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The developmental origins of the mammalian ovarian reserve
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ABSTRACT
The adult mammalian ovary is devoid of definitive germline stem
cells. As such, female reproductive senescence largely results from
the depletion of a finite ovarian follicle pool that is produced during
embryonic development. Remarkably, the crucial nature and
regulation of follicle assembly and survival during embryogenesis is
just coming into focus. This developmental pathway involves the
coordination of meiotic progression and the breakdown of germ cell
cysts into individual oocytes housedwithin primordial follicles. Recent
evidence also indicates that genetic and environmental factors can
specifically perturb primordial follicle assembly. Here, we review the
cellular and molecular mechanisms by which the mammalian ovarian
reserve is established, highlighting the presence of a crucial
checkpoint that allows survival of only the highest-quality oocytes.
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Introduction
Unlike the adult mammalian testes, in which spermatogonial stem
cells support long-term spermatogenesis, the adult mammalian
ovary is devoid of germline stem cells. Primordial follicles, each of
which contains an oocyte surrounded by a single layer of somatic
pre-granulosa cells, thus represent the entire ovarian reserve that a
female mouse, or a woman, will ever possess. In humans, these
follicles are produced from a pool of primordial germ cells (PGCs),
which are localized to the developing gonad early in gestation.
These germ cells progress through mitotic divisions with
incomplete cytokinesis, producing an excess of interconnected
oogonia. Mitotic divisions then cease and the germ cells enter
meiosis I, progressing through the first few stages of prophase I
before arrest. The clusters of germ cells, or ‘cysts’, then begin to
undergo ‘breakdown’, in which most of the oocytes are lost through
apoptotic cell death, and the remaining oocytes become surrounded
by a layer of somatic pre-granulosa cells (Fig. 1), forming
‘primordial follicles’ during mid-gestation (Cohen and Holloway,
2010; Gondos et al., 1986; Motta et al., 1997). Bidirectional
communication and exchange of signaling molecules between
oocytes and the surrounding granulosa cells are necessary for both
the growth of the oocyte and the development of the follicle after
birth (Fig. 1). After onset of puberty, matured follicles can be
‘activated’ by a surge of luteinizing hormone (LH), which results in
breakdown of the germinal vesicle, nuclear maturation and
completion of the first meiotic division. These oocytes then re-
arrest in metaphase II of meiosis II (MII) and are ovulated
(Coticchio et al., 2015). The faithful regulation of primordial follicle
assembly during the fetal and neonatal periods therefore distinctly
determines the long-term reproductive capacity of female mammals.

Recent studies suggest that the initial assembly of these follicles
encompasses a crucial developmental checkpoint, allowing only the
highest-quality oocytes to further develop and be fertilized in the
adult. Furthermore, seminal work has revealed the key cellular
mechanisms by which primordial follicles are formed from a pool of
germ cell cysts that undergo a stereotyped ‘breakdown’ in
mammals. Although less well understood, these important
developmental benchmarks appear to be largely conserved during
human fetal ovarian development. Remarkably, this breakdown
event resembles that occurring during oocyte development in
Drosophila, in which supporting nurse cells, in the context of a
syncytium, support proper oocyte development. In this Review, we
provide a comprehensive picture of the predominant mechanisms by
which the mammalian ovarian reserve is established and
maintained.

A timeline of mammalian primordial follicle development
The embryonic timeline of mammalian primordial follicle assembly
is well-documented and involves germ cell fate commitment,
migration and arrival at the genital ridge, as well as male or female
sex specification (Motta et al., 1997; Pepling, 2012; Tingen et al.,
2009). Upon arrival at the gonad, all PGCs enter synchronous
mitotic divisions with incomplete cytokinesis, forming clonal cell
clusters (Fig. 2). Recent work (Mork et al., 2012) has demonstrated
that, in addition to bridges between clonal cells, aggregation that is
probably mediated by cell adhesion molecules is responsible for a
proportion of cyst formation. After the cessation of mitotic divisions
in the developing ovary, germ cells enter meiosis at embryonic day
13.5 in mice (Pepling, 2012; Tingen et al., 2009) and at 11-12 weeks
gestation in humans (Cohen and Holloway, 2010; Gondos et al.,
1986; Motta et al., 1997), eventually becoming ‘oocytes’. These
cells ultimately arrest in the diplotene stage of prophase I before
birth (Pepling, 2012), immediately after the resolution of meiotic
DNA double-strand breaks (DSBs) (McLaughlin and McIver,
2009).

The importance of fetal germ cell cysts in female mammals has
been widely speculated upon. Such clusters of interconnected germ
cells formed by incomplete cytokinesis are highly conserved
structures that are found in organisms ranging from Drosophila (de
Cuevas et al., 1997) and Xenopus to mice (Pepling et al., 1999) and
humans (Gondos, 1973; Motta et al., 1997). These cysts have been
well-studied in invertebrate models and are defined by key
characteristics, including synchronous division, shared cytoplasm
between germ cells and morphological similarities. In the
Drosophila ovary, synchronous divisions produce 16 germ cells
within a cyst, from which one cell forms the oocyte, while the others
differentiate into nurse cells that support the development of the
gamete (de Cuevas et al., 1997). Although the role of these
mammalian clusters is still not well understood, it is known that
organelles can be exchanged between interconnected germ cells,
and that mitochondria and endoplasmic reticulum reorganize just
prior to murine cyst breakdown (Pepling and Spradling, 2001).
Furthermore, recent work (Lei and Spradling, 2013b) has used
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lineage tracing to observe primordial germ cell dynamics during
cyst formation prior to meiosis. Notably, it was demonstrated that
cyst fragmentation occurs prior to meiotic onset and that clonal cells
can become components of an average of five germ cell cysts. These
data suggest a relationship between clonal divisions, the number of
cysts produced and the resulting number of primordial follicles.
Furthermore, this work posits that each cyst present at the time of
meiotic onset produces a single oocyte, which is quite similar to
dynamics of oocyte and nurse cell production in Drosophila.
Importantly, however, mammalian cysts are fragmented completely
early in development, with the ovary possessing only intact follicles
during adulthood (Lei and Spradling, 2013b); this is in contrast to
Drosophila cysts, which are formed and utilized throughout the life
of the animal (Roth and Lynch, 2009). Interestingly, it was also
demonstrated that mouse oocytes possess a Balbiani body, or
mitochondrial cloud of organelles localized next to the developing

oocyte nucleus (Pepling et al., 2007). Whereas these structures had
been observed in Drosophila and Xenopus, and are known to form
via the intercellular bridges between cyst cells, the presence of this
structure was thought to be absent in mammals (Kloc and Etkin,
2005). This recent work emphasizes an additional function for
mouse germline cysts, including the transport of organelles from
dying oocytes to the developing gamete, resulting in Balbiani body
formation (Lei and Spradling, 2013b; Pepling et al., 2007).

Around the time of birth in mice (Pepling and Spradling, 2001),
and around 16 weeks gestation in humans (Motta et al., 1997), germ
cell cysts undergo ‘breakdown’ (Fig. 2), during which time most of
the oocytes are lost through caspase 2-dependent apoptotic cell
death (Bergeron et al., 1998; Morita et al., 2001; Pepling, 2012).
The excess production and then culling of germ cells might thus
represent a means of ‘germ cell selection’, analogous to that seen in
Drosophila, in which only oocytes of the highest quality can further
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Fig. 1. Fetal origins of the adult ovarian
reserve. Primordial follicles are produced from
a pool of primordial germ cells, which are
localized to the somatic gonad during
gestation and undergo mitotic divisions to form
germ cell cysts. These cysts then undergo
‘breakdown’ to form the primordial follicle pool,
which comprises oocytes surrounded by a
layer of somatic pre-granulosa cells. During
sexual maturation, primordial follicles can
mature into the primary and secondary follicle
stages, eventually acquiring a fluid-filled antral
space. After the onset of puberty, matured
follicles can be activated by a surge of
luteinizing hormone, which promotes further
maturation of the oocyte and subsequent
ovulation.
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Birth Fig. 2. Comparative timelines of primordial follicle formation
in mouse and humans. Representative timelines of cyst
formation, meiotic onset and primordial follicle formation in mice
and humans. Primordial germ cells colonize the somatic gonad at
about E10.5 in mice and ∼5 weeks gestation in humans. These
cells undergo mitotic divisions, form cysts, and then cease mitosis
and enter meiosis I around E13.5 in mice and between 10 and
12 weeks gestation in humans. Finally, these cysts break down via
apoptosis of germ cells to form the primordial follicle pool.
Whereas this event takes place around the time of birth in mice,
it begins during mid-gestation (around 16 weeks) in humans.
Abbreviations: E, embryonic day; PND, post-natal day.
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develop into viable gametes (Mork et al., 2012). These remaining
oocytes, which are surrounded by pre-granulosa cells, constitute the
‘primordial follicle pool’ and the complete ovarian reserve for the
adult life of the animal or woman. This finite limit on the primordial
follicle pool is in direct contrast to the more extensive production of
male gametes, despite the common formation of interconnected
germ cell cysts (Chiarini-Garcia and Russell, 2001) and the
presence of testis-expressed protein 14 (TEX14) at intercellular
bridges (Greenbaum et al., 2006, 2009; Mork et al., 2012). Whereas
TEX14 does not appear to be essential for female fertility, as it is for
male fertility, it is known to stabilize intercellular bridges between
oocytes. Furthermore, despite the ability to produce litters, TEX14-
null female mice possess fewer oocytes than wild-type mice,
suggesting that stable intracellular bridges contribute to germ cell
survival (Greenbaum et al., 2009). Thus, despite ample embryonic
similarities between male and female germline cyst establishment
and function, the definitive male mammalian stem cell population
remains a fundamental difference in the sex-specific regulation of
reproductive potential and senescence.
It should be noted that, although recent work has suggested the

presence of ovarian germline stem cells which can support follicle
replenishment in adult female mice and women (Johnson et al.,
2005, 2004; White et al., 2012), these cells apparently do not
contribute to the fertility of the mouse under normal physiological
conditions or after germ cell ablation (Byskov et al., 2011; Eggan
et al., 2006; Kerr et al., 2012; Lei and Spradling, 2013a). In addition,
recent work utilizing careful lineage-labeling of germ cells in adult
ovaries demonstrated an absence of germline stem cell production
and quantitatively identified the half-life of murine follicles in vivo.
This analysis was also performed after oocyte ablation (with the
drug busulfan) with similar outcomes, consistent with the notion
that the follicles produced around the time of birth are sufficient to
satisfy the lifetime reproductive requirements of the animal, and that
germline stem cells do not normally contribute to this production
(Lei and Spradling, 2013a). As the ovarian reserve has a finite pool
of viable gametes produced long before they are needed, the fidelity
and stability of each step of primordial follicle formation is therefore
essential for the proper completion of oogenesis and the
developmental potential of the future embryo that arises from this
oocyte.

Genetic determinants of primordial follicle development:
from signaling pathways to transcriptional networks
Primordial follicle development is intricately regulated through the
coordination of signaling pathways (including the Notch and KIT
pathways), transcription factors (including FIGLA, NOBOX and
TAF4b) and transposon repression (most notably by Maelstrom).
Meiotic fidelity, particularly that controlled by synaptonemal
complex protein 1 (SCP1), might also play a crucial role in this
process. This complex coordination allows the fine-tuned regulation
and quality control of meiotic progression and oocyte survival,
allowing only the best of the gametes to constitute the ovarian
reserve (Fig. 3, Table 1).

The transcriptional control of primordial follicle development
The regulation of gene expression is a crucial aspect of any
developmental program including primordial follicle development.
A number of transcription factors play crucial roles in germ cell cyst
breakdown in the mouse. For example, factor in the germline alpha
(FIGLA), a basic helix-loop-helix transcription factor, was
originally found to coordinate the expression of oocyte-specific
zona pellucida genes (Liang et al., 1997). Subsequently, FIGLAwas

also found to be essential for the formation of primordial follicles in
the mouse. Whereas germ cell numbers in Figla-null female mice
are normal during mid-embryogenesis, primordial follicles are
never properly formed and germ cells are lost shortly after birth,
resulting in sterility (Soyal et al., 2000). Notably, a Figla ortholog
was identified in the human genome (Huntriss et al., 2002) and later
found to be highly expressed in the primordial follicles of human
ovaries. Furthermore, higher Figla expression was correlated with
primordial follicle development (Bayne et al., 2004), and loss of
Figlawas associated with premature ovarian failure in women (Tosh
et al., 2015; Zhao et al., 2008).

The homeobox-containing transcription factor newborn ovary
homeobox (Nobox) gene has also been implicated in primordial
follicle development. Nobox was identified using expressed
sequence tags from neonatal mouse cDNA databases (Suzumori
et al., 2002). Subsequent work (Rajkovic et al., 2004) discovered
that Nobox is essential not only for oocyte survival, but also for the
proper timing of cyst breakdown and primordial follicle assembly in
the mouse. In Nobox-null mouse ovaries, defects in this process
result from aberrant signaling between oocytes and somatic cells,
causing impaired somatic cell invasion into cysts (Lechowska et al.,
2011). Oocyte-specific gene expression is also significantly
perturbed in these ovaries, with dramatic downregulation of
Pouf51 (Oct4) and Sall4, among other, more widely expressed
genes such as Jagged1, a NOTCH ligand (Choi et al., 2007). Work
over the last ten years has identified a human ortholog of Nobox
(Huntriss et al., 2006), and also found significant correlations
between reduced or mutated Nobox and premature ovarian failure in
women (Bouilly et al., 2015, 2011; Qin et al., 2007), thus
emphasizing the conserved and crucial role for this transcription
factor in oocyte and ovarian development.

In addition to sequence-specific DNA binding proteins, germ
cell-specific transcriptional programs are regulated by selective
components of the general transcription machinery. Originally
identified in Drosophila (Crowley et al., 1993; Hiller et al., 2004),
gonadal-enriched general transcription factor variants have now
been documented in a diverse array of vertebrates, including
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Fig. 3. Regulators of primordial follicle development. Red text and arrow
indicate factors that promote the transition between germline cyst and
primordial follicles, whereas blue text and arrows indicates inhibitors of
primordial follicle formation. Abbreviations: FSH, follicle stimulating hormone;
TE, transposable element.
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Xenopus (Han et al., 2003; Xiao et al., 2006), mice (Freiman et al.,
2001; Martianov et al., 2001; Zhang et al., 2001) and humans (Ozer
et al., 2000; Upadhyaya et al., 1999). One of the best-characterized
selective subunits of the general transcriptional complex TFIID is
TBP-associated factor 4b (TAF4b), a paralog of TAF4, originally
identified in a human B-cell line and found to be primarily enriched
in the mouse ovary and testis (Freiman et al., 2001). Taf4b-deficient
female mice are viable but infertile and suffer from many hallmarks
of premature ovarian failure, including follicle depletion, persistent
estrous and high serum levels of the gonadotropin follicle
stimulating hormone (FSH) (Falender et al., 2005; Freiman et al.,
2001; Lovasco et al., 2010; Voronina et al., 2007). Recent work has
demonstrated that Taf4b-deficient ovaries experience dramatic germ
cell loss by apoptosis immediately after birth, the time at which the
ovarian reserve is established (Grive et al., 2014). Furthermore,
Taf4b-deficient females experience delayed cyst breakdown and
defective primordial follicle assembly. These data indicate that
TAF4b regulates the establishment of the ovarian reserve in the
mouse. Interestingly, TAF4B has also been correlated with ovarian
health and oocyte survival in women, suggesting that this
transcription factor functions similarly in humans (Di Pietro et al.,
2008; Knauff et al., 2009). The extensive array of transcriptional
components and specialized components of the basal transcription
machinery that are required for cyst breakdown underscore the
intricate regulation involved in primordial follicle pool
establishment.

Signaling during primordial follicle formation
Similarly, the integration of several well-known signaling cascades
is required for proper ovarian follicle development, from the time of
primordial germ cell specification through to ovulation and
fertilization. Disruption of any of these signaling cascades
through either genetic or environmental perturbations affects not
only that cascade, but all cross-talking pathways as well. These
disruptions can have dramatic consequences on germ cell migration,
development and reproductive potential within the developing
oocyte. The Notch pathway, a universal developmental signaling

pathway first identified in Drosophila, has been particularly well-
studied in the context of neuronal development during
embryogenesis (Xiao et al., 2009). However, recent work
highlights the role of Notch signaling in oogenesis as well. For
example, it was demonstrated that culturing fetal and neonatal
ovaries in the presence of the gamma secretase inhibitors DAPT or
L-685,458 dramatically reduced primordial follicle formation and
delayed prophase I progression (Chen et al., 2014; Feng et al.,
2014). Furthermore, the requirement for NOTCH2, specifically in
the granulosa cell compartment, is essential for proper cyst
breakdown and follicle formation; mice deficient for granulosa
cell-NOTCH2 exhibit increased oocyte numbers and multi-oocyte
follicles (Xu and Gridley, 2013). Interestingly, ovaries in which
NOTCH signaling was inhibited also exhibited downregulation of
key transcription factors, including Figla, Nobox and Sohlh2,
providing additional evidence for the interdependence of signaling
and transcriptional regulation during primordial follicle formation
(Chen et al., 2014).

KIT signaling is well-known for its roles in cell proliferation and
survival, and recent work (Jones and Pepling, 2013) has
demonstrated a regulatory role for KIT signaling during mouse
primordial follicle formation. This research found that KIT-ligand
(also called stem cell factor, SCF; or Steel factor) is highly
expressed at the oocyte membrane, specifically during the window
of cyst breakdown and primordial follicle formation, after which
KIT-ligand is observed more uniformly in both oocytes and
granulosa cells. Furthermore, peptide-inhibition of KIT signaling
during ovary culture reduced primordial follicle formation, whereas
the supplementation of KIT-ligand enhanced their formation.
Downstream activation of the MAPK pathway was observed after
KIT-ligand supplementation, and further study is warranted to test
the role of this signaling cascade in establishing the ovarian reserve
in humans.

One of the best-studied signaling networks in gamete
development is that of the transforming growth factor beta
(TGFβ) superfamily of receptors and ligands, which includes the
bone morphogenetic proteins (BMPs), growth and differentiation

Table 1. Factors that modulate primordial follicle development and disruption

Gene category Murine gene Mouse mutant phenotype References

Transcription
factors

Factor in the germline
alpha (Figla)

Germ cell death at time of birth; absence of primordial
follicles

(Liang et al., 1997; Soyal et al., 2000)

Newborn ovary homeobox
gene (Nobox)

Impaired cyst breakdown; loss of primordial follicles (Lechowska et al., 2011; Rajkovic et al.,
2004; Suzumori et al., 2002)

TBP-associated Factor 4b
(Taf4b)

Impaired cyst breakdown; loss of primordial follicles (Falender et al., 2005; Freiman et al., 2001;
Grive et al., 2014; Lovasco et al., 2010;
Voronina et al., 2007)

Signaling factors Notch2 Increased oocytes; multi-oocyte follicles (Chen et al., 2014; Xu and Gridley, 2013)
Kit-ligand (Kitl) Inability of primordial follicles to develop (Jones and Pepling, 2013; Parrot and

Skinner, 1999)
Smad4 Reduced fecundity when ablated at primordial follicle stage (Li et al., 2012)
Follistatin (Fst) Global null is embryonic lethal; FST288-only results in

impaired cyst breakdown and increased oocytes before
birth; accelerated oocyte depletion after birth

(Kimura et al., 2011)

Growth and differentiation
factor 9 (Gdf9)

Reduced primordial follicles (Vitt et al., 2000)

Transposon and
meiotic control

Maelstrom (Mael) Extensive loss of oocytes and primordial follicles around the
time of birth

(Malki et al., 2014; Soper et al., 2008)

Synaptonemal complex
protein 1 (Scp1)

Increased oocytes and accelerated primordial follicle
assembly

(Paredes et al., 2005)

Hormonal
regulators

Aromatase (Cyp19a1) Decreased oocyte density (Britt et al., 2004; Dutta et al., 2014)
3-beta-hydroxysteroid-
dehydrogenase (3βhsd)

Decreased oocyte density (Dutta et al., 2014)
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factors (GDFs), and activin and inhibin subfamilies (Knight and
Glister, 2006). All of these subfamily members play essential roles
in oogenesis from primordial germ cell recruitment to ovulation and
luteinization. Primordial follicle formation also relies on the fidelity
of TGFβ signaling; however, little is known about the role that
TGFβ members play during this crucial stage of ovarian
development. It has been demonstrated that the oocyte-specific
ablation of SMAD4, a transcriptional regulator downstream of
TGFβ signaling, reduces fertility when the conditional ablation
occurs at the primordial follicle stage using GDF9-Cre-recombinase
(Li et al., 2012). By contrast, the ablation of SMAD4 after
primordial follicle development (e.g. using a ZP3-Cre-
recombinase) did not alter fertility or litter size. Interestingly, the
GDF9-Cre-induced reduction in fecundity did not correlate with
reduced primordial follicle numbers in the ovary. SMAD4 might
thus be important not for primordial follicle survival, but for the
developmental potential of follicles. Follistatin, an antagonist of
activin, has also been shown to play crucial roles in cyst breakdown
and primordial follicle assembly. Follistatin exists in three isoforms,
and whereas global follistatin deletion is embryonic-lethal,
conditional ablation of all but the shortest isoform, FST288,
highlights the essential roles of follistatin in oogenesis. In female
FST288-only mice, germ cell apoptosis around the time of birth is
significantly reduced, leading to impaired cyst breakdown and
excess germ cells. Despite this retention of germ cells at birth, the
mice later experience accelerated depletion by postnatal day 5,
resulting in premature ovarian failure and subfertility (Kimura et al.,
2011). Additional research will be necessary to disentangle the
complicated roles of the TGFβ signaling pathways and its
downstream mediators during ovarian reserve establishment and
maintenance.

Coordinating transposon repression and meiotic progression
DNA methylation is highly dynamic in gametes during embryonic
development; this is necessary for proper gene expression during
oogenesis and spermatogenesis but also allows for the potential
de-repression of transposable elements (TEs) (Aravin and
Bourc’his, 2008). These TEs, when aberrantly expressed, can
cause meiotic errors and germ cell death, leading to sterility
(Bourc’his and Bestor, 2004; Carmell et al., 2007). To counteract
this de-repression, de novo DNA methylation, as well as the
production of PIWI-interacting RNAs (piRNAs), provides fidelity
during germ cell development in a changing chromatin environment
(Aravin and Bourc’his, 2008). The protein Maelstrom (MAEL) is a
key player in piRNA-mediated transposon silencing and is
conserved from Drosophila (Clegg et al., 1997) to mice (Aravin
et al., 2009; Soper et al., 2008). Mael-null male mice are infertile
due to defects in chromosome synapsis during meiosis I,
de-repression of TEs and accumulation of non-meiotic DSBs
(Soper et al., 2008). MAEL has also been studied in the context of
oocyte survival and primordial follicle development in mice. Recent
work (Malki et al., 2014) has demonstrated that Mael-null female
mice express significantly elevated levels of LINE-1 (L1)
retrotransposon mRNA as well as of the L1ORF1p protein, which
is encoded by L1. Quantitative analysis of oocyte numbers from
Mael-null fetal and neonatal mice showed a dramatic loss of oocytes
by E18.5, asynapsis during prophase I, accumulation of non-meiotic
DSBs and the appearance of L1ORF1p foci in oocyte nuclei. This
research suggests that L1 expression is a key determinant of
the primordial follicle pool, with low L1-expressing oocytes
successfully progressing through meiotic prophase I and surviving
to contribute to the ovarian reserve.

Meiotic prophase I progression in the embryonic ovary, which
results in diplotene arrest, occurs during the same developmental
window as the establishment of the primordial follicle reserve,
although the relationship between these events is not well
understood. It remains unclear whether these processes simply
occur concurrently or whether perhaps primordial follicle formation
is tied to proper meiotic progression. Evidence for this second
possibility has recently been presented, via the analysis of follicle
formation in rats deficient for SCP1. SCP1 is a crucial component of
the synaptonemal complex and assembles between lateral
chromosomal elements, which are coated in synaptonemal complex
protein 3 (SCP3), during zygotene. Breakdown of the synaptonemal
complex and removal of SCP1 normally occurs after diplotene arrest,
when homologs repel each other during diakinesis (Cohen and
Holloway, 2010). By using small-RNA knockdown of Scp1 to
achieve a premature and false ‘diplotene’, Paredes et al. tested the
relationship between diplotene arrest and follicle formation (Paredes
et al., 2005). Their findings demonstrated that ovaries with reduced
SCP1 levels formed primordial follicles earlier and in greater
numbers than untreated ovaries, suggesting an intricate relationship
between diplotene arrest and primordial follicle assembly.

Contrasting evidence also supports independence between the
fidelity of prophase I and follicle formation. For example, recent
work (Dokshin et al., 2013) analyzing ovarian development in
stimulated by retinoic acid (Stra8)-deficient mice demonstrated that
meiotic onset is not necessary for follicle differentiation; whereas
STRA8 expression is known to be necessary for meiotic initiation
and all chromosomal events of prophase I, it was shown to be
unnecessary for the development of ‘oocyte-like cells’ and intact
follicle structures, suggesting that these two processes are
uncoupled. Despite the formation of ‘follicles’ and the successful
ovulation of these cells, however, these oocytes are developmentally
incompetent and the mice are infertile. Although the mechanisms
underlying this phenotype are not well understood, this evidence
suggests that, whereas meiotic progression is not essential for
follicle formation, it is crucial for additional developmental cues
that confer reproductive potential of the oocyte (Baltus et al., 2006).
Other evidence for the independence of meiosis and follicle
development comes from analysis of the fetal human ovarian
timeline. Primordial follicle formation in humans apparently occurs
over a wider developmental window than in the mouse, with many
of the germ cells forming follicles prior to diplotene arrest (Cohen
and Holloway, 2010; Motta et al., 1997). This further supports the
notion that follicle formation is independent of meiosis, although it
could indicate that slightly different mechanisms govern these
processes in mice and humans. Together, this research presents the
possibility that, whereas meiotic progression might not be essential
for follicle assembly, certain signaling or transcriptional cues might
enhance the viability of resulting primordial follicles by affecting
multiple processes. More research is needed to understand better the
relationship between these processes, and any contributions that
successful meiosis might have on follicle formation or vice versa.

Hormonal and environmental factors influencing primordial
follicle development
Multiple hormones are known to influence and regulate various
aspects of normal primordial follicle development. Accordingly, a
number of endocrine-disrupting compounds – many of which are
found in everyday products – perturb follicle formation. Recent
studies analyzing such compounds have provided key insights into
the hormonal and environmental control of primordial follicle
formation in rodents and primates.
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Hormonal control of follicle formation
Estrogens are steroid hormones that play important roles in normal
ovarian development, including promoting granulosa cell division
and differentiation. 17β-estradiol (henceforth referred to as ‘E2’) is
the most bioactive form of endogenous estrogen and is produced by
granulosa cells of the ovary. By regulating follicle growth and
maturation, E2 modulates the action of FSH and facilitates further
estradiol production (Sarraj and Drummond, 2012). Estrogen
signaling takes many forms, both through the classical pathway in
which estrogens bind to nuclear estrogen receptors (ERs) α and β to
activate transcription of estrogen response element (ERE)-
containing promoters, as well as through non-classical pathways
in which estrogen signaling is mediated via membrane-bound or
cytoplasmic receptors (Björnström and Sjöberg, 2005; Cheskis
et al., 2007). Estrogens, in particular E2, have been found to signal
through a variety of pathways to modulate the process of germ cell
cyst breakdown and primordial follicle assembly. For example, E2

supplementation in neonatal ovary cultures has been shown to
inhibit the process of cyst breakdown and promote oocyte survival
(Chen et al., 2007), although the signaling mechanisms mediating
these effects are not well understood. It is now known that both ERα
and ERβ are expressed at the mRNA and protein levels in neonatal
mouse ovaries and are localized to oocytes and granulosa cells
during the window of cyst breakdown. Treatment with the ER
agonists PPT and DPN, and the pan-ER antagonist fulvestrant,
demonstrates that signaling through both estrogen receptors
regulates establishment of the ovarian reserve. Furthermore, BSA-
conjugated E2 was also able to inhibit cyst breakdown, but is
restricted to membrane signaling due to its size. Therefore, cyst
breakdown might be regulated through non-classical membrane-
bound estrogen receptors as well as the classical nuclear receptors
(Chen et al., 2009).
Interplay between estrogens and other hormonal signaling

cascades has also been observed during primordial follicle
formation. In mice, high levels of maternal estrogen prior to birth
might maintain germ cell cysts until the post-partum separation from
this maternal influence (Chen et al., 2007; Lei et al., 2010).
Concurrently, neonatal serum FSH has been shown to increase
during the first few postnatal days while primordial follicles are
being established. Interestingly, when treated in culture, ovaries
exposed to FSH undergo follicle formation despite high or low E2

levels; however, FSH is better able to facilitate follicle assembly in a
low E2 environment. Gene expression was also examined in these
cultured ovaries; it was found that low E2, especially in the presence
of high FSH, permits the upregulation of essential oogenesis factors,
including Figla andNobox (Lei et al., 2010). The coordination of E2

and FSH therefore seems to be crucial for the proper timing of cyst
breakdown and follicle assembly as well as for the expression of
crucial oogenesis regulators.
The relationship between estrogens and progesterone (P4) has

also been examined in the context of the neonatal ovary. P4 is known
to inhibit murine cyst breakdown similarly to E2 (Chen et al., 2007).
Recent work (Dutta et al., 2014) tested the hypothesis that, in
addition to circulating maternal steroid hormones, fetal mice
produce their own steroid hormones to coordinate primordial
follicle development. The steroidogenic enzymes aromatase, which
is responsible for E2 production, and 3-beta-hydroxysteroid-
dehydrogenase (3βHSD), which is responsible for the production
of P4, were detected at the mRNA and protein levels in fetal mouse
ovaries. Furthermore, intraovarian P4 and E2 were demonstrated to
peak at E15.5 and E17.5, respectively, just prior to the onset of cyst
breakdown. Interestingly, the inhibition of either aromatase or

3βHSD resulted in lower oocyte density in the ovary, but did not
appear to affect cyst breakdown and follicle formation, suggesting a
role for these hormones in fetal oocyte survival.

The relationship and crosstalk between steroidogenic enzymes,
steroid hormones and gonadotropins is complex but is also highly
species-specific. Notably, E2 promotes primordial follicle formation
in hamsters (Mukherjee and Roy, 2013; Wang and Roy, 2007), in
contrast to its inhibitory role in mice (Chen et al., 2009, 2007; Dutta
et al., 2014; Lei et al., 2010). Similarly, E2 appears to facilitate
follicle formation in at least a subset of non-human primates (Bocca
et al., 2008; Pepe et al., 2006). Whereas the normal role of estrogen
signaling during human folliculogenesis is currently unknown, it
has been shown that second-trimester fetal ovaries upregulate the
expression of ERα and ERβ (also known as ESR1/2, respectively)
and steroidogenic enzymes, including aromatase, during the
timeframe of primordial follicle formation (Fowler et al., 2011).
Despite these species differences, the importance of proper steroid
and gonadotropin signaling in the establishment of the ovarian
reserve is indisputable. Further research will be required to elucidate
the ways in which endocrine signaling integrates with paracrine
signaling and gene expression to facilitate follicle assembly.

Environmental factors that influence primordial follicle development
Given the ways in which proper hormonal signaling crucially
regulates follicle assembly, it is not surprising that the chemical
disruption of these pathways can lead to detrimental effects on the
ovarian reserve. Some of the best-studied of these chemical
influences are the synthetic estrogens bisphenol A (BPA) and
diethylstilbestrol (DES), and the phytoestrogen genistein. Research
from the past ten years, particularly, has focused on the effects of
these compounds on a number of developmental events, including
prophase I progression, cyst breakdown and formation of a proper
number of primordial follicles.

BPA, which can be found ubiquitously in plastics, the lining of
canned goods and boxed wine, and on printed receipts (Rubin,
2011), is one of the most common environmental factors linked to
reproductive disruption (Hunt et al., 2003, 2012; Peretz et al., 2014;
Susiarjo et al., 2007; Zhang et al., 2012). Although BPA has been
removed from a number of plastic products, particularly infant
health products, its use is still widespread (Rochester, 2013). Recent
work has studied the effects of BPA on a number of developmental
processes, including the establishment of the primordial follicle
pool in organisms ranging from mice to non-human primates. For
example, it was demonstrated that fetal mice whose pregnant
mothers had been injected with physiologically relevant doses of
BPA experienced inhibited cyst breakdown and, at higher doses,
greater oocyte survival (Zhang et al., 2012). Furthermore, oocytes
suffered from delayed prophase I progression, as well as
differentially methylated CpG islands within the Stra8 locus,
suggesting that BPA-induced repression of Stra8 might be one
mechanism for delayed meiosis. These processes have been
similarly investigated in rhesus macaques (Hunt et al., 2012),
demonstrating an increase in meiotic crossing-over events in BPA-
treated ovaries as well as the appearance of multi-oocyte follicles,
indicating defective cyst breakdown. Furthermore, even a single
daily dose of BPA, in contrast to continuous exposure, produced
these effects on follicle disruption.

DES has been shown to produce similar effects on gene
expression and follicle formation (Iguchi et al., 1990; Kim et al.,
2009a,b; Pepling and Karavan, 2012). DES was widely prescribed
to women for almost 40 years, during which time it was thought to
contribute to healthy pregnancies and to reduce the incidence of
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miscarriage. However, DES was later pulled from use in 1971, after
development of the rare vaginal clear-cell adenocarcinoma had been
found to be correlated with its use (Lauver et al., 2005). In addition
to contributing to cancers, DES is now understood to affect
detrimentally early reproductive development and oogenesis.
Analogous to BPA exposure, DES treatment results in multi-
oocyte follicles with reduced developmental competence (Iguchi
et al., 1990). Interestingly, DES treatment also reduces the
expression of the essential oogenesis genes Figla and Nobox
(Kim et al., 2009a,b) as well as the TGFβ family membersGdf9 and
Bmp15 (Kim et al., 2009a,b).
Genistein, a phytoestrogen derived from soybeans, is often highly

enriched in infant soy formulas far beyond what is consumed as part
of an adult soy-containing diet (Setchell et al., 1997). It can bind to
both nuclear estrogen receptors, but its action is predominantly
associated with ERβ (Kuiper et al., 1998). As is the case with the
other estrogenic compounds described here, genistein significantly
delays cyst breakdown in treated neonatal mouse ovaries and
contributes to oocyte retention and multi-oocyte follicles (Chen
et al., 2007; Cimafranca et al., 2010; Jefferson et al., 2002, 2006).
Although the combined effects of these endocrine disruptors on

the establishment of the human ovarian reserve is not well
understood, this evidence from mice and non-human primates
provides cause for concern. Whereas many of these exposures are
commonplace, the efforts to remove BPA from food-grade plastics,
particularly those used for infants, and the now uncommon use of
DES, are both encouraging. An increased understanding of the
short- and long-term effects of everyday exposure to BPA and
genistein from foods and other goods will inform future policy
changes to help ensure the development of a healthy ovarian reserve.

Understanding reproductive senescence in women
Recent work, studying the fetal and neonatal developmental periods
during which the primordial follicle reserve is established, has
highlighted the importance of these key early time points in
providing quality control for the development of healthy oocytes. In
women, these oocytes are not utilized until much later in life;
however, it is clear that the fidelity of early developmental events
is essential for ensuring long-term reproductive health and
preventing follicle depletion and associated pathologies. A better
understanding of the genetic and environmental influences on this
intricately regulated process might aid the development of improved
assisted reproductive technologies (ART) and the preservation of
this finite pool of oocytes for future use in reproductive age women.
Primary ovarian insufficiency (POI), the clinical term for

premature ovarian failure, is a condition affecting at least 1% of
women worldwide. Whereas the genetic causes responsible for a
small proportion of POI cases have been identified (including
deficiency in Bmp15 and aromatase), the etiology of this condition
is poorly understood. One overarching hallmark, however, is
infertility resulting from accelerated depletion or reduced follicle
reserve (Cordts et al., 2011; Nelson, 2009). As described in this
Review, excessive follicle depletion often takes place very early in
life and can result from genetic perturbations, altered hormonal
signaling or environmental toxicants. Interestingly, many of the
candidate factors identified in mice, including Nobox (Bouilly et al.,
2015, 2011; Qin et al., 2007), Figla (Huntriss et al., 2002; Tosh
et al., 2015; Zhao et al., 2008) and Taf4b (Di Pietro et al., 2008;
Knauff et al., 2009), have since been implicated in POI in humans.
Whereas a better understanding of ovarian reserve establishment
and maintenance might not lead to therapies in all cases, knowledge
of the causes of this condition can help prospective parents to make

informed choices about their fertility options and the reproductive
health of their daughters (Cordts et al., 2011; Nelson, 2009).

Polycystic ovary syndrome (PCOS) is another disease of
endocrine dysfunction in women, affecting ∼5-7% of the female
population worldwide. In addition to characteristic androgen excess
and disrupted menstruation, women with PCOS develop – as the
name suggests – ‘cysts’ of immature follicles on the ovaries, often
resulting in infertility. Although the etiology of this condition is
not well understood, recent studies have identified genetic
predispositions to development of PCOS, including single
nucleotide polymorphisms in the luteinizing hormone receptor
(Lhr) gene, as well as environmental influences (Jayasena and
Franks, 2014). Interestingly, BPA exposure in neonatal rats has been
linked to a PCOS-like phenotype during adult life (Fernández et al.,
2010). Although this is probably due to effects on a variety of
developmental processes, the persistence of germ cell cysts in BPA-
treated ovaries (Hunt et al., 2003, 2012; Susiarjo et al., 2007; Zhang
et al., 2012) presents an excellent opportunity to study the proper
development of the ovarian reserve as well as the reproductive
pathology of PCOS.

With more women than ever before delaying pregnancy (Te
Velde and Pearson, 2002), in vitro fertilization (IVF), intra-
cytoplasmic sperm injection (ICSI) and other therapies are
becoming increasingly utilized. Despite this, our ability to
select ‘quality’ oocytes for fertilization remains fairly limited,
and relies primarily on morphological inspection so as not to
disrupt the integrity of this important cell. Unfortunately, this type
of assessment cannot determine the expression levels of essential
genes, nor can it consistently predict the developmental potential
of the egg (Rienzi et al., 2011; Wang and Sun, 2007). Recent
work from Reich et al. (2011) suggests that this hurdle can be
overcome by biopsy of the first polar body followed by single-cell
transcriptomics to determine the expression of genes known to be
crucial for oogenesis. As gene expression in the polar body
closely reflects expression in the oocyte from which it derived,
the polar body can act as a proxy when choosing oocytes for
ART. The more the field understands about essential regulators of
the initial ovarian reserve, the more informed women will be
about the potential causes of infertility and the better poised
clinicians will be to treat diverse reproductive pathologies in these
women.

Conclusion
The establishment of the mammalian primordial follicle pool is a
striking developmental process, given its intricate regulation as well
as its timing in the life of the animal or woman. Incredibly, the germ
cells which form this ovarian reserve remain arrested in meiosis I
until ovulation, which in humans first occurs during puberty, and
usually are not used for fertilization until decades later. Although
the timescale is shorter in mice, the general developmental
mechanisms remain the same – extensive coordination of gene
expression, signaling pathways and hormonal cues must occur
properly early in development to achieve a stable and populated
ovarian reserve (Fig. 3). Research from the last 15 years has drawn
intriguing parallels between the formation of mammalian germline
cysts, from which the primordial follicle pool is created, to germline
cysts seen in other vertebrates as well as invertebrates, suggesting a
potentially conserved function for this developmental transition.
Future research in this field will continue to refine our
understanding of this remarkable developmental process, and also
help to inform therapeutic interventions for women with ovarian
and fertility disorders.
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