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Inhibition of B-catenin signaling respecifies anterior-like
endothelium into beating human cardiomyocytes
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ABSTRACT

During vertebrate development, mesodermal fate choices are regulated
by interactions between morphogens such as activin/nodal, BMPs and
Whnt/B-catenin that define anterior-posterior patterning and specify
downstream derivatives including cardiomyocyte, endothelial and
hematopoietic cells. We used human embryonic stem cells to explore
how these pathways control mesodermal fate choices in vitro. Varying
doses of activin A and BMP4 to mimic cytokine gradient polarization
in the anterior-posterior axis of the embryo led to differential activity
of Wnt/p-catenin signaling and specified distinct anterior-like (high activin/
low BMP) and posterior-like (low activinhigh BMP) mesodermal
populations. Cardiogenic mesoderm was generated under conditions
specifying anterior-like mesoderm, whereas blood-forming endothelium
was generated from posterior-like mesoderm, and vessel-forming CD31*
endothelial cells were generated from all mesoderm origins. Surprisingly,
inhibition of B-catenin signaling led to the highly efficient respecification
of anterior-like endothelium into beating cardiomyocytes. Cardiac
respecification was not observed in posterior-derived endothelial cells.
Thus, activin/BMP gradients specify distinct mesodermal subpopulations
that generate cell derivatives with unique angiogenic, hemogenic
and cardiogenic properties that should be useful for understanding
embryogenesis and developing therapeutics.

KEY WORDS: Cardiac, Hematopoiesis, Endothelium, Human
embryonic stem cell, Differentiation

INTRODUCTION

The anterior-posterior axis is the earliest to form in the embryo and
is evolutionarily most ancient (Kimelman and Martin, 2012).
Anterior primitive streak gives rise to endoderm, whereas the mid-
to posterior primitive streak gives rise to different mesodermal
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lineages. Anterior mesoderm (mid-streak) gives rise to cardiac and
endocardial endothelium, whereas posterior mesoderm (posterior
streak) gives rise to the blood-forming endothelium and vasculature
(Murry and Keller, 2008).

Well-described  anterior-posterior  morphogen  gradients,
including those of activin A/nodal and BMP4, are thought to
pattern mesoderm subtypes (Nostro et al., 2008; Sumi et al., 2008;
Kattman et al., 2011). Such gradients are proposed to specify
anterior mesodermal fates like cardiomyocytes versus posterior
mesodermal fates like blood. Remarkably, a recent study showed
that ectopic induction of a nodal/BMP gradient in zebrafish embryos
was sufficient to create an entirely new embryonic axis that could
run parallel, anti-parallel or orthogonal to the primary axis (Xu et al.,
2014). This provides compelling evidence that nodal and BMP are
significant determinants of anterior-posterior patterning in the
embryo.

Functionally, the TGFf signaling family members activin A and
BMP4 synergistically activate Wnt/B-catenin signaling during
primitive streak (PS) formation, and are essential for establishing
downstream lineages (Nostro et al., 2008; Sumi et al., 2008).
Stimulation of the Wnt/B-catenin pathway during gastrulation is
required to form mesoderm (Yamaguchi et al., 1999; Lekven et al.,
2001), and the subsequent Wnt/B-catenin signaling gradients are
thought to be responsible for specifying sublineages of mesodermal
derivatives (Martin and Kimelman, 2012). Recent work has shown
that Wnt/B-catenin signaling is involved in redirecting fate choices
between mesodermal lineages in the post-gastrulation stage of
development (Schoenebeck et al., 2007; Van Handel et al., 2012;
Palpant et al., 2013).

In the present study we investigated whether unique functional
derivatives of mesoderm could be generated from human pluripotent
stem cells (hPSCs) in vitro by processes that reflect embryological
patterning during gastrulation. We modulated activin A, BMP4 and
Wnt/B-catenin signaling in order to manipulate key cell fate transitions
from the undifferentiated state to mature cell types. Cardiomyocytes
were derived efficiently from anterior-like mesoderm, and blood more
efficiently from posterior-like mesoderm. Endothelium was generated
from all mesodermal subtypes studied. These endothelial
subpopulations exhibit differences in hematopoietic, angiogenic,
and cardiogenic potential, reflecting influences of their developmental
ontogeny.

RESULTS

Patterning mesoderm in vitro using activin AABMP4

Inspired by the dominant role of activin A and BMP4 in
establishing the anterior-posterior axis of the embryo (Sumi
etal., 2008; Xu et al., 2014), we hypothesized that titrating activin
A and BMP4 would modulate the strength of Wnt/B-catenin
signaling and thereby polarize mesoderm specification from
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undifferentiated human embryonic stem cells (hESCs) along the
anterior-posterior axis (Fig. 1A). To analyze Wnt/B-catenin
signaling activity in mesoderm patterning, we used a RUES2
hESC line that expresses the green fluoroprotein Venus under
control of multimerized TCF/LEF elements (B-catenin-activated
reporter; BAR-Venus:UB-dsRed), as previously described
(Davidson et al., 2012; Palpant et al., 2013). We chose to monitor
the activity of the pathway through the BAR-Venus reporter in
combination with gene expression of Wnt modulatory proteins
during directed differentiation.

We tested the hypothesis that modulating activin A and BMP4
signaling could induce different types of mesoderm. hESCs were
differentiated using activin A at either 100 ng/ml (A'%) or 50 ng/ml
(A% in combination with a dose range of BMP4 between 5 ng/ml and
40 ng/ml (B>-B*°) (a detailed schematic outlining the differentiation
methods employed in this manuscript is shown in supplementary
material Fig. S1). We found that concentrations lower than 50 ng/ml
activin A did not markedly influence mesoderm specification
(supplementary material Fig. S2). Based on previous work on
directed differentiation from hESCs, we have established that
mesoderm is specified on day 2 of differentiation (Paige et al.,
2010, 2012; Palpant et al., 2013). Atthis time point, analysis of Venus
activity showed that differentiation with A% caused significantly
lower activity of endogenous Wnt/B-catenin signaling than A%°
(Fig. 1A-C). Consistent with this, analysis of Wnt/B-catenin signaling
modulators showed high mRNA expression of WNT34 and WNT8A in
conditions of A>°, with increased levels of the Wnt/B-catenin signaling
inhibitor DKK/ predominantly in conditions of A'% (supplementary
material Fig. S3A). By contrast, increasing BMP4 concentrations only
modestly increased Wnt/B-catenin reporter activity and did not
significantly change the expression of Wnt regulators (Fig. 1C;
supplementary material Fig. S3A).

Other modulators of mesoderm patterning were analyzed by qRT-
PCR, which showed that the pan-mesoderm markers KDR (VEGFR?2)
and MESPI] are expressed across all conditions (supplementary
material Fig. S4A). Genes involved in anterior mesendoderm
development, including those encoding the bicoid homeobox

protein goosecoid (GSC) and NODAL, were more highly expressed
in conditions of A!'® (Fig. 1D). This is consistent with studies
showing that NODAL functionally interacts with Wnt factors to
activate genes, such as GSC, that are required for anterior PS
patterning and germ layer formation (Reid et al., 2012). Conversely,
genes more highly expressed in posterior mesoderm, including
brachyury (7) and CDX1, a key modulator of Hox gene activity
(Lengerke etal., 2011) necessary for blood development (Wang et al.,
2008), were expressed more highly in conditions of A% (Fig. 1E).

Using protein mass spectrometry, we analyzed day 2 mesoderm
generated by different induction approaches. These data show a high
degree of similarity between the mesodermal subtypes, with the
exception of several molecules that are significantly different and
reinforce the observation that proteins involved in anterior versus
posterior mesoderm patterning are appropriately expressed in a
lineage-specific manner (Fig. 1F). Specifically, fibronectin 1 (FN1)
was highly expressed under conditions of A3*/B*°, Although FN1 is
functionally required for organ development in a wide range of
tissues, it is functionally required in posterior but not anterior lateral
plate mesoderm development during gastrulation (George et al.,
1993). Furthermore, the T-box transcription factor eomesodermin
(EOMES) acts upstream of MESP1 to direct cardiogenic mesoderm
(Costello et al., 2011) and MIXL1 is functionally required for the
morphogenesis of axial mesoderm and represses posterior
mesoderm fates (Hart et al., 2002). As such, these proteins are
appropriately expressed in conditions of A'%%/B3.

Taken together, gene expression analysis, proteomic analysis,
and Wnt/B-catenin signaling activity support the notion that
modulating the concentration of activin A/BMP4 can polarize
mesoderm along the anterior-posterior axis in vitro from human
pluripotent stem cells.

Specification of cardiogenic mesoderm from anterior
mesoderm

Using this dosing regimen of activin A/BMP4, we next sought to
directly assess the effect on downstream mesodermal derivatives
using cardiomyocytes as readouts of anterior differentiation. The

A Pluripotency Mesoderm c Fig. 1. Directing mesoderm patterning by titrating
oo Eood BARvenus Reporter ) activin A and BMP4. (A) The experimental approach for
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protocol for cardiac directed differentiation is based on studies from
our laboratory and others showing that cardiac specification
involves a biphasic modulation of Wnt/B-catenin signaling.
Specifically, robust Wnt/B-catenin signaling activation is required
to direct mesoderm, and specification into the cardiac lineage
involves downregulation of Wnt/B-catenin signaling (Ueno et al.,
2007; Paige et al., 2010; Lian et al., 2012; Palpant et al., 2013). The
protocol used for directing cardiac differentiation is detailed in the
supplementary Materials and Methods and Fig. S1.

Analysis at day 14 showed that the highest efficiency of
cardiac differentiation occurred under conditions of A'°%/B> [90
+1% cTnT (TNNT2)" cardiomyocytes] (Fig. 2A-D). By contrast,
cardiomyocyte differentiation progressively decreased with lower
doses of activin A and higher doses of BMP4, with purity dropping
as low as 14+6% cTnT" cells when initiated under conditions of
A3%/B* (Fig. 2A,B). Analysis of day 5 cardiac progenitor cells
(CPCs) did not show any correlation of KDR"/PDGFRa" cells and
cardiac differentiation efficiency under these differentiation
conditions (supplementary material Fig. S4B,C).
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Fig. 2. High activin A and low BMP4 concentrations direct cardiac
differentiation. (A,B) Flow cytometry for cTnT on day 14 of differentiation
across the range of differentiation conditions defined by doses of activin A and
BMP4, with raw histograms (A) and mean data across five biological replicates
(B) showing the highest efficiency of cardiac differentiation (percentage cTnT"
cardiomyocytes) in conditions of A'°%/B®. (C) Wnt/p-catenin signaling activity
as measured by the BAR-Venus reporter in day 5 CPCs under different doses
of activin A and BMP4. Inset shows raw flow cytometry plot of Venus activity in
A'%/B® versus A%/B*° CPCs. (D) Schematic illustrating that cardiomyocytes
are generated optimally from A"°°/B® CPCs. n=5 biological replicates. *P<0.05.
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To determine the effect of induction on cardiac cell fate
specification, we compared the expression profiles of day 14
cells induced with either A'°%/B> or A3%/B*°, with subsequent
differentiation under cardiogenic conditions (supplementary
material Fig. S5). RNA-seq data indicate that A'°%/B cells give
rise to a cardiac phenotype as expected. By contrast, A3%/B4° cells
at day 14 showed a robust endothelial phenotype. These data
indicate that induction conditions are deterministic with regard to
fate potential, such that cardiogenic mesoderm is specified early
from A'%%/B° conditions and an endothelial fate is specified from
A3°/B* conditions.

To understand the role of Wnt/B-catenin signaling under cardiac
differentiation conditions, we analyzed BAR-Venus reporter activity
in day 5 CPCs (Fig. 2C; supplementary material Fig. S3B,D).
Compared with the peak of mesoderm formation at day 2, there was
a significant downregulation of Wnt/B-catenin signaling in day 5
cells, with the greatest downregulation occurring in CPCs initiated
under A'% conditions (Fig. 2C; supplementary material Fig. S3D).
Compared with day 2, gene expression analysis of Wnt modulators
in day 5 CPCs showed a significant downregulation of canonical
Whnt ligands but a marked increase in canonical Wnt inhibitors
including TMEMSS and WNT54 in A'® conditions (supplementary
material Fig. S3B). Importantly, we also observed a significant
increase in expression of the canonical Wnt/B-catenin inhibitor
DKK] in anterior-derived cardiogenic mesoderm, which suggests a
more repressive state of Wnt/B-catenin signaling during cardiac
specification (supplementary material Fig. S3B).

Derivation of endothelium

Given that factors involved in hemato-endothelial mesoderm
development, such as CDX1 and WNTS8A, had an inverse
correlation with cardiac differentiation efficiency (Fig. 1E;
supplementary material Fig. S3A), we hypothesized that this
mesodermal differentiation platform could be used to direct
downstream vascular fate choices and efficiently generate blood
and endothelial cells. Since endothelium is generated from all
mesodermal origins (Murry and Keller, 2008), we sought to
understand the impact on cell fate decisions of endothelial
development after initiating differentiation with different
concentrations of activin A and BMP4. We tested a wide range of
culture conditions involving stimulation with major determinants
of'endothelial fate, including varying the timing and concentrations
of VEGF, BMP4, CHIR-99021 and FGF, based on previous studies
describing endothelial differentiation from PSCs (Kennedy et al.,
2007,2012; Choietal., 2012; Rafii etal., 2013; White et al., 2013)
(supplementary material Fig. S7; data not shown). Studies from our
lab and others have established a role for Wnt/B-catenin signaling in
specifying endothelial commitment (Woll et al., 2008; Palpant
et al., 2013; Sturgeon et al., 2014). We observed, however, that
addition of the small molecule Wnt/B-catenin agonist CHIR-99021
between days 2 and 5 inhibited endothelial fate specification,
indicating that other factors involved in the specification of
endothelium tightly orchestrate the dosage of Wnt/B-catenin
signaling (supplementary material Fig. S7). We describe in detail
our protocol for endothelial differentiation in the supplementary
Materials and Methods and Fig. S1.

In our optimized protocol, analysis of pan-endothelial markers on
day 5 of differentiation showed that we could generate greater than
90% KDR'/CD34" double-positive cells (Fig. 3A,B). These data
show that a high percentage of KDR"/CD34" cells can be generated
across the full spectrum of activin A and BMP4 conditions used to
establish mesoderm patterning at the onset of differentiation.
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Fig. 3. KDR*/CD34"/VE-cadherin® cells are generated efficiently across
doses of activin A and BMP4. (A-C) Flow cytometry plots (A) and mean data
for the percentage of cells double positive for KDR and CD34 (B) or for KDR
and VE-cadherin (C). (D) gRT-PCR analysis across the timecourse of days 2-5
of differentiation comparing A'°%/B%-derived CPCs with A'°°/B°-derived
KDR*/CD34" cells and A>°/B*’-derived KDR*/CD34" cells. CD144 refers to
VE-cadherin. (E) Wnt/B-catenin signaling activity as measured by the BAR-
Venus reporter in day 5 KDR*/CD34" cells under different doses of activin A
and BMP4 (left), with representative raw flow cytometry plot of Venus activity in
A'%/B® KDR*/CD34" versus A%°/B*° KDR*/CD34" cells (right). (F,G) qRT-
PCR analysis for markers of endothelium including NFATC1 (F) and HAND1
(G). (H) Schematic showing lineage differentiation for directing undifferentiated
hESCs into A'°°/B°-derived KDR*/CD34" cells and A®*/B**-derived
KDR*/CD34" cells. n=3-8 replicates per sample for all assays. *P<0.05.

Consistent with endothelial development, a high percentage of these
cells express VE-cadherin (Fig. 3C). We next assessed whether these
endothelial cells exhibited molecular characteristics of developing
endothelium (Shalaby et al., 1997; Wu et al., 2011; Nakano et al.,
2013). Key markers involved in vascular and blood development,
including the master transcription factor of hemato-endothelial
development SCL (TAL1), as well as VE-cadherin (CD144, or
CDHS5), CD34, RUNX1 and GATA1, were significantly upregulated
between days 2 and 5 in both populations of KDR*/CD34" cells, but
not under cardiac differentiation conditions (Fig. 3D).

Analysis of BAR-Venus activity indicated that Wnt/B-catenin
signaling was markedly elevated in day 5 KDR"/CD34" cells
compared with day 5 CPCs (supplementary material Fig. S3D).
Furthermore, the posterior A/B* KDR/CD34" cells had
significantly higher Wnt/B-catenin signaling activity than the
anterior A'°%/B°> KDR'/CD34" cells (Fig. 3E; supplementary
material Fig. S3D). Analysis of Wnt regulatory molecules
indicated that, although expression of the Wnt ligands WNT3A
and WNTS8A was reduced in KDR™/CD34" cells, as seen in cardiac
differentiation, the expression levels of Wnt/B-catenin signaling
inhibitors such as TMEMS88, WNT5A and DKK1 were reduced in
KDR*/CD34" cells compared with CPCs (supplementary material
Fig. S3A-C). These data indicate that Wnt/B-catenin signaling
dosage does not appear to influence endothelial differentiation, but
we hypothesized that differences in Wnt/B-catenin signaling might
be crucial for specifying endothelial subtypes.

In keeping with the hypothesis that Wnt/B-catenin signaling
dosage may participate in the specification of different endothelial
subtypes, we analyzed molecular markers of endocardial versus
vascular endothelial fate. Recent fate-mapping data have suggested
that NFATC1 and GATA4 are markers of anterior-derived
endocardial endothelium and distinguish it from posterior-derived
vascular hemogenic endothelium (Misfeldt et al., 2009; Peterkin
et al., 2009). Consistent with this, Nfatc! knockout mice die mid-
gestation due to endocardial valve malformation-induced heart
failure (de la Pompa et al., 1998; Ranger et al., 1998; Misfeldt et al.,
2009; Wu et al., 2011). We found the cardiogenic factor GATA4
expressed only in anterior-derived mesodermal derivatives
(Fig. 3D) and NFATC1 was significantly elevated in anterior
A'9%/B> KDR'/CD34" cells (Fig. 3F).

By contrast, lineage-tracing studies have identified a role for
HANDI in cardiomyocyte development and posterior mesoderm
development but not in endocardial development (Morikawa and
Cserjesi, 2004; Barnes et al., 2010; Maska et al., 2010). Reflecting
this cell fate, we found that HANDI is significantly upregulated in
the posterior A3%/B*® KDR*/CD34" cells (Fig. 3G). We analyzed
the expression of additional vascular development markers known
to be involved in arterial specification, including SOX17, EFNB2
and CXCR4. However, we found no difference in the expression of
these molecules based on induction method (supplementary
material Fig. S4D).

Taken together, these data show that KDR'/CD34" cells
can be generated with equal efficiency across a range of activin
A/BMP4 dosing regimens with molecular differences that
suggest an endocardial versus vascular endothelial lineage fate
(Fig. 3H).

Anterior and posterior endothelial cells exhibit overlapping
as well as lineage-specific endothelial function

On the basis of these findings, we carried out secondary assays to
assess the functionality of day 5 A'°/B> and A°%/B*° endothelial
cells (ECs) (Fig. 4). CD34" sorted or unsorted day 5 cells were
plated on gelatin-coated plates in endothelial growth medium
(EGM) containing VEGF, bFGF (FGF2) and the GSK3 inhibitor
CHIR-99021 for 9 days. Under these conditions, A'%%/B> and
A3S%/B* ECs both gave rise to greater than 95% pure CD31
(PECAM1)" ECs by flow cytometry analysis (supplementary
material Fig. S8A). Culturing day 5 cells after FACS for CD34"
cells did not improve CD31" cell purity compared with unsorted
cells (supplementary material Fig. S8§A). Both populations of
ECs showed expression of appropriate markers, including CD31
and the endothelial marker von Willebrand factor (VWF), and no
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significant difference in proliferation (supplementary material
Fig. S8B,C).

We carried out functional assays to determine whether
differentiated ECs from both lineages showed evidence of
sprouting angiogenesis or tube formation in vitro. Day 14 A199/B>
and A>%/B*° ECs were plated as a monolayer on collagen (2 mg/ml)
to assess gel invasion/sprouting or embedded within collagen to
assess tube formation (Fig. 4B,C). Orthogonal views show that both
populations of ECs have the capacity for sprouting angiogenesis
based on invasion into the collagen matrix and tube formation based
on de novo lumen formation (Fig. 4B,C).

To assess the ability of these cells to respond to fluid shear stress,
we analyzed the function of day 14 A'°/B3 and A3/B*° ECs when
seeded into microfabricated engineered vessels as previously
described (Zheng et al., 2012) (Fig. 4D). The cells were seeded
into microfluidic channels to form a templated microvascular
network with a perfusable lumen and cultured for 4 days under
gravity-driven flow. Surprisingly, A!°®/B3> ECs showed robust
sprouting activity with de novo angiogenic vessels. By contrast,
A5/B* ECs had minimal angiogenic potential under the same

conditions (Fig. 4Di). Immunohistochemical analysis of these
engineered vessels showed similar expression of CD31 and
VWEF in both populations (Fig. 4Dii). By contrast, under these
conditions, expression of VE-cadherin was found exclusively
within the non-sprouting A’%/B*® ECs (Fig. 4Diii), consistent
with the finding that shedding of VE-cadherin is associated with
in vivo angiogenesis (Reiss and Saftig, 2009). However, we
cannot exclude the possibility that this observation might also
be due to instability of the endothelial phenotype, as previously
reported (James et al., 2010), or a consequence of sustained
culture and passaging. Quantification of sprouting angiogenic
potential showed that in static culture conditions (monolayer
invasion assay) there was no significant difference in the
number and length of sprouts between the two populations of
ECs (Fig. 4E). By contrast, in engineered vessels under flow
conditions, A'°%/B® ECs showed a significantly higher number
and length of sprouts than A3%/B*® ECs (Fig. 4E). These data
show that, although there are a number of functional similarities
between these endothelial populations, marked differences do
exist between them when placed under conditions of flow.
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Fig. 4. KDR*/CD34" cells can differentiate into functional endothelium. (A) Experimental approach for directing undifferentiated hESCs into A'°%/B® and
A5%/B*° ECs and then into differentiated and functional ECs. (B,C) Day 14 A'°%B® and A%%/B*® ECs were plated onto collagen as a monolayer to assay sprouting
angiogenic potential (B) or embedded into collagen to assay tube formation potential (C). Orthogonal views (at the dashed line) are shown beneath as a z-stack in
the xz axis. (D) Day 14 A'%%/B® and A%*/B*° ECs were seeded into engineered microvessels (i) and exposed to flow for 4 days. Engineered microvessels were
assayed for vessel structure and cellular expression of VWF and CD31 (ii) as well as VE-cadherin (iii) together with a nuclear counterstain. Orthogonal views are
shown to the side as a z-stack of the yz axis. (E) Quantification of the number and length of sprouting vessels in monolayer and engineered vessels. n>3 replicates
per sample. *P<0.05; NS, not significant. Scale bars: 100 pm, except 500 pm in Di.
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Anterior and posterior ECs have different hematopoietic
potential

Since a subset of endothelium (termed ‘hemogenic endothelium’) is
known to give rise to hematopoietic cells in the developing embryo
in vivo and during PSC differentiation in vitro (Jaffredo et al., 1998;
Nishikawa et al., 1998; Lancrin et al., 2009; Choi et al., 2012; Rafii
et al.,, 2013; Slukvin, 2013), we analyzed the blood-forming
potential of A'%%/B3 and A3%/B#° ECs (Fig. 5). Previous studies have
suggested that hemogenic endothelium is confined to the portion of
ECs negative for the surface marker CD73 (NTSE) (Choi et al.,
2012). We found that both A'°%/B> and A°%/B*® ECs include a
population that is CD31"/CD73 ™, although in differing proportions,
consistent with a possible hemogenic phenotype (Fig. 5B,C).

We next examined the hematopoietic potential of A!°%/B> and
A%/B* ECs over time. To determine if day 5 cells contained
hematopoietic progenitors, we analyzed cells by flow cytometry for
hematopoietic surface markers and by methylcellulose assays for
colony-forming unit (CFU) progenitor potential. The day 5 A3%/B#°
EC population already contained a subset of cells expressing the
earliest hematopoietic markers CD43 (SPN) and CD235a (GYPA)
and, to a lesser extent, CD41 (ITGA2B) (Fig. 5D-F). This is
consistent with a primitive hematopoietic phenotype (Vodyanik
et al., 2006; Kennedy et al., 2012; Slukvin, 2013). By contrast, the
A'99/B5 ECs at day 5 lacked significant expression of CD43. As
expected, neither population at this early time point exhibited
significant CD45 (PTPRC), which is typically expressed later in
hESC hematopoietic differentiation concomitant with broader
myeloid potential (Vodyanik et al., 2006; Kennedy et al., 2012).
Consistent with their primitive hematopoietic phenotype, the day 5
A3%B* ECs generated progenitors that produced small, primitive
erythroid-like (CFU-EryP) and macrophage (CFU-Mac) colonies in
methylcellulose assays, whereas the A'°/B3 ECs generated
minimal CFU progenitors at this time point (Fig. SEI).

To further assay the capacity of A'°%/B° and A>%/B*® ECs for later
erythromyeloid hematopoietic potential, day 5 cells from both
populations were plated secondarily on OP9 stromal cells with
hematopoietic cytokines. After 12-14 days of co-culture, cells were
analyzed for hematopoietic phenotype and colony-forming
progenitors. A3%/B*® ECs generated a population of predominantly
CD45" hematopoietic cells following OP9 co-culture, a subset of
which co-expressed CD34, with minimal populations expressing
CD235aand/or CD41 (Fig. 5G-I). Consistent with this hematopoietic
phenotype, A3%/B*® ECs generated mostly myeloid CFUs consisting
ofboth granulocyte/monocyte (GM) and macrophage (Mac) types, as
well as larger erythroid burst-forming units (BFU-E) and mixed
colonies containing both erythroid and myeloid elements (Mix)
(Fig. 51). By contrast, the A'%/B> ECs generated relatively limited
numbers of CD45" cells and few CFU progenitors (Fig. 5G-J).
Interestingly, when assayed at an intermediate time point during OP9
co-culture (5 days), the A'°%B> ECs did generate a transient
population of CD43"/CD235a" cells and CFUs consisting of the
primarily primitive erythroid type (supplementary material Fig. S9).
Under these conditions, compared with A'%%/B> ECs, A%%/B*° ECs
showed significantly higher levels of CD45" cells, CFU-Mac and
CFU-GM.

These findings suggest limited hematopoietic potential of the
A'09B3 ECs, appearing later than that detected from A>%/B*° ECs.
This is consistent with a recent report suggesting transient
hematopoietic activity of anterior mesoderm-derived endocardium
during murine development (Nakano et al., 2013). Although this
hematopoietic activity was detected even when the day 5 A!°%/B®
ECs were sorted for CD34 expression (data not shown), we cannot

rule out the possibility of a hematopoietic contribution derived from
a small number of less differentiated mesoderm cells among the day
5 A'99B> ECs. Overall, however, our results suggest that
hematopoietic activity is enriched within the A3%/B** relative to
A09B5 ECs, consistent with the primary origin of embryonic
hematopoiesis from posterior mesoderm.

Respecification of endothelium into cardiomyocytes by
inhibition of Wnt/p-catenin signaling

Studies have suggested that cardiac and hemogenic-endothelial
lineages are closely related in the genetic and signaling mechanisms
that mediate their development (Lin et al., 1998; Ferdous et al.,
2009; Gekas et al., 2009; Lian et al., 2012; Van Handel et al., 2012;
Chan et al., 2013; Kim et al., 2013; Palpant et al., 2013). Work from
our laboratory and others indicates that activation of the Wnt/B-
catenin signaling pathway is sufficient to convert cardiomyocyte
progenitors into hemogenic ECs (Schoenebeck et al., 2007; Van
Handel et al., 2012; Palpant et al., 2013). Based on these findings,
we tested the reciprocal hypothesis that blocking Wnt/B-catenin
signaling is sufficient to convert endothelium derived from our two
distinct subpopulations into the cardiac lineage. hESCs were
induced to differentiate using either A'°%/B3 or A3Y/B*°, followed
by hemogenic endothelial differentiation conditions from days 2-5
(described above). From day 5-14 of differentiation, the medium
was changed to RPMI with B27 supplement, in keeping with
standard cardiac differentiation methods. In the absence of Wnt/f-
catenin inhibition, A'°%/B> ECs showed some intrinsic capacity
to convert into cardiomyocytes (Fig. 6A), whereas no cardiogenic
activity was present in the A3%/B*® ECs. Gene expression analysis
of day 5 A!%/B3 ECs suggests that the cells are primed for
cardiogenesis, based on the expression of cardiac-related genes
such as GATA4 (Fig. 3E) and MYL7 (supplementary material
Fig. S4D).

To suppress Wnt/B-catenin signaling, we tested a wide range of
conditions in which cells were exposed to varying doses of the small
molecule tankyrase inhibitor XAV-939 (XAV) during differentiation.
Strikingly, inhibition of Wnt/B-catenin signaling with 2 uM XAV
between days 5 and 7 of differentiation yielded 90% beating
cardiomyocytes from anterior A'°/B> ECs (Fig. 6A; supplementary
material Fig. S10A). In marked contrast, inhibiting Wnt/B-catenin
signaling in posterior A3%/B*® ECs did not induce cardiomyocyte
development (Fig. 6A; supplementary material Fig. S10B).

gPCR analysis showed that both endothelial populations, but
not A'%%/B5 CPCs, have high-level expression of lineage markers
including SCL and VE-cadherin on day 5 of differentiation
(Fig. 6B). By day 8 (3 days post Wnt/B-catenin inhibition) these
makers were significantly downregulated in ECs. By contrast,
A'99/B5 CPCs never expressed endothelial markers but showed
appropriate activation of cardiomyocyte development on the
basis of NKX2.5 and c¢TnT expression (Fig. 6B). Among the
endothelial populations, only the anterior A'°*/B> ECs showed an
upregulation of cardiac lineage markers after treatment with XAV,
comparable to A'°%/B3 CPCs (Fig. 6B). Flow cytometry for cTnT*
cells at the day 14 time point showed that no cardiomyocytes
were produced from A3%/B#® ECs treated with XAV (Fig. 6C).
By contrast, significant cardiomyocyte production was generated
via A'°/B> CPCs and XAV-treated A'°%/B° ECs, with no
difference in purity between these approaches (cTnT" cells
generated by: A'°%/B> CPCs, 81+1%; A'%/B> ECs¥AY, 72+2%;
A3/B* ECsXAY, 1+0%; Fig. 6C). There was also no difference in
the onset of beating during differentiation or in the intrinsic
beating rate (supplementary material Movie 1 and Fig. S11A,B).
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Fig. 5. Day 5 ECs have hematopoietic potential. (A) The experimental approach for directing undifferentiated hESCs into A'°%/B® and A%%/B*° ECs followed
by differentiation into blood cells. (B,C) Representative flow cytometry plots (B) and mean percentages (C) of CD73" and CD73™ subsets of CD31* A'°%/B® and
A%/B* ECs (n=6 replicates). (D-F) Representative flow cytometry plots of hematopoietic phenotypes CD34/CD45, CD41/CD235a within the CD43 subset (D),
mean numbers of cells of primitive phenotype (CD43*/CD235a"/CD41"'") (n=6 replicates) (E), and colony-forming assays for primitive hematopoietic progenitors
including primitive erythroid (EryP) and macrophage (Mac) (n=3 replicates) (F) generated from day 5 A'°%/B® and A%/B*° ECs. (G-I) Representative flow
cytometry plots of hematopoietic phenotypes CD34/CD45, CD41/CD235a within the CD43 subset (G), mean numbers of CD45" hematopoietic cells generated
(n=6 replicates) (H), and colony-forming assays for definitive erythroid/myeloid hematopoietic progenitors including macrophage (Mac), granulocyte/monocyte/
macrophage (GM), large, burst-forming erythroid (BFU-E), and mixed erythroid/myeloid (Mix) colonies (n=3 replicates) (I) generated from 10° A'°/B® ECs or
A®/B*° ECs following 12-14 day secondary culture on OP9 cells. (J) Representative images for colony-forming assays. Images are magnified for EryP (100%) and
Mac (50x) to show details of colony morphology.

Cardiomyocytes generated from XAV-treated A!°9/B> ECs MEF2C, NKX2.5) (Fig. 7C,E; supplementary material Tables S1
showed slightly lower cardiomyocyte cell yield than A!'°/B3  and S2). Some cardiac genes were significantly different in expression
CPCs (Fig. 6D). between these populations and suggested a more mature ventricular
Immunohistochemistry showed clear myofibrillar striations in  phenotype in XAV-treated A'°*/B°> ECs compared with A!0%/B®
both cardiomyocyte populations on the basis of c-actinin expression ~ CPCs. These include genes encoding proteins such as MYL2 and
as well as nuclear-localized NKX2.5 (Fig. 6E). By contrast, MYH?7, gap junction, ion channel and calcium-handling proteins
these cardiac markers were not detected in the XAV-treated (GJAIL, GJAS, KCNN4, CASQ2), the cardiac maturation factor
posterior A3%/B*° ECs (Fig. 6E). These findings indicate that HOPX, as well as the first heart field transcription factor TBX5
there is a cardiogenic lineage bias among ECs and CPCs derived  (Fig. 7D,F). RNA-seq analysis of XAV-treated A>*/B*° ECs indicated
from A!%9/B conditions (Fig. 6F). that, although endothelial markers were downregulated after Wnt/B-
We performed genome-wide transcriptional analysis by RNA-seq  catenin inhibition (Fig. 6B), this population continued to show
to determine similarities and differences between cardiomyocytes —evidence of'its endothelial-like state as indicated by the enrichment of
generated from A'%/B° CPCs and cardiomyocytes derived from endothelial gene ontology categories (supplementary material
XAV-treated A'°%/B3 ECs (Fig. 7A). These data show significant ~ Fig. S5). Our data cannot distinguish epigenetic memory from a
differences between the populations in the areas of extracellularmatrix ~ mixed population at this point.
proteins, cell cycle regulation, and membrane signaling/glycoprotein We carried out several experiments in order to understand the
components (Fig. 7B). Despite their origin from ECs, the XAV-treated  nature of this cell fate conversion in greater detail. First, we tested
A'0/B> ECs showed striking similarity in their cardiac gene whether cell fate conversion could occur if Wnt/B-catenin
expression profiles, including those encoding calcium-handling inhibition was introduced at earlier time points in differentiation,
proteins (e.g. CACNAIC, ATP2A2), myofilament proteins (e.g.  which would suggest that uncommitted mesoderm cells are giving
TNNI1, cTnT) and transcription factors (e.g. HAND2, GATA4, rise to the cardiomyocytes. These results show that Wnt/B-catenin
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Fig. 6. Inhibiting Wnt/B-catenin signaling redirects A'°"/B® ECs but not A°°/B*° ECs into the cardiac fate with high efficiency. (A) Flow cytometry analysis
of cTnT" cells from ECs treated with increasing doses of XAV-939 between days 5 and 7 of differentiation. (B) qRT-PCR analysis of SCL, VE-cadherin (CD144),
NKX2.5 and ¢TnT between differentiation days 5 and 14, comparing the lineage potential from day 5 cultures derived from A'°%/B® CPCs, A'%%/B® ECs™*
and A%/B*° ECs*”_ (C) Percentage of cardiomyocytes assessed by flow cytometry for the myofilament protein cTnT among day 14 cells. (D) Cardiomyocyte
yield generated from A'%/B® CPCs, A'%/B% ECs*" and A®%/B*° ECs™*". (E) Immunohistochemistry for o-actinin and NKX2.5 in day 14 cells generated from
A'%%/B% CPCs, A'%°/B% ECs™ and A%%/B*° ECs™. Scale bar: 100 um. (F) Schematic illustrating that A'°°/B® CPCs and A'°%/B® ECs**" are lineage biased to the
cardiac fate compared with A’/B*® ECs*”V. n=5-6 replicates per sample. *P<0.05 versus all other groups.

inhibition at day 3 of differentiation (the time point when XAV is
added in cardiac differentiation) does not result in efficient
fate conversion, arguing against residual uncommitted mesoderm
cells (supplementary material Fig. SI0A). Not until day 5, when
the cells are fully committed hemogenic endothelium (>90%
KDR"/CD34"), do we observe a robust capacity for conversion to
the cardiac fate. The capacity for cell fate conversion diminishes as
the cells mature toward the endothelial fate (supplementary
material Fig. S10C).

Second, we were able to convert ECs to cardiomyocytes using
various media, including endothelial growth medium (EGM),
Stempro34 with cardiac supplement, as well as RPMI with B27
supplement (supplementary material Fig. S12). This indicates that
the capacity for cell fate conversion from ECs is primarily
determined by Wnt/B-catenin inhibition and not other cardiogenic
factors in the media. Furthermore, we show that increasing doses of
XAV do not markedly alter the number of live cells during the cell
fate conversion, indicating that the cardiomyocytes generated are
not the consequence of selection of a cardiogenic subset caused by

the death of non-cardiogenic cells (supplementary material Fig.
S11D).

Lastly, we tested by FACS whether cardiac fate conversion
from endothelium was attributable solely to the CD34" population,
and found that cardiomyocytes were generated exclusively from
the CD34" population and not from the CD34~ population
(supplementary material Fig. S11C).

DISCUSSION

PSCs provide a promising source of human cells for therapeutic
applications. Although cellular plasticity is one of the most exciting
features of these cells, directing their specific fate efficiently presents a
major challenge. In the current study, we show that titrating activin A
and BMP4 dosage results in modulation of Wnt/B-catenin signaling
activity at the onset of fate specification. This induction approach has
dramatic implications for generating different populations that reflect
the embryological patterning of anterior and posterior mesodermal
lineages. The lineage bifurcations that occur as a consequence of the
different induction signals enable the specification of progenitor
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Fig. 7. RNA-seq analysis of cardiomyocytes generated from A'°°/B® CPCs and A'%%/B® ECs™V. (A) Transcripts differentially expressed with FDR<0.05 are
highlighted in color: red, higher in cardiomyocytes derived from A'°/B® CPCs; green, higher in cardiomyocytes derived from A'°%/B% ECs**V. The subset of genes
with FDR<0.05 and fold-change >2 are considered significantly different. (B-D) Hand-collated list of genes associated with cell cycle, matrix, and signaling with
a greater than 2-fold difference (B), cardiac-associated genes that were not different between groups (C), and cardiac genes with a greater than 2-fold difference
(D) comparing A'°/B® CPCs (red) and A'%%/B® ECs™ (green). (E,F) Raw data for genes involved in cardiac development that are not different (E) or are
significantly different (F) between cardiomyocytes generated from A'°%/B® CPCs (red) and A'°/B® ECs*” (green). FPKM values are given.

populations that are capable of giving rise to high-purity definitive
mesodermal derivatives such as cardiomyocytes and ECs
(supplementary material Fig. S1). We found variability in the
efficiency of differentiation using these protocols between various
hPSC lines, indicating the need for line-by-line optimization. Our
approach utilizing changes in activin A and BMP4 concentration
shows that these morphogens act both in a coordinated fashion and
independently to orchestrate the complex aspects of lineage fate
choice in mesoderm development.

Analogous to embryological events, we show that cardiac
differentiation occurs most efficiently under conditions that specify
an anterior-like cardiogenic mesoderm. We also show that KDR*/
CD34"/VE-cadherin” ECs are generated with equal potency across all
conditions of activin A/BMP4 dosing. This is consistent with the
observation that endothelial lineages are derived from a range of
embryological origins (Wu et al., 2011; Nakano et al., 2013). Studies
have shown that endocardial endothelium is derived from the anterior
mesoderm in coordination with the heart-forming fields, whereas
vascular endothelium involved in formation of the dorsal aorta, aorta-
gonad-mesonephros (AGM) and yolk sac vasculature is generated
from the posterior mesoderm (Walmsley et al., 2002; Schoenebeck
et al., 2007; Misfeldt et al., 2009).

Although KDR and CD34 expression does not distinguish
between these populations, we show mRNA differences in
NFATCI and HANDI expression that do suggest a polarizing
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effect of activin A/BMP4 titration on endothelial subtypes. Our
findings indicate that establishing a polarization of mesoderm at
the onset of differentiation is required to specify sublineages of
endothelial fate that have unique phenotype and function.
Anterior ECs showed significantly higher angiogenic behavior
under flow, with diminished VE-cadherin junctions at cell-cell
contacts, whereas posterior ECs strongly expressed VE-cadherin
with minimal sprouting under flow. EC responses to flow
have been shown to occur, in part, through a junctional
mechanosensory complex consisting of VE-cadherin, CD31 and
KDR (Abraham et al., 2009). Although both EC populations
expressed VE-cadherin, our data indicate that robust angiogenesis
in anterior ECs under flow conditions is correlated with
downregulation of VE-cadherin.

In addition to the molecular similarities and differences between
these EC subtypes, we show unique functional characteristics of
these populations in terms of their hemogenic capacity, consistent
with embryonic mesodermal patterning. Compared with anterior-
derived ECs, posterior-derived ECs were highly enriched in both
early hematopoietic activity, as judged by surface markers, and CFU
progenitors as assayed at day 5, as well as later, broader
erythromyeloid activity assayed following extended OP9 co-
culture with hematopoietic cytokines. These findings are
consistent with the embryonic origin of most hematopoietic
precursors from posterior mesoderm. Interestingly, we also

DEVELOPMENT


http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.117010/-/DC1

RESEARCH ARTICLE

Development (2015) 142, 3198-3209 doi:10.1242/dev.117010

observed limited, transient hematopoietic potential from anterior-
derived ECs. Although we cannot rule out contamination from a
small population of undifferentiated cells giving rise to these
hematopoietic progeny under hematopoiesis-inducing conditions
during OP9 co-culture, this finding could also be consistent with a
recent study showing transient hematopoietic potential from cells of
endocardial (anterior mesoderm) origin (Nakano et al., 2013).
Furthermore, the primarily primitive hematopoietic phenotype
observed from anterior-like cells is consistent with relatively
higher activin/nodal and lower Wnt/B-catenin signaling during the
mesodermal patterning of these cells, as recently shown to be
favorable for primitive hematopoiesis (Kennedy et al., 2012;
Sturgeon et al., 2014).

Our laboratory and others have shown that a failure to express key
molecules involved in fate decision in the developing endothelium
(e.g. TMEMSS, SCL or Cloche) leads to the interconversion of cells
between the cardiac and endothelial fates at least in part through
regulation of Wnt/B-catenin signaling (Schoenebeck et al., 2007; Van
Handel et al., 2012; Palpant et al., 2013). This study shows that
generating ECs from prepatterned mesoderm results in a marked
cardiogenic lineage bias only in anterior-derived ECs. In particular,
we show that transient antagonism of Wnt/B-catenin signaling
facilitates the conversion of endothelium derived from anterior
mesoderm into cardiomyocytes. By contrast, endothelium derived
from posterior mesoderm showed no capacity for cardiogenic lineage
conversion after Wnt/B-catenin inhibition. More definitive assays in
the future should include in vitro lineage-tracing studies to confirm
these observations.

The capacity to direct the differentiation of high-purity progenitor
and definitive cell types from hPSCs is a critical step toward
understanding developmental mechanisms, disease etiology and
generating therapeutically relevant cell preparations. This study
shows that activin A and BMP4 are sufficient to direct the
polarization of mesoderm in vitro, which has marked consequences
for efficient cell fate specification into cardiac, endothelial and
hematopoietic lineages.

MATERIALS AND METHODS

Cell culture

Human ESCs and iPSCs were cultured on Matrigel (BD Biosciences) coated
plates and maintained in an undifferentiated state with either mouse
embryonic fibroblast (MEF)-conditioned media containing 5 ng/ml bFGF
(Peprotech, 100-18B) (for RUES2 hESCs, IMR90 hiPSCs, VN1 hiPSCs) or
defined media including X-Vivo (Lonza) (for ELF1 hESCs), or mTESR
(Stem Cell Technologies) (for RUES2 hESCs, WTC11 hiPSCs). A subset of
experiments was performed using RUES2 hESCs modified by lentivirus to
express the B-catenin-activated reporter BAR-Venus, as we described
previously (Palpant et al., 2013).

hESC directed differentiation

Standard cardiomyocyte directed differentiation using a monolayer
platform was performed with a modified protocol based on previous
reports (Laflamme et al., 2007; Paige et al., 2010; Lian et al., 2012).
Endothelial differentiation involved initiation of differentiation with
activin A and BMP4. On day 2, the medium was changed to a
composition adapted from work reported previously (Kennedy et al.,
2007): Stempro34 (Invitrogen, 10640019) containing 200 ng/ml VEGF
(Peprotech, 100-20), 5ng/ml bFGF (Peprotech, 100-18B), 10 ng/ml
BMP4 (R&D Systems, 314-BP-050), 0.4 mM monothioglycerol, 50 pg/
ml ascorbic acid, 2 mM L-glutamine (Invitrogen, 25030-081) and Pen-
Strep (Invitrogen, 15140-163). Medium was not changed until day 5. For
additional information, see the supplementary Materials and Methods and
Fig. S6.

Colony-forming assays and hematopoietic differentiation on OP9
cells

OP9 feeder cells were seeded in 24-well plates the day prior to co-culture.
Day 5 unsorted or CD34" sorted hESC-derived ECs were seeded onto OP9
cells at 1x10° cells per well in alpha-MEM (Invitrogen) with 10% FBS
(Hyclone), Pen-Strep (Invitrogen) and recombinant cytokines. Colonies
were scored by morphology after 12-14 days as small, primitive erythroid
(CFU-EryP), macrophage (CFU-Mac), granulocyte/monocyte/macrophage
(CFU-GM), large, burst-forming erythroid (BFU-E), or mixed colonies
containing both erythroid and myeloid elements (CFU-Mix). For details, see
the supplementary Materials and Methods.

Endothelial cell differentiation and analysis

Unsorted or CD34" sorted anterior- or posterior-derived ECs were plated in
gelatin-coated tissue culture flasks with EGM media (Lonza, CC-3124)
containing 20 ng/ml VEGF (Peprotech, 100-20), 20 ng/ml bFGF
(Peprotech, 100-18B) and 1uM CHIR-99021 (Cayman Chemical,
13122). Cells were maintained until day 14, at which point cells were
isolated, analyzed by flow cytometry for CD31 expression, and then
assessed in assays for tube formation, angiogenesis, and fluid shear stress in
microfluidic channels as described in the supplementary Materials and
Methods.

Immunofluorescence

Cells were fixed, stained with primary antibodies then Alexa Fluor-
conjugated secondary antibodies (Invitrogen), and counterstained with
DAPI or Hoechst 33342 as described in the supplementary Materials and
Methods.

Quantitative (q) RT-PCR

Total RNA was isolated (from unsorted cell populations, unless specified
otherwise) using the RNeasy Miniprep Kit (Qiagen) and first-strand cDNA
synthesized using the Superscript Il Reverse Transcriptase Kit (Invitrogen).
qPCR was performed using the Sensimix SYBR PCR Kit (Bioline) on a
7900HT fast real-time PCR system (Applied Biosystems). The copy number
for each transcript is expressed relative to HPRT. Primers are listed in
supplementary material Table S3.

Flow cytometry

BAR-Venus RUES2 cells were analyzed for intrinsic Venus fluorescence by
FACS. Wild-type RUES2 cells were labeled for flow cytometry using
antibodies as described in the supplementary Materials and Methods. Cells
were analyzed using a FACSCANTO II or sorted on a FACSARIA II with
FACSDiva software (BD Biosciences). Instrument settings were adjusted to
avoid spectral overlap. Data analysis was performed using FlowJo (Tree
Star). For further details of FACS and Wnt/B-catenin signaling analysis
using BAR-Venus see the supplementary Materials and Methods.

Proteomics

Peptides were isolated from cells and measured by nano-LC-MS/MS on a
Q Exactive (Thermo Scientific) equipped with a NanoAcquity system
(Waters) as described in the supplementary Materials and Methods.
Identification and label-free quantification of peptides were performed
with MaxQuant 1.3.0.5 using a 1% false discovery rate (FDR) against the
human Swiss-Prot/TrEMB database downloaded from Uniprot on October
11th, 2013. For further details see the supplementary Materials and
Methods.

RNA-seq

Samples were submitted to University of Washington High-Throughput
Genomic Sequencing Center for isolation and analysis. RNA-seq was
performed on poly-A-enriched samples wusing Illumina TruSeq.
Differentially expressed genes were classified according to gene ontology
using the NIAID Database for Annotation, Visualization and Integrated
Discovery (DAVID/EASE, http:/david.abcc.nciferf.gov/). RNA-seq data
have been deposited in the NCBI Gene Expression Omnibus database with
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accession number GSES55275. Separately, FPKM (fragments per kilobase
of exon per million fragments mapped) values were computed using
Cufflinks version 2.1.1 (Trapnell et al., 2010) and UCSC gene annotations.
For additional information, see the supplementary Materials and Methods.

Statistics

Single variable analysis between two samples was compared by Student’s
t-test. Single and multivariable assays were analyzed by one-way or
two-way ANOVA. Results are presented as meants.e.m. P<0.05 was
considered significant.

Acknowledgements
We thank Dr Hans Reinecke for helpful discussions and critical analyses.

Competing interests
The authors declare no competing or financial interests.

Author contributions

N.J.P. conceived and carried out experiments, interpreted data and wrote the
manuscript; L.P. conceived experiments, interpreted data and wrote the manuscript;
M.R. carried out endothelial experiments and performed data analysis; C.J. and
R.T.M. carried out the proteomics analysis; B.H. carried out hematopoietic
experiments and performed data analysis; D.J. and W.L.R. analyzed RNA-seq data;
I.B. and Y.Z. supervised the endothelial and hematopoietic experiments,
respectively, and interpreted data; C.E.M. conceived experiments, interpreted data,
obtained research funding and wrote the manuscript.

Funding

The proteomics work was supported in part by the University of Washington’s
Proteomics Resource [UWPR95794]. This work was supported by National
Institutes of Health grants HL100405, HL084642, HL094374 and HL100395
(C.E.M.), GM081619 (C.E.M., W.L.R. and R.T.M.), HG00035-19 (D.J.), HL007312
(N.J.P.), EB001650-08 (M.R.), and DP2DK102258 (Y.Z.). Deposited in PMC for
immediate release.

Supplementary material
Supplementary material available online at
http:/dev.biologists.org/lookup/suppl/doi:10.1242/dev.117010/-/DC1

References

Abraham, S., Yeo, M., Montero-Balaguer, M., Paterson, H., Dejana, E., Marshall,
C. J. and Mavria, G. (2009). VE-Cadherin-mediated cell-cell interaction
suppresses sprouting via signaling to MLC2 phosphorylation. Curr. Biol. 19,
668-674.

Barnes, R. M., Firulli, B. A., Conway, S. J., Vincentz, J. W. and Firulli, A. B.
(2010). Analysis of the Hand1 cell lineage reveals novel contributions to
cardiovascular, neural crest, extra-embryonic, and lateral mesoderm
derivatives. Dev. Dyn. 239, 3086-3097.

Chan, S. S.-K,, Shi, X., Toyama, A., Arpke, R. W., Dandapat, A., lacovino, M.,
Kang, J., Le, G., Hagen, H. R., Garry, D. J. et al. (2013). Mesp1 patterns
mesoderm into cardiac, hematopoietic, or skeletal myogenic progenitors in a
context-dependent manner. Cell Stem Cell 12, 587-601.

Choi, K.-D., Vodyanik, M. A., Togarrati, P. P., Suknuntha, K., Kumar, A,
Samarjeet, F., Probasco, M. D., Tian, S., Stewart, R., Thomson, J. A. et al.
(2012). Identification of the hemogenic endothelial progenitor and its direct
precursor in human pluripotent stem cell differentiation cultures. Cell Rep. 2,
553-567.

Costello, I., Pimeisl, I.-M., Drager, S., Bikoff, E. K., Robertson, E. J. and Arnold,
S. J. (2011). The T-box transcription factor Eomesodermin acts upstream of
Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat. Cell Biol. 13,
1084-1091.

Davidson, K. C., Adams, A. M., Goodson, J. M., McDonald, C. E., Potter, J. C.,
Berndt, J. D., Biechele, T. L., Taylor, R. J. and Moon, R. T. (2012). Wnt/g-
catenin signaling promotes differentiation, not self-renewal, of human embryonic
stem cells and is repressed by Oct4. Proc. Natl. Acad. Sci. USA 109, 4485-4490.

de la Pompa, J. L., Timmerman, L. A., Takimoto, H., Yoshida, H., Elia, A. J.,
Samper, E., Potter, J., Wakeham, A., Marengere, L., Langille, B. L. et al.
(1998). Role of the NF-ATc transcription factor in morphogenesis of cardiac valves
and septum. Nature 392, 182-186.

Ferdous, A., Caprioli, A., lacovino, M., Martin, C. M., Morris, J., Richardson,
J. A, Latif, S., Hammer, R. E., Harvey, R. P., Olson, E. N. et al. (2009). Nkx2-5
transactivates the Ets-related protein 71 gene and specifies an endothelial/
endocardial fate in the developing embryo. Proc. Natl. Acad. Sci. USA 106,
814-819.

Gekas, C., Rhodes, K. E., Gereige, L. M., Helgadottir, H., Ferrari, R., Kurdistani,
S. K., Montecino-Rodriguez, E., Bassel-Duby, R., Olson, E., Krivtsov, A. V.

3208

et al. (2009). Mef2C is a lineage-restricted target of Scl/Tal1 and regulates
megakaryopoiesis and B-cell homeostasis. Blood 113, 3461-3471.

George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. and
Hynes, R. O. (1993). Defects in mesoderm, neural tube and vascular
development in mouse embryos lacking fibronectin. Development 119,
1079-1091.

Hart, A. H., Hartley, L., Sourris, K., Stadler, E. S., Li, R., Stanley, E. G., Tam, P.P.,
Elefanty, A. G. and Robb, L. (2002). MixI1 is required for axial mesendoderm
morphogenesis and patterning in the murine embryo. Development 129,
3597-3608.

Jaffredo, T., Gautier, R., Eichmann, A. and Dieterlen-Liévre, F. (1998). Intraaortic
hemopoietic cells are derived from endothelial cells during ontogeny.
Development 125, 4575-4583.

James, D., Nam, H.-s., Seandel, M., Nolan, D., Janovitz, T., Tomishima, M.,
Studer, L., Lee, G., Lyden, D., Benezra, R. et al. (2010). Expansion and
maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta
inhibition is Id1 dependent. Nat. Biotechnol. 28, 161-166.

Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A.,
Ellis, J. and Keller, G. (2011). Stage-specific optimization of activin/nodal and
BMP signaling promotes cardiac differentiation of mouse and human pluripotent
stem cell lines. Cell Stem Cell 8, 228-240.

Kennedy, M., D’Souza, S. L., Lynch-Kattman, M., Schwantz, S. and Keller, G.
(2007). Development of the hemangioblast defines the onset of hematopoiesis in
human ES cell differentiation cultures. Blood 109, 2679-2687.

Kennedy, M., Awong, G., Sturgeon, C. M., Ditadi, A., LaMotte-Mohs, R., Zaiiiga-
Pfliicker, J. C. and Keller, G. (2012). T lymphocyte potential marks the
emergence of definitive hematopoietic progenitors in human pluripotent stem cell
differentiation cultures. Cell Rep. 2, 1722-1735.

Kim, P. G., Albacker, C. E., Lu, Y.-f., Jang, |.-h., Lim, Y., Heffner, G. C., Arora, N.,
Bowman, T. V., Lin, M. I, Lensch, M. W. et al. (2013). Signaling axis involving
Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic
transition. Proc. Natl. Acad. Sci. USA 110, E141-E150.

Kimelman, D. and Martin, B. L. (2012). Anterior-posterior patterning in early
development: three strategies. Wiley Interdiscip. Rev. Dev. Biol. 1, 253-266.

Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A.,
Dupras, S. K., Reinecke, H., Xu, C., Hassanipour, M., Police, S. et al. (2007).
Cardiomyocytes derived from human embryonic stem cells in pro-survival factors
enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015-1024.

Lancrin, C., Sroczynska, P., Stephenson, C., Allen, T., Kouskoff, V. and
Lacaud, G. (2009). The haemangioblast generates haematopoietic cells through
a haemogenic endothelium stage. Nature 457, 892-895.

Lekven, A. C., Thorpe, C. J., Waxman, J. S. and Moon, R. T. (2001). Zebrafish
wnt8 encodes two wnt8 proteins on a bicistronic transcript and is required for
mesoderm and neurectoderm patterning. Dev. Cell 1, 103-114.

Lengerke, C., Wingert, R., Beeretz, M., Grauer, M., Schmidt, A. G., Konantz, M.,
Daley, G. Q. and Davidson, A. J. (2011). Interactions between Cdx genes and
retinoic acid modulate early cardiogenesis. Dev. Biol. 354, 134-142.

Lian, X., Hsiao, C., Wilson, G., Zhu, K., Hazeltine, L. B., Azarin, S. M., Raval,
K. K., Zhang, J., Kamp, T. J. and Palecek, S. P. (2012). Cozzarelli Prize Winner:
Robust cardiomyocyte differentiation from human pluripotent stem cells via
temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. USA 109,
E1848-E1857.

Lin, Q., Lu, J., Yanagisawa, H., Webb, R., Lyons, G. E., Richardson, J. A. and
Olson, E. N. (1998). Requirement of the MADS-box transcription factor MEF2C
for vascular development. Development 125, 4565-4574.

Martin, B. L. and Kimelman, D. (2012). Canonical Wnt signaling dynamically
controls multiple stem cell fate decisions during vertebrate body formation. Dev.
Cell 22, 223-232.

Maska, E. L., Cserjesi, P., Hua, L. L., Garstka, M. E., Brody, H. M. and Morikawa, Y.
(2010). ATIx2-Cre mouse line uncovers essential roles for hand1 in extraembryonic
and lateral mesoderm. Genesis 48, 479-484.

Misfeldt, A. M., Boyle, S. C., Tompkins, K. L., Bautch, V. L., Labosky, P. A. and
Baldwin, H. S. (2009). Endocardial cells are a distinct endothelial lineage derived
from Flk1+ multipotent cardiovascular progenitors. Dev. Biol. 333, 78-89.

Morikawa, Y. and Cserjesi, P. (2004). Extra-embryonic vasculature development is
regulated by the transcription factor HAND1. Development 131, 2195-2204.

Murry, C. E. and Keller, G. (2008). Differentiation of embryonic stem cells to
clinically relevant populations: lessons from embryonic development. Cell 132,
661-680.

Nakano, H., Liu, X., Arshi, A., Nakashima, Y., van Handel, B., Sasidharan, R.,
Harmon, A. W., Shin, J.-H., Schwartz, R. J., Conway, S. J. et al. (2013).
Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat.
Commun. 4, 1564.

Nishikawa, S.-l., Nishikawa, S., Kawamoto, H., Yoshida, H., Kizumoto, M.,
Kataoka, H. and Katsura, Y. (1998). In vitro generation of lymphohematopoietic
cells from endothelial cells purified from murine embryos. Immunity 8, 761-769.

Nostro, M. C., Cheng, X., Keller, G. M. and Gadue, P. (2008). Wnt, activin, and
BMP signaling regulate distinct stages in the developmental pathway from
embryonic stem cells to blood. Cell Stem Cell 2, 60-71.

DEVELOPMENT


http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.117010/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.117010/-/DC1
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.117010/-/DC1
http://dx.doi.org/10.1016/j.cub.2009.02.057
http://dx.doi.org/10.1016/j.cub.2009.02.057
http://dx.doi.org/10.1016/j.cub.2009.02.057
http://dx.doi.org/10.1016/j.cub.2009.02.057
http://dx.doi.org/10.1002/dvdy.22428
http://dx.doi.org/10.1002/dvdy.22428
http://dx.doi.org/10.1002/dvdy.22428
http://dx.doi.org/10.1002/dvdy.22428
http://dx.doi.org/10.1016/j.stem.2013.03.004
http://dx.doi.org/10.1016/j.stem.2013.03.004
http://dx.doi.org/10.1016/j.stem.2013.03.004
http://dx.doi.org/10.1016/j.stem.2013.03.004
http://dx.doi.org/10.1016/j.celrep.2012.08.002
http://dx.doi.org/10.1016/j.celrep.2012.08.002
http://dx.doi.org/10.1016/j.celrep.2012.08.002
http://dx.doi.org/10.1016/j.celrep.2012.08.002
http://dx.doi.org/10.1016/j.celrep.2012.08.002
http://dx.doi.org/10.1038/ncb2304
http://dx.doi.org/10.1038/ncb2304
http://dx.doi.org/10.1038/ncb2304
http://dx.doi.org/10.1038/ncb2304
http://dx.doi.org/10.1073/pnas.1118777109
http://dx.doi.org/10.1073/pnas.1118777109
http://dx.doi.org/10.1073/pnas.1118777109
http://dx.doi.org/10.1073/pnas.1118777109
http://dx.doi.org/10.1038/32419
http://dx.doi.org/10.1038/32419
http://dx.doi.org/10.1038/32419
http://dx.doi.org/10.1038/32419
http://dx.doi.org/10.1073/pnas.0807583106
http://dx.doi.org/10.1073/pnas.0807583106
http://dx.doi.org/10.1073/pnas.0807583106
http://dx.doi.org/10.1073/pnas.0807583106
http://dx.doi.org/10.1073/pnas.0807583106
http://dx.doi.org/10.1182/blood-2008-07-167577
http://dx.doi.org/10.1182/blood-2008-07-167577
http://dx.doi.org/10.1182/blood-2008-07-167577
http://dx.doi.org/10.1182/blood-2008-07-167577
http://dx.doi.org/10.1038/nbt.1605
http://dx.doi.org/10.1038/nbt.1605
http://dx.doi.org/10.1038/nbt.1605
http://dx.doi.org/10.1038/nbt.1605
http://dx.doi.org/10.1016/j.stem.2010.12.008
http://dx.doi.org/10.1016/j.stem.2010.12.008
http://dx.doi.org/10.1016/j.stem.2010.12.008
http://dx.doi.org/10.1016/j.stem.2010.12.008
http://dx.doi.org/10.1016/j.celrep.2012.11.003
http://dx.doi.org/10.1016/j.celrep.2012.11.003
http://dx.doi.org/10.1016/j.celrep.2012.11.003
http://dx.doi.org/10.1016/j.celrep.2012.11.003
http://dx.doi.org/10.1073/pnas.1214361110
http://dx.doi.org/10.1073/pnas.1214361110
http://dx.doi.org/10.1073/pnas.1214361110
http://dx.doi.org/10.1073/pnas.1214361110
http://dx.doi.org/10.1002/wdev.25
http://dx.doi.org/10.1002/wdev.25
http://dx.doi.org/10.1038/nbt1327
http://dx.doi.org/10.1038/nbt1327
http://dx.doi.org/10.1038/nbt1327
http://dx.doi.org/10.1038/nbt1327
http://dx.doi.org/10.1038/nature07679
http://dx.doi.org/10.1038/nature07679
http://dx.doi.org/10.1038/nature07679
http://dx.doi.org/10.1016/S1534-5807(01)00007-7
http://dx.doi.org/10.1016/S1534-5807(01)00007-7
http://dx.doi.org/10.1016/S1534-5807(01)00007-7
http://dx.doi.org/10.1016/j.ydbio.2011.03.027
http://dx.doi.org/10.1016/j.ydbio.2011.03.027
http://dx.doi.org/10.1016/j.ydbio.2011.03.027
http://dx.doi.org/10.1073/pnas.1200250109
http://dx.doi.org/10.1073/pnas.1200250109
http://dx.doi.org/10.1073/pnas.1200250109
http://dx.doi.org/10.1073/pnas.1200250109
http://dx.doi.org/10.1073/pnas.1200250109
http://dx.doi.org/10.1016/j.devcel.2011.11.001
http://dx.doi.org/10.1016/j.devcel.2011.11.001
http://dx.doi.org/10.1016/j.devcel.2011.11.001
http://dx.doi.org/10.1002/dvg.20644
http://dx.doi.org/10.1002/dvg.20644
http://dx.doi.org/10.1002/dvg.20644
http://dx.doi.org/10.1016/j.ydbio.2009.06.033
http://dx.doi.org/10.1016/j.ydbio.2009.06.033
http://dx.doi.org/10.1016/j.ydbio.2009.06.033
http://dx.doi.org/10.1242/dev.01091
http://dx.doi.org/10.1242/dev.01091
http://dx.doi.org/10.1016/j.cell.2008.02.008
http://dx.doi.org/10.1016/j.cell.2008.02.008
http://dx.doi.org/10.1016/j.cell.2008.02.008
http://dx.doi.org/10.1038/ncomms2569
http://dx.doi.org/10.1038/ncomms2569
http://dx.doi.org/10.1038/ncomms2569
http://dx.doi.org/10.1038/ncomms2569
http://dx.doi.org/10.1016/S1074-7613(00)80581-6
http://dx.doi.org/10.1016/S1074-7613(00)80581-6
http://dx.doi.org/10.1016/S1074-7613(00)80581-6
http://dx.doi.org/10.1016/j.stem.2007.10.011
http://dx.doi.org/10.1016/j.stem.2007.10.011
http://dx.doi.org/10.1016/j.stem.2007.10.011

RESEARCH ARTICLE

Development (2015) 142, 3198-3209 doi:10.1242/dev.117010

Paige, S. L., Osugi, T., Afanasiev, O. K., Pabon, L., Reinecke, H. and Murry, C. E.
(2010). Endogenous Wnt/beta-catenin signaling is required for cardiac
differentiation in human embryonic stem cells. PLoS ONE 5, e11134.

Paige, S. L., Thomas, S., Stoick-Cooper, C.L., Wang, H., Maves, L., Sandstrom, R.,
Pabon, L., Reinecke, H., Pratt, G., Keller, G. et al. (2012). A temporal chromatin
signature in human embryonic stem cells identifies regulators of cardiac
development. Cell 151, 221-232.

Palpant, N. J., Pabon, L., Rabinowitz, J. S., Hadland, B. K., Stoick-Cooper, C. L.,
Paige, S. L., Bernstein, I. D., Moon, R. T.and Murry, C. E. (2013). Transmembrane
protein 88: a Wnt regulatory protein that specifies cardiomyocyte development.
Development 140, 3799-3808.

Peterkin, T., Gibson, A. and Patient, R. (2009). Common genetic control of
haemangioblast and cardiac development in zebrafish. Development 136,
1465-1474.

Rafii, S., Kloss, C. C., Butler, J. M., Ginsberg, M., Gars, E., Lis, R., Zhan, Q.,
Josipovic, P., Ding, B.-S., Xiang, J. et al. (2013). Human ESC-derived hemogenic
endothelial cells undergo distinct waves of endothelial to hematopoietic transition.
Blood 121, 770-780.

Ranger, A. M., Grusby, M. J., Hodge, M. R., Gravallese, E. M., de la Brousse,
F. C., Hoey, T., Mickanin, C., Baldwin, H. S. and Glimcher, L. H. (1998). The
transcription factor NF-ATc is essential for cardiac valve formation. Nature 392,
186-190.

Reid, C. D., Zhang, Y., Sheets, M. D. and Kessler, D. S. (2012). Transcriptional
integration of Wnt and Nodal pathways in establishment of the Spemann
organizer. Dev. Biol. 368, 231-241.

Reiss, K. and Saftig, P. (2009). The “a disintegrin and metalloprotease” (ADAM)
family of sheddases: physiological and cellular functions. Semin. Cell Dev. Biol.
20, 126-137.

Schoenebeck, J. J., Keegan, B. R. and Yelon, D. (2007). Vessel and blood
specification override cardiac potential in anterior mesoderm. Dev. Cell 13,
254-267.

Shalaby, F., Ho, J., Stanford, W. L., Fischer, K.-D., Schuh, A. C., Schwartz, L.,
Bernstein, A. and Rossant, J. (1997). A requirement for Flk1 in primitive and
definitive hematopoiesis and vasculogenesis. Cell 89, 981-990.

Slukvin, I. . (2013). Hematopoietic specification from human pluripotent stem cells:
current advances and challenges toward de novo generation of hematopoietic
stem cells. Blood 122, 4035-4046.

Sturgeon, C. M., Ditadi, A., Awong, G., Kennedy, M. and Keller, G. (2014). Wnt
signaling controls the specification of definitive and primitive hematopoiesis from
human pluripotent stem cells. Nat. Biotechnol. 32, 554-561.

Sumi, T., Tsuneyoshi, N., Nakatsuji, N. and Suemori, H. (2008). Defining early
lineage specification of human embryonic stem cells by the orchestrated balance
of canonical Wnt/beta-catenin, Activin/Nodal and BMP signaling. Development
135, 2969-2979.

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren,
M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010). Transcript assembly
and quantification by RNA-Seq reveals unannotated transcripts and isoform
switching during cell differentiation. Nat. Biotechnol. 28, 511-515.

Ueno, S., Weidinger, G., Osugi, T., Kohn, A. D., Golob, J. L., Pabon, L.,
Reinecke, H., Moon, R. T. and Murry, C. E. (2007). Biphasic role for Wnt/beta-
catenin signaling in cardiac specification in zebrafish and embryonic stem cells.
Proc. Natl. Acad. Sci. USA 104, 9685-9690.

Van Handel, B., Montel-Hagen, A., Sasidharan, R., Nakano, H., Ferrari, R.,
Boogerd, C. J., Schredelseker, J., Wang, Y., Hunter, S., Org, T. et al. (2012).
Scl represses cardiomyogenesis in prospective hemogenic endothelium and
endocardium. Cell 150, 590-605.

Vodyanik, M. A., Thomson, J. A. and Slukvin, . I. (2006). Leukosialin (CD43)
defines hematopoietic progenitors in human embryonic stem cell differentiation
cultures. Blood 108, 2095-2105.

Walmsley, M., Ciau-Uitz, A. and Patient, R. (2002). Adult and embryonic blood and
endothelium derive from distinct precursor populations which are differentially
programmed by BMP in Xenopus. Development 129, 5683-5695.

Wang, Y., Yabuuchi, A., McKinney-Freeman, S., Ducharme, D. M. K., Ray, M. K.,
Chawengsaksophak, K., Archer, T. K. and Daley, G. Q. (2008). Cdx gene
deficiency compromises embryonic hematopoiesis in the mouse. Proc. Natl.
Acad. Sci. USA 105, 7756-7761.

White, M. P., Rufaihah, A. J., Liu, L., Ghebremariam, Y. T., lvey, K. N., Cooke,
J. P. and Srivastava, D. (2013). Limited gene expression variation in human
embryonic stem cell and induced pluripotent stem cell-derived endothelial cells.
Stem Cells 31, 92-103.

Woll, P. S., Morris, J. K., Painschab, M. S., Marcus, R. K., Kohn, A. D., Biechele,
T. L., Moon, R. T. and Kaufman, D. S. (2008). Wnt signaling promotes
hematoendothelial cell development from human embryonic stem cells. Blood
111, 122-131.

Wu, B., Wang, Y., Lui, W., Langworthy, M., Tompkins, K. L., Hatzopoulos, A. K.,
Baldwin, H. S. and Zhou, B. (2011). Nfatc1 coordinates valve endocardial cell
lineage development required for heart valve formation. Circ. Res. 109, 183-192.

Xu, P.-F., Houssin, N., Ferri-Lagneau, K. F., Thisse, B. and Thisse, C. (2014).
Construction of a vertebrate embryo from two opposing morphogen gradients.
Science 344, 87-89.

Yamaguchi, T. P., Takada, S., Yoshikawa, Y., Wu, N. and McMahon, A. P. (1999).
T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification.
Genes Dev. 13, 3185-3190.

Zheng, Y., Chen, J., Craven, M., Choi, N. W,, Totorica, S., Diaz-Santana, A.,
Kermani, P., Hempstead, B., Fischbach-Teschl, C., Lépez, J. A. et al. (2012).
In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl.
Acad. Sci. USA 109, 9342-9347.

3209

DEVELOPMENT


http://dx.doi.org/10.1371/journal.pone.0011134
http://dx.doi.org/10.1371/journal.pone.0011134
http://dx.doi.org/10.1371/journal.pone.0011134
http://dx.doi.org/10.1016/j.cell.2012.08.027
http://dx.doi.org/10.1016/j.cell.2012.08.027
http://dx.doi.org/10.1016/j.cell.2012.08.027
http://dx.doi.org/10.1016/j.cell.2012.08.027
http://dx.doi.org/10.1242/dev.094789
http://dx.doi.org/10.1242/dev.094789
http://dx.doi.org/10.1242/dev.094789
http://dx.doi.org/10.1242/dev.094789
http://dx.doi.org/10.1242/dev.032748
http://dx.doi.org/10.1242/dev.032748
http://dx.doi.org/10.1242/dev.032748
http://dx.doi.org/10.1182/blood-2012-07-444208
http://dx.doi.org/10.1182/blood-2012-07-444208
http://dx.doi.org/10.1182/blood-2012-07-444208
http://dx.doi.org/10.1182/blood-2012-07-444208
http://dx.doi.org/10.1038/32426
http://dx.doi.org/10.1038/32426
http://dx.doi.org/10.1038/32426
http://dx.doi.org/10.1038/32426
http://dx.doi.org/10.1016/j.ydbio.2012.05.018
http://dx.doi.org/10.1016/j.ydbio.2012.05.018
http://dx.doi.org/10.1016/j.ydbio.2012.05.018
http://dx.doi.org/10.1016/j.semcdb.2008.11.002
http://dx.doi.org/10.1016/j.semcdb.2008.11.002
http://dx.doi.org/10.1016/j.semcdb.2008.11.002
http://dx.doi.org/10.1016/j.devcel.2007.05.012
http://dx.doi.org/10.1016/j.devcel.2007.05.012
http://dx.doi.org/10.1016/j.devcel.2007.05.012
http://dx.doi.org/10.1016/S0092-8674(00)80283-4
http://dx.doi.org/10.1016/S0092-8674(00)80283-4
http://dx.doi.org/10.1016/S0092-8674(00)80283-4
http://dx.doi.org/10.1182/blood-2013-07-474825
http://dx.doi.org/10.1182/blood-2013-07-474825
http://dx.doi.org/10.1182/blood-2013-07-474825
http://dx.doi.org/10.1038/nbt.2915
http://dx.doi.org/10.1038/nbt.2915
http://dx.doi.org/10.1038/nbt.2915
http://dx.doi.org/10.1242/dev.021121
http://dx.doi.org/10.1242/dev.021121
http://dx.doi.org/10.1242/dev.021121
http://dx.doi.org/10.1242/dev.021121
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1073/pnas.0702859104
http://dx.doi.org/10.1073/pnas.0702859104
http://dx.doi.org/10.1073/pnas.0702859104
http://dx.doi.org/10.1073/pnas.0702859104
http://dx.doi.org/10.1016/j.cell.2012.06.026
http://dx.doi.org/10.1016/j.cell.2012.06.026
http://dx.doi.org/10.1016/j.cell.2012.06.026
http://dx.doi.org/10.1016/j.cell.2012.06.026
http://dx.doi.org/10.1182/blood-2006-02-003327
http://dx.doi.org/10.1182/blood-2006-02-003327
http://dx.doi.org/10.1182/blood-2006-02-003327
http://dx.doi.org/10.1242/dev.00169
http://dx.doi.org/10.1242/dev.00169
http://dx.doi.org/10.1242/dev.00169
http://dx.doi.org/10.1073/pnas.0708951105
http://dx.doi.org/10.1073/pnas.0708951105
http://dx.doi.org/10.1073/pnas.0708951105
http://dx.doi.org/10.1073/pnas.0708951105
http://dx.doi.org/10.1002/stem.1267
http://dx.doi.org/10.1002/stem.1267
http://dx.doi.org/10.1002/stem.1267
http://dx.doi.org/10.1002/stem.1267
http://dx.doi.org/10.1182/blood-2007-04-084186
http://dx.doi.org/10.1182/blood-2007-04-084186
http://dx.doi.org/10.1182/blood-2007-04-084186
http://dx.doi.org/10.1182/blood-2007-04-084186
http://dx.doi.org/10.1161/CIRCRESAHA.111.245035
http://dx.doi.org/10.1161/CIRCRESAHA.111.245035
http://dx.doi.org/10.1161/CIRCRESAHA.111.245035
http://dx.doi.org/10.1126/science.1248252
http://dx.doi.org/10.1126/science.1248252
http://dx.doi.org/10.1126/science.1248252
http://dx.doi.org/10.1101/gad.13.24.3185
http://dx.doi.org/10.1101/gad.13.24.3185
http://dx.doi.org/10.1101/gad.13.24.3185
http://dx.doi.org/10.1073/pnas.1201240109
http://dx.doi.org/10.1073/pnas.1201240109
http://dx.doi.org/10.1073/pnas.1201240109
http://dx.doi.org/10.1073/pnas.1201240109


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 200
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.32000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.32000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    34.69606
    34.27087
    34.69606
    34.27087
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    8.50394
    8.50394
    8.50394
    8.50394
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


