechanical
allodynia with DYN™ cell ablation. In contrast, Kardon et al. (2014)
reported that DYN" neurons receive input from many types of C-
fibers including those activated by heat, pain, chemical and cooling
(i.e. afferents that express TRPV1", TRPA1" and TRPMS"),
suggesting that these neurons form a gate for the inhibition of itch
by chemical and thermal counter-stimuli. Indeed, menthol failed to
inhibit itch in the Bhlhb5 knockout mice (Kardon et al., 2014).
Results from these studies raise the question as to whether DYN™
neurons have a role in mechanical pain, chemical itch, or both.
Differences in the methods used to manipulate the neurons (i.e.
adult ablation versus pharmacological or genetic knockout) or in the
number or type of neurons manipulated, may account for the
different behaviors observed. Selective and reversible activation or
inhibition of the inhibitory DYN™ population by designer receptors
or optogenetics may help to further define the precise role of the
neurons in somatosensation.

Notably, overall motor function (as assayed by rotarod, grip
strength and ladder rung behaviors) remains mostly intact in all of
these manipulations of the dI4/dIL 4 lineage (Duan et al., 2014; Fink
et al., 2014; Foster et al., 2015; Kardon et al., 2014). This suggests
that dI4/dIL  lineage inhibitory neurons are not necessary for gross
motor function and, therefore, that inhibitory neurons in the ventral
spinal cord are primarily responsible for gross motor behavior
(Arber, 2012; Goulding et al., 2014). However, it has been shown
that mice null for GbxI, which marks a subset of dIL, neurons
(John et al., 2005), show no aversive behaviors but do have
abnormal hindlimb gait (Buckley et al., 2013; Meziane et al., 2013
preprint). Given that this was a complete Gbx/ knockout, and
knowing that Gbx! is expressed more broadly in the ventricular
zone of the caudal neural tube and regions that will develop into the
hindbrain and inhibitory cortical interneurons (Buckley et al., 2013;
John et al., 2005; Rhinn et al., 2004), the manipulation of Gbx/
lineage neurons specifically in the spinal cord is necessary before a
definitive contribution of dIL  neurons to the gait phenotype can be
concluded. Furthermore, as analyses of subsets of Ptfla lineage
neurons become more refined, the full extent to which inhibitory
neurons gate or attenuate somatosensory inputs will be revealed.
Altogether, these findings argue that different molecularly defined
subsets of inhibitory neurons derived from the dI4/dIL, population
can gate different somatosensory modalities. Uncovering how the
dI4/dIL A lineage is subdivided could provide further insights into
how specific inhibitory sensory microcircuits in the spinal cord
develop.

Lastly, a set of inhibitory neurons coming from the dI6
population migrates ventrally and is involved in coordinating gait
(Andersson et al., 2012). A natural mutation of the dI6 marker,
DMRT3, in horses appears to affect the synchrony of gait types a
horse can perform. It is likely that these neurons form a contralateral
and ipsilateral set of premotor neurons that have preferences in
targeting different subsets of motor neurons and are rhythmically
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active to coordinate gait (Andersson et al., 2012; Dyck et al., 2012;
Goetz et al., 2015).

Conclusions

The developing dorsal spinal cord has been an important model
system for understanding the molecular mechanisms that direct cell
type specification and differentiation. Seminal work by numerous
groups has uncovered the roles of combinatorial TF expression,
morphogen  gradients, oscillatory  expression, repressive
mechanisms and TF target genes in setting up discrete progenitor
domains that define distinct neuronal cell types. The use of these
molecular markers to identify how the lineage of a particular
progenitor domain is incorporated into neuronal networks is proving
to be a valuable tool for understanding how somatosensory and
motor circuits develop, organize and function. Overall, these studies
have shown that the dorsal progenitor domains (dI1-6) define
neurons generally in the dorsal horn, but that some neurons from
these lineages migrate to more ventral regions. Furthermore, the
neurons that stem from these domains do not maintain their original
dorsal-ventral positioning, but travel quite extensively throughout
the dorsal horn with no obvious spatial logic. Lastly, in general,
there is both convergence and divergence of both somatosensory
modality and developmental lineage. Indeed, a particular progenitor
domain can generate neurons belonging to several somatosensory
submodalities and neurons that serve in the same somatosensory
modality may come from different developmental lineages,
although there are some general trends (see Fig. 6), implying that
developmental lineage is roughly tied to sensory function.

Future work is needed to understand how different developmental
populations set up the neuronal networks in the dorsal spinal cord
and confer unique functions for the neurons they generate. Such
work could help illuminate how much crosstalk there is between
different sensory modalities such as pain, touch and itch that shape
our sensory perception. In addition, how different networks in the
dorsal spinal cord feed into the motor networks of the ventral spinal
cord is still an open question. For example, both V2a neurons and
GABApre dI4/dIL, lineage neurons have been implicated in
reaching behavior (Azim et al., 2014; Fink et al., 2014). However,
differences in the reaching phenotype suggest that these neurons
may be involved in different microcircuits that guide this behavior.
As the field moves forward, such careful phenotypic analyses are
necessary to allow for accurate functional interpretation of spinal
cord neurons in somatosensory behavior.

In the next 10 years, we anticipate that great progress will be
made in understanding how somatosensory circuits develop and
function. The spinal cord is somatotopically organized, with
hindlimb information being processed at lumbar levels and
forelimb information at cervical levels. What is the developmental
logic that coordinates populations of neurons along the dorsal-
ventral and rostral-caudal axes? Furthermore, how does a progenitor
population specify a particular function for a set of neurons? How
many different subtypes exist within a given developmental
population? While progress has been made on all these fronts, we
are just at the tip of the iceberg. Indeed, extensive molecular analysis
of the V1 population in the ventral spinal cord has identified up to
50 transcriptionally defined subsets that distinguish neuronal
populations with unique physiological properties and connectivity
(Bikoffetal., 2016; Gabitto et al., 2016). Similarly, identification of
molecularly and developmentally defined populations in the dorsal
horn is beginning to distinguish microcircuits that mediate particular
somatosensory behaviors, such as mechanical allodynia and
proprioception (Duan et al., 2014; Peirs et al., 2015; Yuengert
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etal., 2015). Altogether, identifying these circuits will establish the
foundation for developing new therapies to treat neuropathic
conditions and spinal cord injury. For example, understanding the
circuits that underlie pain or itch could lead to targeted therapies that
reduce activation of these pathways. Furthermore, knowing how
these circuits are built and wired will serve as the basis for directed
regeneration of specific pathways for either spinal cord injury or
neurodegenerative diseases. Basic understanding of how various
tissues develop has already influenced the fields of regenerative
medicine and cancer. Likewise, seminal discoveries are anticipated
from the new insights gained by studying the development of
somatosensory circuits.
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