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Fezf2 promotes neuronal differentiation through localised
activation of Wnt/B-catenin signalling during forebrain

development

Siwei Zhang'*, Jingjing Li"*, Robert Lea', Kris Vleminckx? and Enrique Amaya®-$

ABSTRACT

Brain regionalisation, neuronal subtype diversification and circuit
connectivity are crucial events in the establishment of higher cognitive
functions. Here we report the requirement for the transcriptional
repressor Fezf2 for proper differentiation of neural progenitor cells
during the development of the Xenopus forebrain. Depletion of Fezf2
induces apoptosis in postmitotic neural progenitors, with concomitant
reduction in forebrain size and neuronal differentiation. Mechanistically,
we found that Fezf2 stimulates neuronal differentiation by promoting
Wnt/B-catenin signalling in the developing forebrain. In addition, we
show that Fezf2 promotes activation of Wnt/g-catenin signalling by
repressing the expression of two negative regulators of Wnt signalling,
namely /hx2 and Ihx9. Our findings suggest that Fezf2 plays an essential
role in controlling when and where neuronal differentiation occurs within
the developing forebrain and that it does so by promoting local Wnt/
B-catenin signalling via a double-repressor model.

KEY WORDS: Fezf2, Wnt signalling, Xenopus, Forebrain
development

INTRODUCTION
The vertebrate forebrain, which carries out higher neural functions,
is a highly organised and complex structure derived from the
anteriormost region of the neural plate. Although the extent of
elaboration and the size of the various subdomains of the anterior
central nervous system vary between species, the molecular
mechanisms that generate the brain, including the patterning of
the different forebrain subdomains and subsequent neuronal
differentiation within each compartment, are highly conserved
amongst vertebrates. Therefore, studies on the early development of
the forebrain in zebrafish, frog, chick and mouse embryos have shed
light on the conserved developmental programmes that contribute to
the formation and development of the vertebrate brain (Wilson and
Houart, 2004).

Forebrain development comprises three distinct stages. The first
stage is neural induction during gastrulation, which defines both the
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position and identity of the anterior neuroectoderm. This stage is
quickly followed by a second, patterning stage, whereby the anterior
neuroectoderm is regionalised into the various forebrain subdomains
by means of both transcriptional regulation and signal transduction.
The third and final phase of forebrain development, which lasts until
adulthood, is associated with regionalised growth of the various
forebrain subdomains and concomitant specification, migration and
differentiation of the various neuronal subtypes that make up the
adult brain (Eagleson et al., 1998; Wilson and Houart, 2004).

Whnt/B-catenin signalling has been reported to play an essential
role during the patterning and differentiation stages of the forebrain.
During the patterning stage, low or absent Wnt/B-catenin signalling
in the anterior region of the forebrain is required for telencephalic
specification, whereas high Wnt/B-catenin signalling, together with
BMP, FGF and Shh signalling, is important for diencephalic
specification (Wilson and Houart, 2004). Later, during the growth
and differentiation stage, Wnt/B-catenin signalling is activated in the
anterior region, promoting the differentiation of neural stem/
progenitor cells (Kondo et al., 2011; Machon et al., 2007;
Marinaro et al., 2012; Peukert et al., 2011). Thus, Wnt/B-catenin
signalling is highly dynamic, both temporally and spatially, during
forebrain development and understanding how this dynamic nature
is exquisitely regulated is essential for understanding how the brain
is moulded during development. Although it is clear that the
establishment of a low-to-high Wnt gradient across the anterior-
posterior axis patterns different domains of the forebrain, only a few
regulators have been identified that control Wnt/B-catenin activity in
the anterior region at the onset of the third stage (Juraver-Geslin
etal., 2011; Peukert et al., 2011). Specifically, the mechanisms that
lead to Wnt/B-catenin activation during the later phase of forebrain
development are currently unknown.

Fezf2, which is also known as fezl/Earmuff, too few, ZNF312 and
Zfp312, is a highly conserved gene that encodes a zinc finger
transcriptional repressor, which is expressed in the forebrain
(Shimizu and Hibi, 2009). Fezf2 homologues have been identified
and studied in Drosophila (Weng et al., 2010), zebrafish (Berberoglu
et al., 2009; Hashimoto et al., 2000; Levkowitz et al., 2003), mouse
(Shimizu and Hibi, 2009; Shimizu et al., 2010) and human (Zhu
et al.,, 2010). All Fezf2 orthologues encode transcription factors
characterised by six DNA-binding C2H2-type zinc fingers and an
Engrailed homology 1 (Ehl) repressor motif that interacts with
Transducin-like enhancer of split (TLE)-type transcriptional co-
repressors (Shimizu and Hibi, 2009). Studies in mouse have shown
that Fezf2-expressing radial glial cells are multipotent progenitors
that generate all major projection neurons and glia of the neocortex
(Guo et al., 2013). In addition, Fezf2 controls neuronal subtype
differentiation, including that of subplate neurons (Hirata et al.,
2004; Rouaux and Arlotta, 2010), specification of subcortical
projection neurons in cortex layer V (Chen et al.,, 2008) and
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patterning of the forebrain and olfactory systems (Shimizu and Hibi,
2009). Furthermore, Fezf2 is required for the establishment of
diencephalic subdivisions (Hirata et al., 2006). In Drosophila, Fezf2
restricts the developmental potential of intermediate neural
progenitors (Weng et al., 2010). In zebrafish, fezf2 is co-expressed
with neural stem markers in the adult brain (Berberoglu et al., 2009),
where it controls the development of monoaminergic neurons (Jeong
et al., 2006; Levkowitz et al., 2003) and is involved in patterning of
the diencephalon (Jeong et al., 2007). More recently, Fezf2 has been
reported to possess a unique ability to reprogramme postmitotic
neurons in vivo (De la Rossa et al., 2013; Rouaux and Arlotta, 2013).
Notably, although many roles for Fezf2 have been described, very
little is known about the molecular mechanisms underlying its
functions during forebrain development.

We have identified fezf2 as a positive regulator of Wnt/B-catenin
signalling in the rostral forebrain, and we have revealed the
molecular mechanism by which fezf2 triggers Wnt signalling and
consequent neural progenitor differentiation and forebrain growth in
the Xenopus embryo. We demonstrate that fezf2 is expressed in the
developing Xenopus forebrain. Depletion of fezf2 in embryos results
in arrested neural progenitor differentiation, increased apoptosis, and
reduction in forebrain size. We also show that fezf2 promotes Wnt/B-
catenin signalling at the differentiation stage, and that this activity is
required for proper development of the forebrain. We further reveal
that Fezf2 interacts with co-repressors of the Groucho family and,
through its repressor activity, restricts the expression of /4x2 and
lhx9, which encode two negative regulators of Wnt/B-catenin
signalling in the forebrain, thus explaining its Wnt-promoting role.
Taken together, we conclude that fezf2 initiates proper neuronal
differentiation in the forebrain by promoting localised Wnt/B-catenin
signalling through a double-repressor model.

RESULTS

fezf2 is expressed in the anterior forebrain during early
development

We isolated fezf2 from an in vivo large-scale gain-of-function screen
aimed at identifying novel regulators of several signal transduction
pathways during early Xenopus development (Zhang et al., 2013).
Subsequent qPCR analyses revealed that fezf2 expression begins at
the early gastrula stage (stage 10.5), reaching a maximum at the mid-
neurula stage (stage 15), at which time its expression decreased
slightly and plateaued thereafter (supplementary material Fig. S1).
This pattern was very similar to that obtained from whole-exome
deep sequencing (Tan et al., 2012). We then assessed the spatial
expression pattern of fezf2 using whole-mount in situ hybridization.
These data revealed that fezf2 is expressed in the prospective anterior
neural region and presumptive forebrain region from the early
neurula stages (stage 15) (supplementary material Fig. S2). At the
tailbud stage (stage 28), fezf2 was expressed in the telencephalon,
ventral diencephalon and the eye vesicle (supplementary material
Fig. S2). At early tadpole stages (stage 35), the expression of fezf2
remained restricted to the forebrain and eye vesicle (supplementary
material Fig. S2).

fezf2is required for proper neuronal differentiation within the
forebrain

To dissect the function of fezf2, we first performed a series of
knockdown experiments using an antisense morpholino
oligonucleotide (MO) targeting the exon 3-intron 3 splice
junction of the pre-mRNA (supplementary material Fig. S3A).
The knockdown efficiency of this MO was validated using
RT-PCR and qPCR (supplementary material Fig. S3A,B).

Embryos injected with control MO exhibited normal forebrain
development, whereas fezf2 MO caused significant disruption in
the development of the forebrain, as revealed by diminution in the
expression of the rostral forebrain-specific marker arx (Fig. 1A) as
well as the anterior neural markers ofx2 and pax6 at stage 30
(supplementary material Fig. S4A) (El-Hodiri et al., 2003).
Notably, early forebrain patterning was unaffected in fezf2
morphants, as stage 15 (early neurula) embryos did not exhibit
altered expression of the forebrain markers arx, otx2 and pax6
(supplementary material Fig. S4B).

To characterise the cell types in the forebrain that were affected by
loss of fezf2, we injected the fezf2 MO into one cell of 2-cell stage
embryos, and then we assessed the effect of this perturbation on
specific cell populations in the injected side of the forebrain versus the
control side at stage 30. No significant change was observed in the
number of Sox3™ neural progenitor cells in the fezf2 MO-injected side
versus non-injected side (Fig. 1B-D) (Wang et al., 2006). However,

fezf2 knockdowns resulted in a 45% reduction in the number of

differentiating neurons, as assayed by immunostaining for the
primary neuronal differentiation marker Myelin transcription factor
1 MyT1) (Fig. 1E-G) (Bellefroid et al., 1996). We further confirmed
a reduction in differentiated neurons by staining with an acetylated
B-tubulin antibody, which labels the axons of differentiated neurons

A

N

\

»/

ctrl MO

fezf2 MO

-
o
=}

ns
1004

o
=)

@
O T
& ol MO fezf2 MO
g
) 150,
= 100] ——
50l
clrllMO fezf2 MO

*

NoWw S
o O O
[=IR =2~

>
=1

ol

TUNEL+ per side,% = MyT1+ per side,% @ SOX3+ per side,% O

ctrl MO fezf2 MO

Fig. 1. fezf2 knockdown leads to defects in forebrain neuronal
differentiation. (A) Whole-mount in situ hybridisation for arx in control MO
(20/20) or fezf2 MO (15/18) injected Xenopus embryos. Arrowhead indicates
the forebrain. (B-J) One blastomere at the 2-cell stage was injected with
fezf2 MO and embryos were sectioned at stage 30 transversely across the
forebrain, and stained for Sox3 (B,C), MyT1 (E,F) or TUNEL (H,l). FITC
staining identifies the injected side (B,E,H). Arrowheads indicate MyT1" (E,F)
or TUNEL" (H,l) cells. (D,G,J) Statistical analysis of Sox3" (n=4 embryos),
MyT1* (n=6 embryos) and TUNEL" (n=4 embryos) cells. All control sides have
been normalised to 100%. Error bars represent s.e.m. *P<0.05; ***P<0.001;
ns, not significant. Scale bar: 25 pm.
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(supplementary material Fig. S4La-c). No reduction in either Sox3™"
or MyT1" cells was observed in embryos injected with a control
MO (supplementary material Fig. S4C-E,F-H). Therefore, fezf2 is
required for neuronal differentiation, but is not essential for the
maintenance of neural progenitor cell populations.

One possibility for the reduction in the number of differentiated
neurons in the forebrain area is that fezf2 is required for cell survival
during differentiation. To address this, we performed TUNEL
assays on control versus knockdown sides of the embryos. These
experiments revealed that injection of fez/2 MO, but not the control
MO, caused a 3-fold increase in the number of apoptotic cells in the
knockdown side versus the control side of the forebrain (Fig. 1H-J;
supplementary material Fig. S41-K). Taken together, we conclude
that fezf2 controls the transition from neuronal progenitors to
differentiated neurons, but is not required for the early forebrain
patterning events, nor for the maintenance of neural progenitor cells
prior to neuronal differentiation.

fezf2 promotes Wnt/g-catenin signalling in early embryos

We next investigated the mechanism(s) by which Fezf2 acts during
development. It was first noted during the functional screen (Zhang
et al, 2013) that embryos injected with fez/2 mRNA are
significantly dorsoanteriorised, resembling LiCl-treated embryos
(Kao and Elinson, 1988; Kao et al., 1986) or those with excessive

Whnt/B-catenin signalling (Smith and Harland, 1991) (Fig. 2A).
Moreover, injection of fezf2 mRNA into early Xenopus embryos
resulted in an increase in Smad2/3 phosphorylation, which is a
measure of TGFB/Nodal signalling, and a decrease in Smad1/5/8
phosphorylation, which is a measure of BMP signalling (Fig. 2B)
(Zhang et al., 2013), changes that are similar to those seen after
injection of wnt8 mRNA in early embryos (supplementary material
Fig. SSA). Together, these phenotypic and signalling changes
suggested that fezf2 overexpression might lead to hyperactivation of
Wnt/B-catenin signalling.

To confirm whether fezf2 is able to activate Wnt/B-catenin
signalling, we examined if injection of fezf2 mRNA is able to
induce the expression of the immediate Wnt-responsive genes xnr3
and siamois (sia) (Sheldahl et al., 1999). Indeed, overexpressing fezf2
led to a robust increase in the expression level of these two Wnt-
responsive genes in early embryos (Fig. 2C,D). In addition, early
gastrula stage embryos overexpressing fezf2 exhibited quantitatively
higher levels of expression of goosecoid (gsc) and chordin (chd), two
additional Wnt/B-catenin-responsive genes (Pierce and Kimelman,
1995), and led to an expansion of the expression domains of these
two genes beyond the dorsal organizer region (supplementary material
Fig. S5B-G). By contrast, expression of the ventral markers
ventl (Sander et al., 2007) and bmp4 (Baker et al., 1999) was
downregulated in fezf2-overexpressing embryos, further confirming
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Fig. 2. fezf2 promotes Wnt/g-catenin signalling and induces neuronal differentiation through Wnt/B-catenin in vitro and in vivo. (A) fezf2 misexpression
in early Xenopus embryos leads to strong dorsoanteriorisation (31/35 embryos examined showed the illustrated phenotype) compared with /acZ (B-gal)
controls (39/39). (B) fezf2 misexpression enhances Smad2/3 phosphorylation and inhibits Smad1/5/8 phosphorylation as assessed in western blots. Blastula
stage (st. 8) indicates the pre-activation state. Elongation factor 4E (elF4E) was used as a loading control. (C,D) gPCR shows that fezf2 promotes the expression of
xnr3 (C) and sia (D) in early embryos (n=3 replicates). (E) TOPFlash assay shows that fezf2 promotes Wnt/p-catenin signalling (n=4 replicates). (F-H) fezf2
expression colocalises with active Wnt signalling in the forebrain. (F) The transgenic construct. (G) Dorsal and lateral views of stage 30 embryos; GFP signal for
Wht activity (green); Katushka signal for fezf2 expression (red); +bf, merged image with bright-field. (H) Knockdown of fezf2 reduces Wnt activity in the forebrain
as assessed by expression of the 7LEF-dEGFP F1.1 Wnt reporter line. Arrowhead indicates the diencephalon. () The Wnt inhibitor ANTcf3 antagonises
Fezf2-induced neuronal differentiation in mouse neuronal progenitors, as assessed by the induction of axonogenesis. (J) Statistics of | (n=4 replicates).

(K,L) Electroporation experiments show that the Wnt inhibitor ANTcf3 antagonises Fezf2-induced neuronal differentiation in the tadpole forebrain. (K) Transverse
sections of the forebrain area of stage 30 embryos electroporated correspondingly and stained for MyT1 (red), GFP (green) and with DAPI (blue). Left images,
merge; right images, MyT1 alone. (L) Statistics of K (n=5 embryos). Control side is normalised to 100%. (M) gPCR analysis shows that the Wnt inhibitor ANTcf3
antagonises Fezf2-induced ngn1 expression in stage 20 animal cap explants (n=3 replicates). In all gqPCR analyses, ribosomal protein L8 (rpl8) was used as an
internal control. *P<0.05, **P<0.01, ***P<0.001. Error bars represent s.e.m. Scale bars: 100 pm in I; 50 ym in K.
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that misexpression of fezf2 leads to a strong dorsoanteriorisation of
embryos (supplementary material Fig. SSH-M).

The translocation and nuclear accumulation of B-catenin is a
direct indicator of Wnt/B-catenin signalling activation (Cadigan and
Nusse, 1997). Hence, we examined nuclear accumulation of
B-catenin in control versus fezf2 mRNA-injected embryos, using a
DAPI mask to specifically reveal the presence of nuclear B-catenin
(Schohl and Fagotto, 2002). In control embryos, nuclear B-catenin
was preferentially enriched in the dorsal blastoporal lip of
gastrula stage embryos (supplementary material Fig. S5Na,a’),
consistent with previous findings (Schohl and Fagotto, 2002).
However, in fezf2 mRNA-injected embryos, a much stronger
nuclear accumulation of B-catenin was found throughout the
embryo, suggesting widespread hyperactivity of Wnt/B-catenin
signalling (supplementary material Fig. S5Nb,b"). In addition,
injection of fezf2 mRNA into one of the two ventral blastomeres
at the 4-cell stage induced axis duplication with complete head in
more than 75% of embryos (supplementary material Table SI
experiment I, Fig. S50,P), as is often observed following ectopic
activation of Wnt/B-catenin signalling (Sokol et al, 1991).
Furthermore, this fezf2-induced secondary axis induction could be
antagonised by co-injecting an N-terminally truncated dominant-
negative form of Tcf3 (ANS51-Tcf3) (supplementary material
Table S1 experiments II-1 to 1I-4) or nlkl mRNA, a direct inhibitor
of Wnt/B-catenin signalling (supplementary material Table S1
experiments II-5 and I1-6) (Ishitani et al., 1999; Molenaar et al.,
1996). Thus, fezf2 misexpression leads to robust hyperactivation of
Wnt/B-catenin signalling.

In order to observe a more direct effect of fezf2 on Wnt/B-catenin
signalling, we performed in vivo luciferase assays using a Wnt-
responsive construct, TOPFlash (Veeman et al., 2003). Co-injection
of fezf2 mRNA with the TOPFlash DNA construct caused an 8-fold
increase in luciferase activity over the lacZ (B-gal) control (Fig. 2E),
whereas fezf2 mRNA together with the FOPFlash construct, which
contains mutated TCF consensus binding motifs, failed to exhibit an
increase luciferase activity (supplementary material Fig. S5Q).
These experiments confirmed that fezf2 overexpression activates
Whnt/B-catenin signalling in early embryos.

A previous investigation has suggested that Fezf2 negatively
regulates Wnt/B-catenin signalling in mouse embryonic stem cells
(mESCs) by repressing the expression of Wnt ligands (Wang et al.,
2011). We tested the expression of several canonical Wnt
signalling-related ligands in control versus fezf2-expressing
animal cap explants. To induce anterior neuroectoderm, we
injected chd mRNA, which encodes a potent BMP antagonist, into
early embryos and allowed the explants to develop until stage 15
(Sasai et al., 1995). The expression of wnt] was slightly increased
in fezf2-expressing animal cap explants, whereas the expression of
wnt3a and wnt8b remained unchanged (supplementary material
Fig. S5R).

Expression of fezf2 colocalises with and is functionally
required for active Wnt/g-catenin signalling in the forebrain
We next asked whether fezf2 expression in the forebrain correlates
with active Wnt/B-catenin signalling. We isolated ~3 kb of the
fezf2 proximal promoter region and used it to drive the expression
of Katushka in transgenic embryos (Shcherbo et al., 2007). In
addition, we co-integrated a Wnt reporter cassette, 7LEF-dEGFP,
with the fezf2-Katushka cassette using our recently developed
pTransgenesis system to generate the transgenic embryos (Love
et al., 2011; Tran et al., 2010), which allowed us to observe the
state of activation of Wnt signalling (Denayer et al., 2006) and

fezf2 promoter activity in the same embryos (Fig. 2F). The
resulting transgenic embryos exhibited strong colocalisation of
dEGFP signal (Wnt) and Katushka signal (fezf2) in the
telencephalic and diencephalic areas, although a broader fezf2
expression was observed in the eye, which might reflect the much
longer half-life of Katushka relative to dEGFP (Fig. 2G). In
addition, injection of fezf2 MO into 7LEF-dEGFP F1.1 transgenic
embryos led to a significant decrease in dEGFP expression (i.e. in
active Wnt signalling) at stage 32 in the forebrain (Fig. 2Ha,
arrowhead), compared with control MO-injected embryos
(Fig. 2Hb, arrowhead) (Tran et al., 2010). These data indicated
that fezf2 expression not only colocalises with active Wnt/
B-catenin signalling, but is also functionally required for
maintaining active Wnt signalling in the forebrain.

fezf2 overexpression promotes forebrain neuronal
differentiation through Wnt/g-catenin signalling

Fezf2 has been reported to induce neuronal differentiation in
mESCs, as well as to induce the differentiation of striatal
progenitors into telencephalic precursors and corticofugal
neurons (Rouaux and Arlotta, 2010; Wang et al., 2011). Based
on our findings, we next asked whether fezf2 induces forebrain
neuronal differentiation through its ability to activate Wnt
signalling. We began by transfecting a construct carrying the
mouse Fezf2 gene (pCS107-Fezf2) into an immortalised mouse
C17.2 neural stem cell line, together with either empty vector
(pCS2) or the Wnt-inhibitory truncated A7¢f3 construct (pCS107-
ANS51-Tcf3) (Molenaaretal., 1996; Roose etal., 1998), followed by
an assessment of neuronal differentiation in these cells (Mi et al.,
2005). Transfection of the Fezf2 construct alone induced a
significant proportion of the neural stem cells to differentiate into
neurons, as assessed by evaluating the formation of neuronal
B-tubulin® axons (Fig. 2Ia,c,J). However, this induction was
antagonised by co-transfecting the Wnt-inhibitory AN5I-Tcf3
construct, but not by a control empty vector (Fig. 2Ia,d,J]).
Transfecting the neural stem cells with the AN5/-Tcf3 construct
alone also had no effect (Fig. 2Ib,J). These results indicated
that fezf2 induces neuronal differentiation in vitro, and that this
induction requires Wnt/B-catenin signalling.

To examine whether Fezf2 induces neuronal differentiation through
Wnt/B-catenin signalling in vivo, we electroporated a construct
containing CMV promoter-driven fezf2 (pCS107 backbone) with or
without the Wnt-inhibitory construct (AN57-Tc¢f3) into the third
ventricle of stage 26 X. laevis embryos, and allowed them to develop
until stage 31 for analysis. Electroporation of pCS107-fezf2
significantly increased the number of differentiated primary neurons
(MyT1") in the forebrain area, as found in previous studies (Fig. 2Kc,L)
(Rouaux and Arlotta, 2010; Wang et al, 2011). However,
co-electroporation of pCS107-fezf2 with pCS107-AN5 I-tcf3 failed to
increase the number of MyT1" cells, suggesting that Fezf2 requires
Whnt/B-catenin signalling to induce neuronal differentiation in vivo
(Fig. 2Ka,d,M).

Previous studies have shown that neurogenin 1 (ngnl), a gene
involved in neuronal differentiation, is inducible by Wnt/B-catenin
signalling and is fezf2 responsive (Hirabayashi et al., 2004; Jeong
et al.,, 2006). Therefore, we tested whether the fezf2-induced
activation of ngnl expression is dependent on Wnt/B-catenin
signalling. fezf2 mRNA was injected into Xenopus embryos at the
1- to 2-cell stage with or without AN57-tcf3 mRNA. Animal cap
explants were dissected at stage 8 and collected at stage 20 to assess
the expression of ngnl by qPCR (supplementary material Fig. S5S).
Misexpression of fezf2 mRNA induced ngnl expression; however,
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this induction was attenuated when fezf2 mRNA was co-injected
with AN5 I-tcf3 mRNA. Injection of either /lacZ mRNA (control) or
AN51-tcf3 mRNA alone had no effect on ngnl expression in the
animal cap explants (Fig. 2M). These results confirmed that Fezf2
promotes neuronal differentiation in vivo in a Wnt-dependent
manner.

fezf2 functions as a transcriptional repressor and governs
forebrain neurogenesis through its ability to activate Wnt
signalling

We next asked whether endogenously expressed fezf2 is involved in
activating neuronal differentiation through its capacity to activate Wnt
signalling. Fezf2 contains two functional domains: a DNA-binding
zinc finger domain, and an Eh1 repressor domain that interacts with
TLEs (Buscarlet and Stifani, 2007). We therefore constructed an
antimorphic form of Fezf2 (VP16-Fezf2) by replacing its Eh1 domain
with the transcriptional activator domain of the viral protein VP16,
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generating a fusion protein that would be expected to function as a
transcriptional activator (de Souza et al., 1999; Ferreiro et al., 1998;
Latinkic and Smith, 1999; Onichtchouk et al., 1998). We also replaced
the Ehl domain with the transcriptional repressor domain of
Drosophila Even-skipped (Eve) (Han and Manley, 1993), and this
construct (Eve-Fezf2) would be expected to repress transcription of'its
target genes, similar to wild-type Fezf2 (Fig. 3A). Injection of mRNA
encoding Eve-Fezf2 increased Smad2/3 phosphorylation, similar to
that of wild-type Fezf2 (Fig. 3B, lanes 2 and 4), although it failed
to inhibit the phosphorylation of Smad1, which might be attributed to
the slight differences between the two repressor domains. By contrast,
VP16-Fezf2 led to strong ventralisation of embryos (supplementary
material Fig. S6A-C), together with a reversed pattern of Smad1/5/8
and Smad2/3 phosphorylation (Fig. 3B, lanes 3 and 4). Hence, we
validated the functionality of the antimorphic Fezf2 construct and
confirmed that Fezf2 acts as a transcriptional repressor in Xenopus
embryos.

B Fig. 3. The Fezf2-regulated
endogenous level of Wnt/g-catenin
signalling governs forebrain
neurogenesis. (A) Different Fezf2
constructs. Different N-terminal
domains (Eh1-repressor, VP16
activator or Eve repressor) are shown
in different colours. The zinc-finger
DNA-binding domain is shown in

p3 blue. (B) Western blot of gastrula
stage Xenopus embryos injected with
nuclear /acZ (control), eve-fezf2,
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We next investigated whether endogenously augmented Wnt/
B-catenin signalling within the fezf2-expressing regions affects
forebrain development. We inserted a cassette comprising a neural-
specific B-tubulin promoter driving tauGFP (NBT-tauGFP) into the
pl site of the pTransgenesis system to assess differentiated neural
tissue in transgenic embryos (Love et al., 2011). The 3.5 kb fezf2
promoter was placed in the p2 site in the opposite orientation to
the pl NPT-tauGFP cassette to minimise potential promoter
interference. The p3 cassette was placed directly downstream of
the fezf2 promoter so that any gene within the cassette would be
expressed under the control of this promoter (Fig. 3C) (Donnelly
et al., 2001). In addition to NBT-tauGFP, the forebrain-specific
marker arx was also used to monitor the affected neural tissue in
different transgenic embryos. The control transgenic construct with
Katushka placed in the p3 position resulted in normal forebrain
development (Fig. 3Da,a’,E; supplementary material Fig. S6Da).
However, the antimorphic VP16-Fezf2 transgenic embryos
displayed a significant reduction in arx staining, NBT-tauGFP
marked neural tissue, and decreased eye size (Fig. 3Db,b’,E;
supplementary material Fig. S6Db), similar to transgenic embryos
expressing the Wnt-antagonising ANS51-Tcf3 and GSK3BS9A
constructs, which had reduced Wnt activity in fezf2-expressing
regions (Fig. 3Dd-e’,E; supplementary material Fig. S6Dd,e). By
contrast, transgenic embryos expressing the Wnt-agonising AN90-
B-catenin construct demonstrated expansion of arx staining,
excessive growth of differentiated neural tissue, and enlarged
eyes, suggesting that elevated Wnt activity promotes the growth of
neural tissue within the forebrain (Juraver-Geslin et al., 2011)
(Fig. 3Dc,c’,E; supplementary material Fig. S6Dc). These results
confirmed that the antimorphic Fezf2 acts as a negative regulator of
Wnt signalling, and that proper Wnt signalling in fezf2-expressing
areas is crucial for normal forebrain development in vivo.

Fezf2 physically interacts with Groucho family co-repressors
via its N-terminal Eh1 domain

To investigate the mechanism by which Fezf2 promotes Wnt/
B-catenin signalling while acting as a transcriptional repressor, we first
examined whether Fezf2 can physically interact with TLEs via its Eh1
domain (Buscarlet et al., 2008; Gasperowicz and Otto, 2005).
Amongst the four TLEs found in Xenopus, three (Tlel, Tle2 and Tle4)
possess the Eh1-interacting WD domain (Fig. 4A) (Roth et al., 2010).
In an in vivo co-immunoprecipitation assay performed with gastrula
stage (10.5) embryos, Fezf2 interacted with all three TLEs that possess
the Ehl-interacting WD domain (Fig. 4C, lanes 6, 8 and 12). Aes, the
only TLE that does not possess a WD domain, did not interact with
Fezf2 (Fig. 4C, lane 14). In addition, a mutated Fezf2 with five
conserved hydrophobic amino acid residues removed within the Ehl
domain (AEh1-Fezf2, Fig. 4B) lost its ability to interact with the TLEs
(Fig. 4C, lanes 7, 9 and 13), confirming Eh1 itself as the interaction
domain between Fezf2 and TLEs.

Finally, since Tle4 can complex with Tcf and thus is an important
component of Wnt signalling, we examined whether Fezf2 affects
Wnat signalling by titrating Tle4 away from the Tle4-Tcf complex.
We generated an additional fezf2 mutant (C284S) that has a point
mutation in the DN A-binding zinc finger domain but an intact Eh1
domain (Levkowitz et al., 2003). In contrast to wild-type fezf2,
ventral blastomere injection of fezf2 C284S mRNA was unable to
induce anterior structures or secondary axes (supplementary
material Table S1 experiment IV-3) (Levkowitz et al., 2003).
Thus, our data provide compelling evidence that Fezf2 interacts
with Groucho family co-repressors through its Eh1 domain and acts
as a transcriptional repressor.

A FLAG Q WD
Tle1 —m--—— ———
Tle2 —mm—— ———
Tled -mm—— ————
Aes-mm————————

B Eh1  zinc-finger HA
Fezf2 —B—a—-a-—

AEh1-Fezf2 —— p—-a-—

01020304050607080910111213 1415
GFP + + + + + + +
Fezf2-HA + + o+ + + +
Fezf2AEh1-HA + + o+ +
Tle1-FLAG + o+ o+
Tle2-FLAG + + 4+
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Aes-FLAG + + +

Input| aHA |[7F
aFLAG

IP
aFLAG

aHA |
aFLAG ||

Fig. 4. Fezf2 functions through interaction with members of Groucho
family. (A) Tle1, Tle2, Tle4 and Aes constructs. Note that Aes lacks the
protein-interaction WD domain. (B) Wild-type Fezf2 and AEh1-Fezf2 with a
mutated Eh1 domain. (C) Immunoprecipitation of extracts from Xenopus
embryos injected with different combinations of the indicated mRNAs, showing
that Fezf2 interacts with Tle1, Tle2 and Tle4 (lanes 6, 8 and 12) but not Aes
(lanes 14, 15). The Eh1 domain is required for the proper interaction between
Fezf2 and Tle1/2/4 (lanes 6 and 7, 8 and 9, 12 and 13).

Fezf2 represses Ihx2 and Ihx9 expression to promote Wnt/
p-catenin signalling in the forebrain area

To investigate the regulatory mechanism by which fezf2 activates
Whnt/B-catenin signalling within the forebrain, we noted previous
reports suggesting that Fezf2 binds to the promoter region of /hx2
(Chen et al., 2011; Lodato et al., 2014). Furthermore, we noted that
Ihx2 and [hx9 inhibit Wnt/B-catenin signalling in the forebrain
(Chen et al., 2011; Peukert et al., 2011). We therefore examined
whether Fezf2 promotes Wnt signalling by repressing the
expression of /hx2 and /hx9, thus acting in a double-repression
model. We first performed ChIP-qPCR experiments in stage 15
embryos to confirm whether Fezf2 directly binds to the promoter
region of /hx2 in Xenopus. Since no Fezf2 antibodies were available
in Xenopus, we utilised a FLAG-tagged version of Fezf2 in Xenopus
embryos for co-immunoprecipitation with anti-FLAG antibody, a
strategy successfully validated by using a FLAG-tagged FoxH1
protein on the brachyury promoter (supplementary material
Fig. S7A) (Akkers et al., 2012, 2010). We then identified three
conserved regions within ~15 kb upstream of the /hx2 transcription
start site by sequence homology analysis, and then used these
regions for ChIP-qPCR analysis (supplementary material Fig. S7B).
A high ChIP enrichment was detected around the —12 kb region
(Fig. 5A, region 1; supplementary material Fig. S7B), whereas no
ChIP enrichments were found in the other two regions tested
(Fig. 5A, regions 2 and 3; supplementary material Fig. S7B).

We were unable to perform ChIP-qPCR within the promoter region
of [hx9 as the available sequence data for this region in the Xenopus
tropicalis genome is incomplete. Instead, we employed an alternate
strategy to determine whether Fezf2 directly influences the
transcriptional activity of /hx9. Antimorphic VP16-Fezf2, if
activated, should be able to trigger the expression of Fezf2 direct
target genes, even in the absence of protein synthesis. Hence, we made
a VP16-Fezf2 construct fused to the 3’-end of human glucocorticoid
receptor (hGR) (termed p3hGR-VP16-Fezf2), which can be activated
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by the addition of dexamethasone (DEX) (Ryan et al., 2004).
Reassuringly, we found that animal caps overexpressing p3hGR-
VP16-Fezf2 were able to activate the expression of /ax2 and /hx9 in
the presence of DEX, but not in its absence (supplementary material
Fig. S8A,B). Furthermore, we were able to show that the potent
protein synthesis inhibitor cycloheximide (CHX) (Saka et al.,
2000) had no effect on the expression level of /hx2 or /hx9 in
animals caps overexpressing p3hGR-VP16-Fezf2 when added
alone (supplementary material Fig. S8A,B). Importantly, however,
treatment of animals caps overexpressing p3hGR-VP16-Fezf2 with
both CHX and DEX led to 2-fold and 6-fold increases in the
expression levels of /hx2 and [hx9, respectively (Fig. 5B,C). Thus,
p3hGR-VP16-Fezf2 is able to activate the expression of /hx2 and /hx9
even in the absence of de novo protein synthesis, providing
compelling evidence that both of these genes are direct targets of
Fezf2.

We next assessed whether /7x2 and/or [hx9 act downstream of
fezf2 during forebrain development. Both /hx2 and [hx9 are
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ctrl MO fezf2 MO 1hx2/9 MO fezf2+Ihx2/9 MO

induced ngn1 expression in stage 20 animal cap
explants (n=3 replicates). In all gPCR analyses,
rpl8 was used as internal control. Error bars
represent s.e.m. *P<0.05, ***P<0.001; ns, not
significant.

expressed in the anterior neural ectoderm (supplementary material
Fig. S2). Animal cap explants neuralised by chd and aged to stage
20 expressed significant levels of both /Ax2 and /hx9 compared
with control lacZ-injected embryos, indicating that these explants
recapitulate anterior neuroectoderm (supplementary material
Fig. S8C,D). However, the expression of both /4x2 and /hx9 was
inhibited by co-expressing fezf2 in chd-neuralised animal cap
explants (Fig. 5D,E), suggesting that Fezf2 is a potent negative
regulator of both genes. By contrast, fezf2 knockdown following
injection of 5 ng fezf2 MO per embryo resulted in an expansion
of'both the /4x2 and lhx9 expression domains in the forebrain area of
stage 28 embryos, including an expansion of /4x2 expression in the
epithalamus (Fig. 5F,G; supplementary material Fig. S8E).

We next designed and validated MOs targeting /hx2 and /hx9
(supplementary material Fig. S8F-I) and examined whether the
activity of fezf2 could be rescued by simultaneously knocking down
both lhx2 and [hx9. We found that, whereas most embryos injected
with fezf2 MO displayed reduced expression of arx, embryos injected
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with fezf2 and lhx2/Ihx9 MOs showed partial rescue in the expression
of arx at stage 28 (Fig. 5H; supplementary material Fig. S8J).
Furthermore, no significant changes in arx expression were observed
in embryos injected with [Ax2/[hx9 MOs alone (Fig. 5H;
supplementary material Fig. S8J) (Peukert et al., 2011). Hence, we
conclude that /4x2 and /hx9 function downstream of Fezf2 in vivo.

We next tested whether /hx2 and /hx9 act as an intermediary in the
ability of Fezf2 to activate nmgnl expression in the forebrain.
Whereas fezf2 morphant embryos were almost devoid of ngnl
expression in the forebrain (Fig. 51, arrowheads), ngnl expression
was partially restored when /hx2/Ihx9 MOs were co-injected with
fezf2 MO (Fig. 51; supplementary material Fig. S8K). We also found
that, although fezf2 overexpression in chd-neuralised explants
induced the expression of the Wnt-responsive gene xnr3 (Fig. 5J),
this induction was attenuated by co-injection of /hx2 and [hx9
mRNAs (Fig. 5J). Moreover, the high level of ngnI induced by fezf2
overexpression was also significantly attenuated by combined
overexpression of /hx2 and lhx9 (Fig. 5K), suggesting that /ax2 and
[hx9 are potent inhibitors of Wnt signalling in Xenopus
neuroectoderm. Taken together, these findings suggest that fezf2
inhibits the expression of the Wnt-repressive transcription factors
lhx2 and [hx9, thus promoting ngnl expression and, subsequently,
neurogenesis in the forebrain.

DISCUSSION

Growth and differentiation are crucial steps during the development
and maturation of the forebrain. Here we propose that Fezf2 plays a
crucial role during the regulation of forebrain neurogenesis through
its ability to modulate Wnt/B-catenin signalling by a double-
repressor model (Fig. 6A). Fezf2 in the forebrain area represses the
expression of the Wnt-inhibitory genes /hx2 and [hx9, thus
permitting Wnt/B-catenin signalling to be activated. Consequent
activation of Wnt/B-catenin signalling allows the Tcf complex to
interact with B-catenin, freeing it from an inhibitory state
(Lepourcelet and Shivdasani, 2002). As a result, ngnl expression
is switched on (Hirabayashi et al., 2004; Israsena et al., 2004), thus
allowing and promoting the differentiation of neural stem cells/

)

progenitors into mature neurons (Hirabayashi et al., 2004; Jeong
et al., 2006; Munji et al., 2011). By contrast, in the absence of
Fezf2, Lhx2 and Lhx9 repress Wnt/B-catenin signalling (Peukert
etal.,2011), which leads to impaired ngn/ expression and increased
apoptosis in committed neural stem cells/progenitors (Fig. 6B).
Stage-dependent regulation of Wnt/B-catenin signalling plays an
essential role during anterior neural development. During the
patterning stage, a low-to-high Wnt gradient across the anterior-
posterior axis of the forebrain is required to establish telencephalon-
diencephalon-midbrain identity (Heisenberg et al., 2001). By
contrast, after the patterning stage is complete and neuronal
differentiation begins, a number of Wnt ligands, including Wnt2b,
WntSa/b, Wnt7b and Wnt8b, are expressed in ventral diencephalic
and telencephalic areas (Quinlan et al., 2009). Expression of such
Wnts activates Wnt/B-catenin signalling within the forebrain
thereby promoting several events in neuronal differentiation,
including the formation of cortical neurons, neural stem cells,
basal progenitors and DA neurons (Castelo-Branco et al., 2003;
Hirabayashi et al., 2004; Israsena et al., 2004; Kuwahara et al.,
2010; Munji et al., 2011). In addition, an increase in Wnt activity in
the mouse cerebrum has been reported to result in excessive
neurogenesis, which further emphasises the promotional role of
Wnt signalling in neurogenic activities (Seib et al., 2013). Our
finding that Fezf2 may, at least in part, promote neurogenesis by its
ability to activate Wnt signalling provides an additional layer to the
exquisite temporal and spatial regulation of Wnt signalling that
occurs during the differentiation phase of forebrain development.
Both positive and negative regulators are employed in modulating
the transcriptional output of Wnt/B-catenin signalling in the forebrain,
and a balance between agonising and antagonising regulatory
mechanisms is employed to achieve this. Previous findings have
identified several negative regulators of Wnt signalling, such as barhi2
and /hx2/lhx9, in the forebrain (Hou et al., 2013; Juraver-Geslin et al.,
2011; Peukert et al., 2011). However, no positive regulators have been
identified to counterbalance the Wnt-inhibitory mechanisms in this
areato ensure the proper temporal and spatial control of Wnt signalling
and the consequent differentiation of progenitors after the initial
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patterning stage has been completed. Our finding that Fezf2 acts as a
positive regulator of Wnt/B-catenin signalling through inhibition of
[hx2/lhx9 in the forebrain and, possibly, by repressing the expression
of additional Wnt-inhibitory genes, provides insight into how
balanced regulation of Wnt/B-catenin activity in the anterior
forebrain occurs. Our results contradict a previous study that
suggested that Fezf2 acts as a negative regulator of Wnt/B-catenin
signalling during anterior neurogenesis (Jeong et al., 2007). However,
the previous study did not assess the activity of Wnt signalling
directly. Rather, it showed that misexpressing fezf2 in the late gastrula
stage zebrafish embryo results in the downregulation of wntl
expression. By contrast, our study investigated more directly the
effect of fezf2 upregulation and downregulation on Wnt/B-catenin
activity using a number of assays, which all consistently showed that
fezf2 increased the activity of Wnt/B-catenin signalling. Furthermore,
it is also notable that, when we assessed the effect of fezf2 on the
expression of genes encoding Wnt ligands, we found no effect in the
cases of wnt3a and wnt8b, and an increase in the case of wnt!. Indeed,
our results are consistent with established models that place Wnt/B-
catenin signalling as an essential and stimulating factor that promotes
the differentiation of neural stem cells/progenitors (Juraver-Geslin
etal., 2011; Potok et al., 2008).

Functionally, several families of genes have been reported to
be important for neuronal growth and differentiation in the
forebrain, including the iroquois gene family (Gomez-Skarmeta
and Modolell, 2002), fezf1/2 (Hirata et al., 2006; Shimizu et al.,
2010), barhl2 (Juraver-Geslin et al., 2011) and lhx2/lhx9 (Peukert
et al., 2011). Whereas all previously identified genes act to inhibit
neuronal growth and differentiation, fezf2 plays a promotional role
in these processes (Rouaux and Arlotta, 2010, 2013; Shimizu et al.,
2010; Wang et al., 2011). Loss of fezf2 results in various forebrain
defects, including loss of monoaminergic neurons (Jeong et al.,
2006; Levkowitz et al., 2003), disruption of diencephalon
subdivisions (Levkowitz et al., 2003), and defects in reciprocal
projections between thalamus and cerebral cortex (Komuta et al.,
2007). It is noteworthy that all the above developmental defects can
be attributed to insufficient or deficient neuronal differentiation,
suggesting the pivotal role of fezf2 in this process.

It is interesting that, although the expression of fezf2 in the
forebrain starts from the early patterning stage, its effect on Wnt/
B-catenin signalling only becomes apparent from the tailbud stage at
the onset of neuronal differentiation. One possibility that might
account for this delayed function is that the Wnt-agonising activity
of Fezf2 requires the participation of one or more unknown co-
factors that are absent during the earlier neural patterning stage of
development. It is also possible that, at the early stages, the anterior
neuroectoderm is protected from Wnt signalling by several layers of
Whnt-antagonising mechanisms.

A second interesting question is whether there are other
transcription targets, in addition to /ix2 and //ix9, that mediate some
of the effects of Fezf2 during forebrain development. Since
overexpression of fezf2 can lead to Wnt activation in early stage
embryos, when neither /hx2 nor [hx9 is yet expressed, it stands to
reason that Fezf2 must be able to regulate the expression of additional
targets that are responsible for the expanded activation of Wnt
signalling in the early dorsoanteriorisation of embryos. Indeed, a
recent study has revealed additional potential target genes of Fezf2 in
cultured cortical progenitors (Lodato et al., 2014). Thus, an important
future line of work will be to determine the function ofthese additional
targets, including whether they also impinge on Wnt signalling.

Fezf2 has recently attracted great interest in the field of neural stem
cell biology, as its expression marks multipotent progenitor cells and
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manipulating fezf2 expression is able to provide a unique method for
reprogramming postmitotic neurons within the mammalian neocortex
(DelaRossaetal., 2013; Guo etal., 2013; Rouaux and Arlotta, 2010,
2013). In a series of unrelated studies, Wnt signalling, as the central
signalling cascade regulated by fezf2, has been suggested to regulate
neuronal differentiation and the assembly of neural connectivity and
synapse formation and function (Munji etal.,2011; Olivaetal., 2013).
Our studies, which link Fezf2 activity with Wnt signalling, suggest the
tantalising possibility that the molecular mechanisms by which Fezf2
mediates lineage fate determination, reprogramming and plasticity
might be mediated through its capacity to activate Wnt/B-catenin
signalling. Our studies further suggest that modulating the activity of
Whnt/B-catenin signalling, through the expression of Fezf2, might
provide a powerful means of modulating the differentiation fates of
neural stem cells, reprogramming postmitotic neurons or inducing
neuronal plasticity.

MATERIALS AND METHODS

Sequences and constructs

Details of X. tropicalis fezf2, tle4 and aes constructs, constructs for antimorphic
studies and restriction enzyme-mediated integration (REMI) experiments
using the pTransgenesis recombination system and associated cloning primers
are provided in supplementary Materials and Methods and Table S2.

mRNA microinjections

Microinjection of mRNA was performed as described previously, with lacZ
mRNA co-injected as a tracer in some cases (Bourguignon et al., 1998). For
further details see supplementary Materials and Methods.

MO design and injection

MOs designed against X. tropicalis genes were supplied by Gene Tools.
Typically, 10 ng MO was injected per X. tropicalis embryo at the 1- to 2-cell
stage. Further details, including MO sequences, are provided in the
supplementary Materials and Methods.

Electroporation

Electroporation was performed as described (Falk et al., 2007). Briefly,
50 nl of 2 pg/pl plasmid mixtures were injected into the subventricular
vesicles of stage 26 Xenopus embryos followed by electric pulses.
Electroporated embryos were harvested at stage 30 for analysis.

In situ hybridisation

Antisense digoxigenin-labelled RNA probes for whole-mount in situ
hybridisation were prepared by T7 RNA polymerase-mediated transcription
(Roche). X-Gal staining and in situ hybridisation were carried out as
previously described (Bourguignon et al., 1998).

Immunofluorescence, TUNEL staining and image processing
Fixed Xenopus embryos were cryosectioned for immunofluorescence (see
supplementary Materials and Methods). Mouse c¢17.2 cells were grown in
Lab-TEK II chambered slides (NUNC) and fixed with MEMFA. Details of
cl17.2 cell culture and transfection are provided in the supplementary
Materials and Methods. Primary antibodies were: anti-Sox3 (a kind gift
from the Klymokovsky lab; 1:1000) (Bonev et al. 2012), anti-MyT]1
(1:1000) (Sabherwal et al., 2009) and mouse anti-acetylated tubulin (Sigma,
T7451; 1:1000). Secondary antibodies were: anti-rabbit/mouse Alexa 488/
568/647 (Invitrogen; 1:500). TMR Red (Roche) was used in TUNEL assays.
Nuclei were stained with DAPI. Images were taken with a Nikon Eclipse 801
or an Olympus 2X81 confocal microscope and processed with Imagel
(NIH) software.

In vivo luciferase assay

Briefly, 50 pg pTK-Renilla and 100 pg M50 TOPFlash (Addgene, 12456)
or M51 FOPFlash (Addgene, 12457) (Veeman et al., 2003) were co-injected
with 200 pg of either fezf2 or control lacZ mRNA. Injected Xenopus
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embryos were collected at stage 10.5 and analysed with the DLR system
(Promega). For further details see supplementary Materials and Methods.

DEX induction of human glucocorticoid receptor fusion protein
The DEX-inducible VP16-Fezf2 construct was made by fusing the VP16-
Fezf2 protein to the 3’-end of human glucocorticoid receptor (hGR) using
Xbal-Notl restriction sites (Ryan et al., 2004). 500 pg of mRNA was injected
into X. laevis embryos at the 1- to 2-cell stage. Animal cap explants (see
supplementary Materials and Methods) were excised at stage 8 and allowed
to develop until stage 12. A final concentration of 5 pg/ml CHX with or
without 2 uM DEX in ethanol was used. Carrier alone (0.05% ethanol) was
used as control. Animal cap explants were collected 2 h post treatment (Saka
et al., 2000).

Smad phosphorylation analysis

The phosphorylation status of signalling molecules in gastrula stage
X. laevis embryos was determined by western blot analysis as described in
the supplementary Materials and Methods.

ChIP-qPCR

Chromatin co-immunoprecipitation (ChIP) was performed using a
modification of published methods (Akkers et al., 2012; Blythe et al.,
2009). Briefly, X. tropicalis embryos were injected with 50 pg FLAG-
tagged fezf2 mRNA, harvested at stage 15, crosslinked with 3.7%
formaldehyde for 15 min and stored at —80°C until use. Approximately
300 embryos were used for each sample. Fezf2-binding fragments were
enriched using anti-FLAG M2 antibody (Sigma) as described (Akkers et al.,
2012). DNA regional enrichment was analysed by quantitative PCR
(qPCR). qPCR primers are detailed in supplementary material Table S2. For
further details see the supplementary Materials and Methods.

Statistical analysis

For Sox3, MyT1 and TUNEL assays, positive cells were counted on two
consecutive sections in the corresponding brain area for determination of the
mean (Bonev et al., 2012); n is the number of individual embryos from at
least three independent fertilisations and injections. For qPCR analyses,
collected animal cap explants from individual experiments were pooled for
RNA extraction, and all data were from at least three independent
experiments (n=3), unless otherwise indicated. Statistical analysis was
performed using GraphPad Prism software with either two-tailed unpaired
Student’s #-test (for two samples) or two-tailed unpaired one-way ANOVA
(for multiple samples) and s.e.m. was calculated.
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