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Eye development and photoreceptor differentiation in the
cephalopod Doryteuthis pealeii
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ABSTRACT
Photoreception is a ubiquitous sensory ability found across the
Metazoa, and photoreceptive organs are intricate and diverse in their
structure. Although the morphology of the compound eye in
Drosophila and the single-chambered eye in vertebrates have
elaborated independently, the amount of conservation within the
‘eye’ gene regulatory network remains controversial, with few
taxa studied. To better understand the evolution of photoreceptive
organs, we established the cephalopod Doryteuthis pealeii as a
lophotrochozoan model for eye development. Utilizing histological,
transcriptomic and molecular assays, we characterize eye formation
in Doryteuthis pealeii. Through lineage tracing and gene expression
analyses, we demonstrate that cells expressing Pax and Six genes
incorporate into the lens, cornea and iris, and the eye placode is the
sole source of retinal tissue. Functional assays demonstrate that
Notch signaling is required for photoreceptor cell differentiation and
retinal organization. This comparative approach places the canon of
eye research in traditional models into perspective, highlighting
complexity as a result of both conserved and convergent
mechanisms.
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INTRODUCTION
In On the Origin of Species, Darwin marveled at the capacity of
natural selection to produce the eye as an ‘organ of extreme
perfection and complication’ (Darwin, 1859). It is the exacting
intricacy of photoreceptive organs that provides an elegant system to
study the emergence of complexity. The capacity for photoreception
is a sensory tool that evolved early in the Metazoa (Schnitzler et al.,
2012). The extent of this capacity ranges from single photoreceptor
cells, pigmented eyespots and cups, to complicated organs that
focus, reflect and absorb light to resolve images (Land and Fernald,
1992). In the Bilateria, high-resolution vision is known to have
evolved in only a few animal groups, including vertebrates,
arthropods and cephalopods (Nilsson, 2013). The arthropod eye is
a compound eye composed of many individual ommatidial units
containing multiple photoreceptor cells and a lens. Both the
vertebrate and the cephalopod eye are single-chambered, with a

single lens at the anterior of the eye and a cup-shaped retina in the
posterior. Despite the use of a similar optical strategy, these two eye
structures have evolved independently (Fernald, 2006).

The incredible diversity in eye shape and photoreceptor cell
structure in animals led Salvini-Plawen and Mayr to conclude that
the eye had evolved independently ∼40-65 times (von Salvini-
Palwen and Mayr, 1977). With the expansion of molecular tools,
however, extensive genetic analyses in Drosophila and vertebrates
demonstrated that many orthologous genes and signaling pathways
are necessary for eye formation. The Pax-Six-Eya-Dach network
[also known as the retina determination network (RDN)] occupies
the nexus of this genetic homology. Eyeless, twin of eyeless (Pax6
ortholog), sine oculis (Six1 and Six2 ortholog), eya and dac (Dach
ortholog) are all necessary for eye development in Drosophila
(reviewed by Kumar, 2010). They each can induce ectopic eye
formation when mis-expressed in the antennal imaginal disc. In
vertebrates, Pax6, Six3 and Six6 (optix homologs), Eya1, Eya2,
Eya3 and Dach1 are each known to play a role in eye development.
Among these, Pax6, Six3 and Eya3 can also induce ectopic retina
and lens formation when mis-expressed in vertebrates (reviewed by
Tomarev, 1997; Arendt, 2003; Nilsson, 2004; Kumar, 2010;
Wagner, 2014).

The Notch signaling pathway also plays essential roles during
retina and lens formation in vertebrates and Drosophila. Notch
activity regulates cell cycle progression within the retina and lens,
and regulation of Notch activity is necessary for maintenance of
progenitor cell populations (Livesey and Cepko, 2001; Charlton-
Perkins et al., 2011a). In vertebrates, retinal progenitor cells
deficient in Notch signaling prematurely exit the cell cycle, which
results in a smaller retina and a higher proportion of early-born cell
types (Tomita et al., 1996; Dorsky et al., 1997). In Drosophila, loss
of Notch signaling reduces imaginal disc proliferation and can lead
to a smaller eye (Cagan and Ready, 1989; Go et al., 1998). Notch
also regulates photoreceptor cell fate and ommatidial polarity (Blair,
1999).

This extensive amount of similarity has led many to conclude that
all photoreceptive organs have a shared ancestry (Halder et al.,
1995; Gehring, 1996, 2005; Gehring and Ikeo, 1999; Tomarev,
1997). Others suggest that, despite the inclusion of the same gene
families, the regulatory networks underlying eye development in
vertebrates and Drosophila are fundamentally different in their
connectivity and are therefore likely to have evolved independently
(Wagner, 2014). To address the homology of photoreceptive organs
in the Bilateria and to better recognize the novelty found in each of
these systems, it is necessary to understand the functional
relationships between these genes in taxa beyond Drosophila and
vertebrate models. A comparative approach that includes
lophotrochozoan species sheds light on shared molecular
mechanisms that operate during organ formation and informs an
understanding of the conservation of regulatory modules throughout
the Bilateria.Received 22 December 2015; Accepted 25 July 2016
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The squid Doryteuthis pealeii is a tractable lophotrochozoan
model for studying complex eye development and understanding
these networks. Cephalopods have the largest and most complex
invertebrate nervous system and Doryteuthis pealeii has long
been the subject of neurobiological and neurophysiological
research (e.g. Hodgkin and Katz, 1949; Hodgkin and Huxley,
1952a,b; Hodgkin et al., 1952; Vale et al., 1985a,b; Brady et al.,
1982; Allen et al., 1982). Moreover, adult neuroanatomy of
multiple cephalopod species has been well described (Young,
1962a,b, 1971; Nixon and Young, 2003; Wild et al., 2015).
Despite these elegant studies, gene expression is only now being
explored during development, and detailed molecular and
genomic analyses of cephalopod organogenesis are in their
infancy (Tomarev et al., 1997; Hartmann et al., 2003; Lee et al.,
2003; Baratte et al., 2007; Farfán et al., 2009; Navet et al., 2009;
Buresi et al., 2012, 2013, 2016; Ogura et al., 2013; Focareta
et al., 2014; Peyer et al., 2014; Wollesen et al., 2014; Yoshida
et al., 2014; Shigeno et al., 2015; Wollesen et al., 2015). The
cephalopod eye is a single-chambered eye generated from an
internalization of the optic placode (Gilbert et al., 1990). The
single lens is produced by populations of specialized lentigenic
cells and is located at the anterior of the eye (West et al., 1994,
1995). The retina, composed of rhabdomeric photoreceptor cells
and a support cell layer, is located at the posterior of the eye
(Zonana, 1961; Wild et al., 2015). Photoreceptor outer segments
are arrayed anteriorly and thus, are the first region of the retina to
be exposed to light. This differs from the vertebrate eye where
light must traverse the retina prior to interacting with
photoreceptors. In the cephalopod, photoreceptor nuclei are
located at the posterior of the retina, and photoreceptor axons
form a plexiform layer behind this nuclear layer, exiting the eye
and synapsing directly on the optic lobe (Young, 1971; Wild
et al., 2015). General descriptions of eye development in various
cephalopod species have been documented, but an in-depth
molecular and cellular understanding of major morphogenetic
and cell differentiation events is lacking (Arnold, 1965, 1966,
1967; Arnold and Williams-Arnold, 1976; Gilbert et al., 1990;
Marthy, 1973; Yamamoto, 1985; Yamamoto et al., 1985; Naef,
1928). Recently, the cephalopod genomic infrastructure was
greatly improved by publication of the Octopus bimaculoides
genome and a few transcriptomic databases (Albertin et al.,
2015; Alon et al., 2015; Yoshida, 2011; Wollesen et al., 2014;
Bassaglia et al., 2012). Despite these improvements, however,
few sequencing efforts have informed our understanding of
embryonic development or organogenesis.
Here, we utilize a variety of histological, transcriptomic and

molecular assays to identify developmental landmarks of eye
formation in D. pealeii. This lophotrochozoan resource
demonstrates the power of comparative developmental biology
and begins to unravel mechanisms underlying the emergence of eye
complexity. For example, despite the independent origin of the
cephalopod lens, many orthologous transcription factors involved in
lens development in Drosophila and vertebrates are expressed in
lens progenitor cells of the cephalopod, underscoring that
transcriptional cascades are often convergent in their functions
across the Bilateria. We also demonstrate that Notch maintains a
progenitor pool in the cephalopod retina, as it does in vertebrates
and Drosophila. This is the first evidence that Notch may be acting
in a conserved manner in the context of a pseudostratified
neuroepithelium in the Lophotrochozoa. Ultimately, this
highlights a possible common cellular mechanism to generate
neuronal diversity in neuroepithelia within the Bilateria.

RESULTS
Morphogenesis, growth and patterning of the cephalopod
eye
To provide a foundation to build a molecular and cellular
understanding of eye development in D. pealeii, it was necessary
to generate a detailed histological description of eye formation. All
staging nomenclature follows Arnold (1965). Eye development
commences at stage 16 with the formation of bilateral placodes
shortly before epiboly is complete (Fig. 1). Beginning at stage 18,
these placodes are internalized when a lip of cells forms around the
periphery of the placode and progressively closes, fusing centrally at
stage 21 to form the optic vesicles (Fig. 2; Fig. S1) (Gilbert et al.,
1990; Marthy, 1973). Once the vesicle is closed, the eye continues
to grow and the retina begins to curve. At stage 22, cells at the
anterior of the vesicle begin to differentiate into the primary and
secondary lentigenic cells, which project cellular processes that
form the segmented extracellular lens (Fig. 3A and Fig. 4) (Arnold,
1967; West et al., 1995). These cells have a distinct nuclear
architecture and are enriched in filamentous actin (Fig. 2, Fig. 3B
and Fig. 4). At hatching (post stage 29), the retina is primarily
composed of two cell types: photoreceptors and glial-like support
cells (Young, 1971).

Between stage 18 and stage 26, the neuroepithelium appears as a
single layer with no obvious morphological distinction between
photoreceptors and glial-like support cells. At stage 27,
photoreceptor nuclei in the posterior retina begin to segregate to
the basal side of the epithelium. This segregation initiates
asymmetrically behind the basal membrane, suggesting a
progressive wave of differentiation moving from the posterior of
the animal to anterior (Fig. 2, Fig. 3C and Fig. 4) (Yamamoto, 1985;
Yamamoto et al., 1985). Photoreceptors penetrate the basal
membrane, extending through the support cell layer, forming
outer segments on the apical side of the retina. Outer segments are
prominently labeled with Phalloidin. Photoreceptors synapse
directly on the optic lobe (Young, 1971; Wild et al., 2015). At
hatching, the eye is functional (Gilbert et al., 1990).

The apical side of the retinal neuroepithelium faces anteriorly and
progenitor cells consistently undergo mitosis on the apical side of
the retina (Fig. 2, Fig. 3C and Fig. 4) similar to neuroepithelia in
other organisms (Baye and Link, 2008). To determine the pattern
of progenitor cell cycle exit in the retina, we performed a series of
BrdU incorporation assays. All cells of stage 19-25 retinae
incorporate BrdU (Fig. 5A-D). At stage 25, two populations of
BrdU+ cells are detected (Fig. 5D). Cells on the basal side of the
retina incorporate BrdU, as expected if they are in S-phase during
the exposure window. Mitotic cells on the apical side of the retina
are also BrdU+, suggesting that they passed through S-phase earlier
in the exposure window. At stage 27, once photoreceptor nuclei
have migrated behind the basal membrane, they no longer
incorporate BrdU, suggesting that they are not proliferative
(Fig. 5E-G). Interestingly, the support cell layer continues to
incorporate BrdU until at least 2 days post-hatching (Fig. 5G) and
nuclei are observed crossing from one side of the basal membrane to
the other (Fig. 4). Without in vivo tracking, it is unknown whether
these nuclei move from the support cell layer to the photoreceptor
cell layer across the basal membrane, or vice versa. However, given
the lack of BrdU incorporation by nuclei on the photoreceptor side
of the basal membrane and the rapid growth of the eye after
hatching, newly generated photoreceptors may arise from support
cell layer-derived cells.

Apoptosis contributes significantly to eye formation in
vertebrates and Drosophila and we were interested to determine
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whether cell death played a role in eye morphogenesis in squid
(Baker, 2001; Vecino et al., 2004). Surveys for apoptosis, using
TUNEL as a marker, did not reveal an appreciable number of
apoptotic cells during eye development (Fig. 6).

Lineage tracing of the eye placode and surrounding tissues
identifies retina, lens and brain progenitors
Previous studies suggested fates for specific populations of cells in
and around the eye placode of various cephalopod species, but no
detailed lineage tracing study exists (Yamamoto et al., 2003;
Marthy, 1987). These data are crucial to correlate gene expression

datawith distinct fates in the eye and compare neurogenesis between
cephalopods and other systems. With this in mind, we generated a
fate map of the eye placode and surrounding tissue. Populations of
cells were labeled with DiI at stage 18 (Fig. 7A,B), immediately
documented (Fig. 7C) and embryos were grown to hatching stage, at
which point they were fixed and photographed (Fig. 7D). A subset
were sectioned and imaged by confocal microscopy (Fig. 7E). A
total of 246 embryos were labeled and scored as whole mounts, and
74 were sectioned and imaged. Representative examples of whole-
mount and section data are presented in Fig. 8. Lineage tracing
confirmed some previously identified cell contributions to eye and

Fig. 1. Embryonic stages and
transcriptome of Doryteuthis pealeii.
Sytox Green-stained embryos at stages
16-27 (Arnold, 1965). Posterior view. Each
stage is sequenced to generate a whole-
embryo transcriptome. Scale bar: 1 mm.

Fig. 2. Staging series of eye development in D. pealeii. Embryonic stages 18-29 in cross-section. Anterior of the animal is up in all images. Stage 18: placode
has formed and the lateral edge of the lip is present. Stage 19:medial and lateral lip are present and placode neuroepithelium formed. Stage 20: lips of the placode
are apposed and apical divisions detected in the retina. Stage 21 early (E): placode lips fuse forming the optic vesicle. Stage 21 late (L): pseudostratified
epithelium of the retina grows along the apical-basal axis. Stage 22: retina begins to curve and lens is apparent. Stage 23: plexiform layer in the optic lobe is
apparent. Stage 24: lentigenic cell morphology becomes obvious. Stage 25: the lens has grown and is teardrop shaped, outer segment formation of photoreceptor
cells beginning. Stage 26: F-actin accumulation in the lentigenic cells. Stage 27: basal membrane in the retina begins to form and photoreceptor nuclei segregate
at the posterior retina. Stage 28: the basal membrane and a layer of photoreceptor cell nuclei span the retina. Vasculature is present. Stage 29: photoreceptor cell
layer has grown significantly and outer segments are substantial. Scale bar: 50 μm. DNA is stained with Sytox Green and F-actin with Phalloidin.
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brain lobe primordia, but also identified new progenitor populations
(Yamamoto et al., 2003). Cells labeled within the placode were
found primarily in the retina and placode cells were the only cells
that contributed to the retina (Fig. 8A,G). Punctate label from
placode cells was also detected in the optic lobe, primarily in the

plexiform layer. While this can probably be attributed to transfer
along photoreceptor axons, the possibility that placode cells
incorporate into the optic lobe cannot be discounted. Interestingly,
cells at the lip of the placode incorporated only into lens and iris
tissue (Fig. 8B,H). These data suggest that the cephalopod eye is
composed entirely of cells derived from these two neighboring
tissues: the placode and placode lip.

Optic lobe primordia cells are located dorsal and lateral to the
placode. The cells labeled in the more medial portion of this optic
lobe-fated region also incorporate into the anterior chamber organ
(Fig. 8C,D,I,J). Cells medial and medial-ventral to the placode
incorporated into the supraesophageal mass (cerebral ganglia),
buccal mass and buccal ganglia (Fig. 8E,K). Cells ventrolateral to
the placode incorporated into the subesophageal mass (pedal
ganglia) (Fig. 8F,L). See below for placode-stage lineages mapped
onto three-dimensional rendering of neuroganglia in a hatching
stage embryo generated through microCT scanning (Kerbl et al.,
2013).

Development of embryonic transcriptomic resources for D.
pealeii
Although next-generation sequencing has advanced non-model
systems, large-scale genomic infrastructure and in-depth
transcriptomic databases in the Lophotrochozoa, remain lacking.
With this in mind, and our goal of identifying genes and regulatory
networks that facilitate eye development in Doryteuthis pealeii,
it was necessary to establish a transcriptomic database for
embryogenesis and eye morphogenesis. We could then evaluate
candidate eye development genes en masse and correlate temporal
expression to focus our expression and functional analysis. To
achieve this, a pooled embryonic transcriptome of 12 stages of

Fig. 3. High magnification staging series of D. pealeii embryos. (A) Stage
22. Retina to the left (R), lens and iris to the right (LCI). White arrowhead
indicates primary lentigenic cells; yellow arrowhead, secondary lentigenic
cells. (B) Stage 27. Retina (R) and lens (L). Blue arrowhead indicates F-actin
enrichment in outer segments; white arrow indicates lentigenic cells. (C) Stage
27 retina. Red arrow indicates photoreceptor nuclei segregating at the posterior
of the retina; green arrows indicate the basal membrane. Yellow box surrounds
cells that have just divided on the apical side of the retina.

Fig. 4. Histological staging series ofD. pealeii embryos. Boxed regions are high-magnification images of developing lens and retina shown below each stage.
Stage 21 lens: yellow arrowhead indicates lentigenic cells; green arrow, lentigenic cell processes; pink arrow, formation of vitreous cavity. Stage 23 lens: pink
asterisk, mitotic cell on apical side of retina; black arrow, primary lentigenic cells (LC1); yellowarrowhead, secondary lentigenic cells (LC2); green arrow, lentigenic
cell processes. Stage 25 lens: yellow arrowhead, secondary lentigenic cells; green arrow, lentigenic cell processes and lens. Stage 25 retina (R): apical (A) and
basal (B) axis is labeled. Stage 27 retina: pink arrow, newly born photoreceptor nuclei (PC); white arrowheads, basal membrane (BM); yellow arrow, nucleus
crossing the basal membrane. Hatching lens: yellow arrow, limiting membrane. Hatching retina: white arrowheads, basal membrane; yellow arrows: nuclei
crossing the basal membrane; green arrow, retina plexiform layer. I, iris; LC3, tertiary lentigenic cells; LCI, lens, cornea and iris; OS, outer segment (also known as
distal segment); SC, support cell layer; Y, yolk.
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development (stages 16-27) was sequenced, assembled de novo and
annotated. In addition, RNA-seq data from dissected placode tissue
and eye and optic lobe tissues were generated from five
developmental stages (19, 21, 23, 25, 27). Each developmental
stage was sequenced in biological triplicate (see Materials and
Methods for details).

The eye is unusual because it contains cells with conserved
functions, such as opsin-expressing photoreceptor cells, in the
context of a complex and independently evolved organ. As a result,
we expected to identify both conservedmolecular markers as well as
genes previously unassociated with photoreceptive organs. Wewere
able to assess the presence of candidate eye genes as a first step to
determine homoplasy or conserved functionality in cell and tissue
identity networks. Moreover, the time-course RNA-seq data
provided a quantitative assessment of gene expression over time.

During analysis, we generated a heatmap of transcription factors
with dynamic expression (Fig. 9). Looking closely at two
representative clusters, genes involved in eye development in
other systems are well represented. For example, Lim factors, Pou
family members and Barh are known to be essential in many
neurodevelopmental contexts and are important in vertebrate and
Drosophila eye development (Hobert and Westphal, 2000;
Rosenfeld, 1991; Reig et al., 2007). Pou expression has also been
shown in late stage development of the eye in the squid Idiosepius
notoides (Wollesen et al., 2014). cut is necessary for cone cell
differentiation and lens formation in Drosophila and neural retina-
specific leucine zipper protein (Nrl) functions during vertebrate
retinal cell differentiation (Mears et al., 2001; Nepveu, 2001).
Interestingly, the transcription factor Ovo, enriched early in our
dataset, functions during eye regeneration in the planarian
Schmidtea mediterranea (Lapan and Reddien, 2012). Importantly,
the expression of these genes does not differentiate between
conserved and convergent functions within eye development and
despite the occurrence of many transcription factors necessary for
eye development in other systems, we also identified a number that
are as yet unexplored in the visual system (i.e. Abdominal-B/Post2,
Knot, Hhex, Hepatic leukemia factor). These genes may have
evolved a novel function in cephalopods, or we may be witnessing a
cryptic function previously unidentified in other systems.

Expression of genes involved in vertebrate and Drosophila
eye development
This developmentally focused transcriptome provides broad
coverage of candidate transcription factors, transcriptional
cascades and signaling pathways known to be involved in
Drosophila and vertebrate eye development. As discussed above,
the Pax6 transcriptional cascade (RDN) and Notch signaling
pathway both play essential roles during eye formation in other
taxa and these genes displayed interesting changes in expression
over time (Fig. 10). Pax6, Six genes, Prospero and Eyes absent all
were more highly represented at early stages in our dataset.
Expression of Notch pathway genes was also interesting. Notch was
expressed throughout eye development and was enriched at later
stages. One Delta family member and all Hes family members,
except for Isogroup00902, mirrored Notch expression.

We were interested in these candidate eye genes and how Notch
might be functioning during neurogenesis. To begin to address
this, we cloned Pax6, Six3, Six2, Pax2, Eyes absent, Notch,
Hes (Isogroup00502) and Prospero. Sequence alignment and
maximum-likelihood phylogenetic analyses confirmed orthology
(Fig. S3). In situ hybridizations identified spatial patterns of
expression (Fig. 11; Fig. S2), which were then correlated with the

Fig. 5. BrdU incorporation assays reveal spatial patterns of cell
proliferation during retina development. Sytox Green stains DNA and BrdU
staining is yellow. Embryos were pulsedwith BrdU for 3 h and immediately fixed.
(A-C) BrdU incorporation is detected broadly throughout the retina at stages 19,
21, and 23. (D) BrdU incorporation begins to segregate to cells on the apical and
basal sides of the epithelium. (E) Photoreceptor cell nuclei located behind the
basal membrane no longer incorporate BrdU. (F) Support cells and lens and iris
continue to incorporate BrdU. (G) Two days post-hatching, support cell layer and
lentigenic cells continue to incorporate BrdU. Scale bar: 50 μm. L, lens; LC,
lentigenic cells; OL, optic lobe; PC, photoreceptor cell nuclei; P, placode; PL,
placode lip; R, retina; SC, support cell nuclei; Y, yolk.
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stage 18 fate map, enabling us to predict the terminal fates of cells
expressing specific genes (Figs 11 and 12).
At stage 18, Notch, Hes, Prospero and Eyes absent were each

expressed in cells of the placode, which give rise to the retina.Notch
expression was detected asymmetrically on the ventral side of the
placode and also in the surrounding extraocular tissue. Hes
expression was variable; at stage 18, Hes was detected in only a
portion of the placode, while at stage 19, Hes was expressed
throughout the entire placode (Fig. 11). Hes expression in the retina
continued through stage 27 (Fig. S2F; Figs 11 and 13).Prosperowas
expressed in a punctate pattern at the ventral edge of the placode.
Eyes absent was expressed throughout the placode, but
asymmetrically, with more signal detected on the ventral edge.
Eyes absent was also detected in tissue surrounding the placode.
Pax6, Pax2 and Six3 are all expressed in the lip cells surrounding the
placode. These cells give rise to the lens and iris. Pax6 expression
was detected broadly, dorsal and lateral to the placode, in the region
of cells contributing to the optic lobe. Six3 was expressed only
medial to the placode, in the region contributing to the cerebral
ganglia. Pax2 was expressed in cells of the lip as well as in distinct
stripes dorsal to the placode, in the optic lobe progenitor region.Pax2
was also prominently expressed in the developing arms. Finally, Six2
was expressed in the tissue just ventral and lateral to the placode.
Interestingly, while Pax and Six genes were expressed in the retina at
later stages of development (Fig. S2A,B,D,E), expression was not
detected in the placode at stage 18. However, we cannot rule out the
possibility that they are expressed at a level below the threshold for
detection. Fig. 12 summarizes placode stage gene expression
patterns associated with cell fates in the hatching stage embryo.

Loss of Notch signaling leads to retina disorganization and
premature cell cycle exit
Our lineage-tracing data confirmed that placode tissue incorporated
into the retina, and gene expression studies indicated that Notch

pathway members were expressed in placode cells. Thus, we were
interested in whether Notch signaling functioned during retina
formation in squid, and more specifically, whether the Notch
pathway regulates progenitor maintenance as it does in vertebrates
and Drosophila. In vivo transfection methods or genome editing
techniques have not been developed in any cephalopod species,
making targeted loss-of-function studies difficult. To circumvent
this, we treated embryos with the well-characterized Notch inhibitor
DAPT to determine how Notch signaling impacts retina formation
(Geling et al., 2002). Embryos were treated for 24 h and allowed to
recover until vehicle controls reached stage 27. To assess the
efficacy of DAPT, in situ hybridization for Hes was performed,
providing a useful readout of active Notch signaling. Control
embryos maintained robust Hes expression, while treated embryos
lacked Hes expression completely, confirming an effective
knockdown of Notch pathway activity by DAPT (Fig. 13A).

DAPT-treated embryos were microphthalmic and lacked retina
pigmentation. In sectioned samples, the retina was completely
disorganized: the basal membrane was absent, morphologically
distinct photoreceptor cells were not detectable and there was no
defined photoreceptor layer (Fig. 13B). Lentigenic cells and lens
formation appeared normal, suggesting that the effects of blocking
Notch pathway activity are specific to the retina. Three hours after
DAPT treatment, apoptotic cell numbers did not differ from thewild
type, indicating that apoptosis is not an immediate response to
DAPT treatment (Fig. S4). Apoptotic cells were observed in the
retina after an extended recovery period, however, which is similar
to the loss of Notch signaling in the vertebrate retina (Tomita et al.,
1996).

These data suggest that Notch signaling is required for
photoreceptor cell differentiation in the squid retina. To further
test this hypothesis, we performed an in situ hybridization for the
photoreceptor cell marker, Rhodopsin. In control embryos,
Rhodopsin is robustly expressed in the retina. However, in DAPT-

Fig. 6. TUNEL assays on the eye in D. pealeii embryos at stages 19, 21, 23, 25, 27 and 29. Sytox Green-labeled DNA (cyan) and TUNEL (red). Few TUNEL+

cells are detected. Red cells at stage 29 are in the dermal tissue and are likely to be background from the iridophores. L, lens; LC, lentigenic cells; OL, optic lobe; P,
placode; PC, photoreceptor cell nuclear layer; PL, placode lip; R, retina; SC, support cell nuclear layer; Y, yolk.

Fig. 7. DiI lineage tracing experimental design. (A) Stage
18 eye placode (gold box). (B) DiI labeling. (C) Labeled cells
were assigned on a map of the placode region. At least 20
embryos labeled in each of the 10 regions. (D) Embryos were
grown until hatching stage, fixed and photographed in whole
mount. Lateral view of the eye shown with labeled cells in the
retina. (E) Embryos cryosectioned into serial 12 μm sections,
counterstained with Sytox Green, and imaged using confocal
microscopy. In this example, DiI label is detected in the
support cell layer and the photoreceptor layer of the retina.
A, arm; M, mouth; MA, mantle; P, placode; Y, yolk.
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treated animals, Rhodopsin expression is lost (Fig. 13C). Retinal
cells in DAPT-treated embryos could either remain in a progenitor-
like, undifferentiated state or they could prematurely exit the cell
cycle and differentiate into a cell type other than a rhodopsin-
expressing photoreceptor. To distinguish between these
possibilities, we performed BrdU incorporation assays. While
control embryos incorporated BrdU normally, DAPT-treated
embryos contained no BrdU+ retinal cells (Fig. 13D). These data
support the model that Notch activity is required to maintain neural
progenitors. To determine if the prematurely differentiating retinal
cells retained a neural fate, we performed in situ hybridization for

the neural marker Neural filament 70 (NF70) (Szaro et al., 1991).
Retinal cells in DAPT-treated embryos were positive for NF70
suggesting that, although they are not photoreceptors, they did
differentiate into a neural cell type (Fig. 13E).

DISCUSSION
Doryteuthis pealeii as a model for the evolution of the visual
system and neural complexity
The past 15 years have seen consistent growth in the molecular
accessibility of lophotrochozoan systems (Henry et al., 2010;
Gentile et al., 2011; Ferrier, 2012; Zantke et al., 2014; Simakov

Fig. 8. DiI lineage tracing results. Representative examples of progenitor domains identified in the placode stage lineage tracing experiment. Cartoons at the
top of the figure show the stage 18 location of cells. Below each cartoon is whole-mount image (A-F) and sectioned examples (G-L). DNA is labeled with
Sytox Green. Yellow arrows highlight DiI puncta. Inset in I shows high-magnification image of puncta. Number of replicates obtained is indicated on each image.
(A,G) Cells within the placode are the only cells that incorporate into the retina. (B,H) The placode lip generates the lens and iris. (C-F,I-L) Regions surrounding the
placode and placode lip incorporate into specific brain regions. Scale bar: 100 μm in A-F, 50 μm in G,I-L, 25 μm in H. ACO, anterior chamber organ; INL, inner
nuclear layer; L, lens; LC, lentigenic cells; OL, optic lobe; ONL, outer nuclear layer; PC, photoreceptor cell nuclear layer; PFL, plexiform layer; R, retina; SC,
support cell nuclear layer; SM, subesophageal mass; Y, yolk.

Fig. 9. Transcription factor-specific hierarchical clustering of time-course RNA-seq data from the eye and optic lobe. Statistically significant differentially
expressed genes comparing stage 19 with stage 27 (FDR, 0.1).Top right panel shows a cluster of genes enriched later in development. Bottom right panel shows
a cluster of genes enriched early in development.
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et al., 2013). Each of these systems has their strengths but the present
models are relatively simple organisms. Cephalopods are a special
group whose complex nervous system, unusual body plan and
compelling behavior provide a unique opportunity to understand the
evolution of complexity. Here, we establish a tractable system to
study complex organ development and evolution. Our data generate
an in-depth developmental resource to study a photoreceptive organ
outside Drosophila and vertebrates and exciting opportunities now
exist to probe the evolution of organogenesis and its genetic and
cellular underpinnings.

Redrawing the cephalopod neural primordia map
We generated the first detailed fate map in any cephalopod species,
and this empowers the field to draw new conclusions from old data.
By generating these data, not only have we confirmed that the retina
in D. pealeii arises from the eye placode and that the lens, cornea
and iris are derived from the placode lip, but by combining them
with gene expression studies, we also identified candidate genes

likely to be involved in mediating cell fate specification events
in these tissues (Arnold, 1965; Marthy, 1973; Naef, 1928).
Furthermore, we do not detect cells incorporating into the eye
from any other region, indicating that all eye tissue is derived solely
from the placode and placode lip.

Previous studies utilized histology to identify ganglionic anlagen
in the developing cephalopod nervous system (Yamamoto et al.,
2003). Our fate map confirms and expands the region of cells
contributing to the cerebral ganglia, as well as the region of cells
contributing to the pedal ganglia. This supports recent findings in
octopus and Sepia officinalis that suggest a broader neurogenic field
and the cordal hypothesis (Shigeno et al., 2015; Buresi, 2016).
Interestingly, our fate map identifies optic lobe progenitor cells in a
drastically different location than formerly proposed (Naef, 1928;
Yamamoto et al., 2003). Our data demonstrate that optic lobe
progenitors lie dorsal to the placode, whereas previously, optic lobe
primordia had been placed ventral to the placode. This displaces the
previously identified palliovisceral primordia, suggesting that the

Fig. 10. Candidate gene RNA-seq
heatmaps. Variance-stabilized
transformed heatmaps for RDN genes,
eye candidate genes and Notch
pathway members. Genes identified by
UniProt annotation and reciprocally
Blasted against Drosophila and Mus
musculus non-redundant protein
database to confirm annotation.
Multiple Delta, Jagged, and Hes family
members were identified. Phylogenetic
trees were constructed for all eye
candidate genes, and Notch
isogroup01602 and Hes
isogroup00502 to confirm orthology
(Fig. S3).
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location of these progenitors is dorsal to the optic lobe progenitors.
The redrawing of the neural primordial map enables the accurate
interpretation of gene expression profiles from placode stage
embryos onto later fates and dictate a reinterpretation of previous
gene expression studies in other cephalopod species.

Correlating gene expression studies with cell fates
Capitalizing on the fate map, we superimpose gene expression
patterns on this map and correlate gene products with late-stage

ocular fates. Pax6, Pax2, and Six3 are all co-expressed in the lip
of the placode, and this region gives rise to the lens, cornea and
iris (Fig. 12). The lens, cornea and iris are lineage-specific
novelties in cephalopods, but interestingly, Pax6 and Six3 are
required for lens induction in vertebrates (Ogino et al., 2012;
Cvekl and Ashery-Padan, 2014). Currently, little is known about
any lens-specific function of eyeless and twin of eyeless (Pax6
orthologs) in Drosophila, but imaginal disc cells expressing
eyeless and twin of eyeless that give rise to the retina also

Fig. 11. Expression analysis of candidate eye genes at placode stages. In situ hybridization in early stage embryos. Cartoon depictions of the
expression patterns next to the whole-embryo images. Higher magnification images shown of eye placode for all in situ results except Six2, where a lateral image
of a stage 20 embryo is shown. Six2 expression is restricted from the eye at stage 20. Pax6, Six3, Pax2 and Six2 are expressed in tissue surrounding the placode
at stage 18 and excluded from the placode proper. Notch, Hes, Prospero and Eya are all expressed in the placode at stage 18. Hes expression is shown for both
stages 18 (left) and 19 (right). Hes expression changes quickly from the ventral half of the placode at stage 18 to the entire placode at stage 19. The high-
magnification image is for stage 18.

Fig. 12. Summary of DiI lineage tracing and gene expression analyses. The stage 18 fate map is color-coded with corresponding cell fates highlighted on the
hatchling stage model. The model was generated from segmented reconstructions of microCT scan data. Placode stage gene expression profiles are correlated
with the regions giving rise to distinct eye and brain regions.
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generate the lens (Charlton-Perkins et al., 2011a). dPax2 is
required for lens development in Drosophila but Pax2 does not
play a known role in vertebrate lens formation (Fu and Noll,
1997). Pax2/5/8 was not found expressed in or around the eye
and optic lobe in Idiosepius notoides until late stages, but is
correlated with sensory systems in molluscs (Wollesen et al.,
2015). Pax6 is broadly expressed in neurogenic tissues in other
cephalopods, primarily optic lobe and eye regions, but also
potentially in pedal ganglionic regions (Buresi, 2016).
There are three interpretations of the shared deployment of Pax

and Six genes during lens formation. The first is that the tissue that
generates the lens and the developmental origin of this tissue in
Drosophila, vertebrates and cephalopods is homologous. This
possibility supposes that in the common ancestor this tissue
expressed Pax and Six genes and elaborated into the lens. In
cephalopods and in Drosophila, the lens is derived from the same
cells as, or adjacent cells to, the retina and therefore this tissue
homology is plausible. However, in vertebrates, the lens placode is
derived from the surface ectoderm and therefore is unlikely to be
homologous. The second possibility is the concept of the cell as a
unit of homology. This would suggest that a lens cell program
existed in the common ancestor and this program included Pax and
Six genes and was redeployed in the vertebrate surface ectoderm.
This possibility is unlikely because crystallin proteins have
evolved separately in each lineage, and there are many examples
of photoreceptive organs found across the Bilateria lacking lenses

(Jonasova and Kozmik, 2008; Oakley and Speiser, 2015 preprint).
Moreover, lens tissue drastically differs across taxa, varying from
cellular to acellular (Jonasova and Kozmik, 2008). These three
lines of evidence suggest that no such lens cell existed in the
common ancestor. Finally, the most plausible possibility is that
Pax and Six gene involvement is homoplastic and independently
evolved in lens formation. Pax transcription factor binding sites
have been found upstream of crystallin genes, not only in
vertebrates and Drosophila, but also in scallops and cnidarians
(Piatigorsky, 2007). Pax involvement in lens formation in the
cephalopod is one of many examples of this convergence.
Currently, not enough is understood about the evolution of
regulatory pathways to explain convergent gene regulation in
independently evolved tissues. Ultimately, the results of this study
highlight the need for better characterization of gene regulatory
networks across the Bilateria to address questions regarding how
networks elaborate and result in morphological complexity and
diversity.

Beyond the placode lip, Pax6 and Pax2 are expressed in regions
contributing to the squid optic lobe. Pax6 also extends into the
region contributing to the pedal ganglia. Six3 is specifically
expressed in the region contributing to the cerebral ganglia and
Six2 may play a role in pedal ganglia development. Interestingly,
Eya has broad expression surrounding the retina, traversing all
regions around the placode as well as the placode proper. It is
possible that Eya also contributes to lens and iris development. This

Fig. 13. Notch activity is required to maintain progenitor proliferation in the squid retina. (A) Hes expression is lost as a result of DAPT exposure (40 μM).
In situ hybridization at stage 27 forHes in DMSO andDAPT-treated embryos (anterior view). Mantle staining is a common background in cephalopods. (B) DAPT-
treated embryos (20 μM) show disorganization and defects in photoreceptor differentiation. Scale bar: 50 μm for high magnification and 100 μm for low
magnification. (C) DAPT (20 μM)-treated retinas lack rhodopsin expression suggesting a loss of differentiated photoreceptors. Lateral view of DMSO- and DAPT-
treated embryos at stage 27. (D) DAPT (20 μM)-treated embryos express the neural marker NF70. Anterior view of embryos at stage 27. Scale bar: 50 μm.
(E) DAPT (20 μM)-treated retinas fail to incorporate BrdU. Cross-sections of embryos. Embryos treated at stage 21 for 24 h, exposed to BrdU for 3 h and fixed
immediately.
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is suggested by Eya expression in the cells surrounding the site of
vesicle fusion and lens formation at stage 21 (Fig. S2G).
In squid, Prospero is expressed in a subset of cells on the ventral

side of the retina placode. In Drosophila, pros specifies cone cells
that generate the lens (Charlton-Perkins et al., 2011b). Prox1, the
vertebrate homolog of pros, is involved in specification and
differentiation of neurons within the retina as well as lens
development (Wigle et al., 1999). In squid, Prospero does not
appear to be expressed in the early lens-generating cells, but rather
in the retina proper. This expression expands from a few cells to the
entire retina later in development (Fig. S2C). This specific punctate
expression at stage 18 suggests cell heterogeneity in the early retina
primordia.

Notch signaling is a common mechanism regulating
neuroepithelial differentiation across the Bilateria
It has been shown that Notch regulates differentiation in multiple
bilaterian species and that non-canonical Notch regulates neural
differentiation in cnidarians and may be ancestral to neural cell
differentiation in the Bilateria (Louvi and Artavanis-Tsakonas,
2006; Layden and Martindale, 2014). The regulation of
photoreceptor cell differentiation in the Drosophila eye was one
of the first examples of Notch signaling functioning through lateral
inhibition and this was subsequently demonstrated in the vertebrate
retina, where Notch signaling is essential for vertebrate
neurogenesis (Cagan and Ready, 1989; Austin et al., 1995; Pan
and Rubin, 1997; Henrique et al., 1997; reviewed by Kumar, 2001;
Louvi and Artavanis-Tsakonas, 2006). Work in zebrafish
demonstrated that the Notch pathway influences neuronal
differentiation in neuroepithelial cells undergoing interkinetic
nuclear migration (IKNM). In the retina, a Notch gradient exposes
the migrating progenitor cell nucleus to differing amounts of
intracellular Notch depending on the phase of the cell cycle (Del
Bene, 2008). In both the Drosophila eye disc, as well as in an
elongated pseudostratified epithelium, loss of Notch signaling
results in the premature differentiation of neural cell types and the
loss of progenitor populations (Del Bene, 2008; Cagan and Ready,
1989).
Notch and Notch pathway members have been shown to function

in annelid segmentation and to be expressed in the developing
nervous system in Capitella. Our work is the first evaluation of
Notch signaling in the lophotrochozoan photoreceptive organ that
specifically addresses neurodifferentiation (Thamm and Seaver,
2008; Rivera, 2009). Our description of eye morphogenesis shows
that the cephalopod retina is composed of a pseudostratified
epithelial tissue, like the vertebrate retina, and that loss of Notch
activity results in cell cycle exit and premature differentiation.
IKNM has been identified as a shared aspect of pseudostratified
epithelia and has been observed in multiple tissues in vertebrates, in
the Drosophila wing disc and in Nematostella; however, this is the
first description of IKNM in any lophotrochozoan (Meyer et al.,
2011). Nuclear migration has been described in the Drosophila eye
disc but not directly related to the process occurring in
vertebrate neuroepithelial tissue, and it is not linked to the cell
cycle (Tomlinson and Ready, 1987). Neurogenesis described in the
lophotrochozoan Capitella sp. 1 shows the formation of a stratified
epithelium through ingression of single epithelial cells from the
anterior ectoderm (Meyer and Seaver, 2009). A similar mechanism
has been predicted during neurogenesis of other brain regions in the
cephalopod (Marthy, 1987). Our results in the retina support a
mechanism governing differentiation and progenitor cell
maintenance of photoreceptive neuroepithelial tissue regulated by

Notch that may be shared by vertebrates and cephalopods. An in-
depth understanding of IKNM and neuroepithelial formation more
broadly in the Lophotrochozoa is necessary to better understand the
cellular toolkit shared by the Bilateria to generate neural complexity.

Conclusions
Our goal is to establish the cephalopod eye as an accessible system
to address questions regarding the evolution of nervous system
complexity and gain insight into the nature of photoreception in the
Urbilaterian ancestor.We have shown the potential of this system by
identifying a case of convergence in the genetic network underlying
formation of the cephalopod lens. These findings suggest a greater
prevalence of homoplasy in the shared genetic networks underlying
complex organs and highlight the significant amount of work that
remains to better understand the nature of gene regulatory evolution.

Finally, this study also highlights cellular behaviors and
characteristics that are likely to be fundamental to the
development of nervous systems across the Bilateria. Building our
understanding of the character of tissues and cells that are shared
across species gives us greater insight into how complexity is built.
Notch signaling enables the generation of multiple neural cell types.
The organization of neuroepithelia and the process of IKNMmay be
the mechanism to achieve this complexity. It will be necessary to
explore gene and protein expression of the Notch pathway in greater
detail in the cephalopod as well as in other taxa, to understand how
these mechanisms contribute to this process in the Urbilaterian
ancestor. In all, this work opens a new avenue of investigation
regarding the evolution of complexity and the emergence of novelty.

MATERIALS AND METHODS
Animal husbandry
Squid were acquired at theMarine Biological Laboratory,Woods Hole,MA.
Embryos were cultured at 20°C.

Whole-embryo transcriptome and RNA-seq library preparation
Two embryos from the same egg sac of each stage, from 16-27, were
prepared in TRIzol, phase separated and transferred to a Qiagen RNeasy
column. Libraries were prepared after Meyer et al. (2009, 2012). Libraries
were combined at equal volume and sequenced using 454 technology at the
University of Texas, Austin. Eye and optic lobes tissues were dissected and
prepared in TRIzol for RNA-seq. Libraries were prepared at the Vanderbilt
VANTAGE laboratory using poly(A) selection and TruSeq library
production and sequenced on an Illumina platform.

Assembly, annotation, mapping and statistical analysis
The 454 raw reads were processed using custom Perl scripts (Meyer and
Seaver, 2009). Trimmed reads were assembled using Newbler v.2.6.
Annotation was performed using BLASTX and custom Perl scripts mapped
against the UniProt database (release 2014_09). Illumina data were
processed for quality using custom Perl scripts (https://github.com/Eli-
Meyer/sequence_processing). Reads were mapped to the reference
transcriptome (Meyer et al., 2012). Raw read and assembly statistics are
presented in Fig. S5. All raw reads and annotated data have been deposited at
the NCBI (SRA accession numbers SRP065414 and SRP066528).

Timecourseclustering and differential geneexpression analysis
Differential gene expression analysis and clustering was performed using
the DESeq2 Bioconductor package v.1.10.1 run in R for Mac release 3.2.0
(Love et al., 2014). Data were exposed to log transformation and variance
stabilizing transformation, analyzed for principal component analysis,
variance and differential gene expression across stages. Analyses were
performed on the whole dataset and subsets of the data, focusing on
transcription factors (GO:0006355 and GO:0003700). The likelihood ratio
test was performed by comparing stage 19 with stage 27. A false discovery
rate of 0.1 was used to assess differential gene expression and the
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hierarchical clustered heatmaps were generated based on Pearson correlation
using heatmap.2 in the gplots package for R.

Alignment and trees
Sequence analysis was performed using Geneious (Kearse et al., 2012).
Candidate sequenceswere identified through reciprocalBlast usingDrosophila
orthologs as bait. Isotig sequences were translated and trimmed for the ORF.
Shared protein domains were identified using the PFAM database, identifying
hiddenMarkovmodels (HMM) to search the rp-15 proteome database through
the HMMER server (Bateman et al., 2004; Finn et al., 2011). A representative
taxonomic subset of sequences and lophotrochozoan sequences were included
in the final analysis. For Eya, no PFAMHMM is available. A sampling of the
related proteins was generated with Blast using Drosophila Eya as bait.
Multiple sequence alignment on the amino acid sequences were performed
using the E-INS-I strategy in MAFFT (Katoh and Standley, 2013). We
estimated support for a consensus tree from 1000 bootstrapped maximum
likelihood trees for each phylogeny using PHYML (Guindon et al., 2010).
Trees are shown unrooted (Fig. S3). Sequences are available in Table S2.

Cloning and in situ probe synthesis
RNA from a range of embryonic stages was reverse transcribed to create a
cDNA library. Cloning primers are availabile in Table S1. cDNA sequences
were verified by Sanger sequencing. Sense and antisense riboprobes were
synthesized with digoxygenin-labeled rNTPs (Roche).

In situ hybridization
Embryos were fixed overnight in 4% paraformaldehyde and filtered
seawater (FS). Embryos were transitioned into hybridization buffer (Hyb)
(50% formamide, 5× SSC, 40 μl heparin, 0.25% Tween-20, 1% SDS,
200 mg yeast t-RNA). Embryos were incubated in Hyb at 65°C overnight.
Probe was heated to 85°C in Hyb and applied to embryos overnight.
Embryos were washed 3× in Hyb for 10 min and 2× for 60 min. Embryos
were transitioned into 50% washes of 2× SSC for 20 min and 2× washes of
3× SSC for 20 min. Embryos were washed 2× in 0.2× SSC at room
temperature for 5 min and 3× in PBS and 0.1% Triton X-100 (PT) for 5 min.
Embryos were incubated in 5% normal goat serum and PT for 30 min and
then incubated in alkaline-phosphatase-labeled anti-digoxygenin Fab
fragments (Roche) at 1:2000 in PT-NGS overnight at 4°C. Embryos were
washed with PT and reacted in BCIP/NBT solution.

Staging series
Embryos were fixed in 4% paraformaldehyde in FS overnight. Embryos
were washed in PT and incubated in 25% sucrose for 60 min and 35%
sucrose overnight. Embryos were embedded in Tissue Freezing Medium
and 12 μm sections were cut. Three individuals were documented at each
stage. Sections were stained with Sytox Green (5 μM) and Phalloidin
(2.2 μM). Sections were mounted in Vectashield (Vector Labs) and
visualized using confocal microscopy (Leica TCS SP5 II and Zeiss LSM-
780 Quasar). Images are single z-planes.

BrdU incorporation assays
Embryos were exposed to 10 mM BrdU in FS with 100 units/ml penicillin
and 100 μg/ml streptomycin (Pen-Strep FS) for 3 h and fixed immediately
after exposure. Embryos were prepared and sectioned as above. Once
sectioned, slides were rehydrated in PBS and incubated in 4 M HCl for
10 min at 37°C. Sections were washed in PBS and blocked with 5% NGS.
Sections were incubated in rat anti-BrdU (Abcam, ab6326, 1:250) overnight
at 4°C. Sections were washed in PBS and incubated in secondary antibody
(Jackson ImmunoResearch, 112-175-143) for 2 h at room temperature.
Embryos were washed in PBS for 2 h and exposed to Sytox Green as
described above. Specimens were mounted in Vectashield (Vector Labs)
and imaged using confocal microscopy.

TUNEL assays
TUNELwas performed according to the manufacturer’s instructions (In Situ
Cell Death Detection Kit; Roche, 12156792910). At least three individuals
were examined for each stage.

Histology series
Embryos were fixed in 4% glutaraldehyde and 2% formaldehyde in seawater
then incubated in a solution of 4% glutaraldehyde, 2% paraformaldehyde,
0.1 M sodium cacodylate, 2 mM Ca2+, 4 mM Mg2+ overnight and washed
with 0.1 M sodium cacodylate buffer. Embryos were incubated in 2%
osmium tetroxide/4% potassium ferrocyanide/0.2 M sodium cacodylate
buffer mix and microwaved under vacuum. The microwave was set to
100 W. Embryoswerewashed with deionized water, dehydrated with ethanol,
transferred to an acetone solution, infiltrated with epoxy resin and baked for
2 days at 37°C. Embryos were sectioned at 0.7 μm, stained with Toluidine
Blue and imaged using a Leica DM2500 microscope. At least three
individuals were examined for each stage.

MicroCT
Hatchlings were fixed in 4% glutaraldehyde and 2% paraformaldehyde in
FS. Hatchlings were washed in PBS and stained with 0.1% iodine/0.2%
potassium iodide in water. Specimens were dehydrated overnight into
ethanol and scanned using the Xradia microCT Scanner at the University of
Texas high-resolution CT facility.

Lineage tracing
A stock solution of 5 μg/μl of CellTracker CM-DiI (Invitrogen) in ethanol was
diluted into vegetable oil (0.5 μg/μl). Embryos were reared in 12-well culture
dishes on 1%agarose in Pen-Strep FS and then fixed in 4%paraformaldehyde.
Specimens were imaged then embedded, cryosectioned and re-imaged.

DAPT treatments
Embryos were dissected from chorions and incubated in 20 μM or 40 μM
DAPT dissolved in 1% DMSO and Pen-Strep FS. Embryos were cultured
in groups of seven or less. Experiments included over 20 embryos per
exposure. Control embryos were incubated in 1% DMSO in Pen-Strep FS.
Embryos were exposed for 24 h and either fixed immediately, exposed to
BrdU for 3 h and fixed or allowed to recover and grow to stage 27 and fixed.
At least three individuals were examined for each experiment.
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