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Cell migration: from tissue culture to embryos
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ABSTRACT
Cell migration is a fundamental process that occurs during embryo
development. Classic studies using in vitro culture systems have been
instrumental in dissecting the principles of cell motility and highlighting
how cellsmake use of topographical features of the substrate, cell-cell
contacts, and chemical and physical environmental signals to direct
their locomotion. Here, we review the guidance principles of in vitro
cell locomotion and examine how they control directed cell migration
in vivo during development. We focus on developmental examples in
which individual guidance mechanisms have been clearly dissected,
and for which the interactions among guidance cues have been
explored. We also discuss how the migratory behaviours elicited
by guidance mechanisms generate the stereotypical patterns of
migration that shape tissues in the developing embryo.
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Introduction
In the early 1900s, the biologist Ross Harrison developed a method
for growing embryonic cells outside the body. He had wanted to
observe whether nerve cells were capable of extending axons during
development but the opacity of amphibian embryos and the lack of
suitable microscopic techniques precluded his examination. To
overcome these restrictions, Harrison developed an in vitro assay in
which he cultured explants of amphibian nerve tissue on a dish.
Using light microscopy, he was then able to reveal that axons were
the result of extensions of single nerve cells (Harrison et al., 1907).
Since Harrison’s pioneering use of two-dimensional (2D) tissue
culture systems, this technique has become fundamental in the study
of cell locomotion in real time.
Over time, it became evident that cells in 2D culture, three-

dimensional (3D) culture and in vivo contexts show pronounced
differences in cell shape, cell-matrix adhesions and migratory
behaviour. Nonetheless, studies of in vitro culture systems have
served to definemajor guidancemechanisms of cellmigration that rely
on intrinsic cell motility, topographical features of the substrate, cell-
cell contacts, and chemical and physical environmental cues. In vivo
analyses using a variety of vertebrate and invertebrate model
organisms that offer amenability for embryo and tissue handling,
optical imaging and genetic manipulation have provided insights into
how the in vitro guidance mechanisms operate in the context of
embryonic development. Here, we review these mechanisms and
examinehow themigratorybehaviours elicited in response toguidance
cues work to generate the patterns of individual and collective cell
migration that shape tissues in developing embryos. We begin by
providing an overview of the types of cell migration that occur in

cultured cells in vitro and discussing their underlying principles. We
then discuss how these principles apply to the various examples of cell
migration that occur in vivo during embryonic development.

Random cell migration in vitro
Much of our insight into cell migration has come from time-lapse
studies of fibroblasts cultured in vitro. When plated on 2D surfaces,
fibroblasts lose their round morphology and spread to increase their
apparent surface area. A few minutes later, they develop multiple
peripheral cell protrusions (lamellae) and, as adhesion increases,
one lamella becomes dominant and fibroblasts develop a clear front-
to-back polarity. This acquisition of cell polarity is fundamental to
initiate locomotion and depends on the differential activity of small
GTPases such as Cdc42, Rac and RhoA, which regulate actin
dynamics, adhesion organisation and protrusion formation (Box 1).

Box 1. Front-to-back polarity in a migrating cell

A keymorphological readout of front-to-back polarity in cells migrating on
2D surfaces is the emission of membrane protrusions in the form of broad
lamellipodia and spike-like filopodia. Lamellipodia contain a highly
branched dendritic network of actin filaments (red) whereas filopodia
are formed by long parallel actin filament bundles. The acquisition of
front-to-back polarity is controlled by small guanosine triphosphate
(GTP)-binding proteins (small GTPases), such as Cdc42, Rac1 and
RhoA, which regulate actin dynamics, adhesion organisation and the
formation of lamellipodia and filopodia. Cdc42 is active towards the front
of the cell and both inhibition and global activation of Cdc42 disrupt
the directionality of migration. One main output of Cdc42 activity is the
local activation of Rac1, and both proteinsmediate actin polymerisation in
protrusions. Once Rac1 and Cdc42 are active at the cell front, molecular
feedback loops and mechanical tensile forces work together to maintain
protrusions in the direction of migration. The back of the migrating cell is
defined by the activity of Rho, myosin II and Ca2+-activated proteases.
ActiveRac1 at the cell front suppressesRho activity whereasRho ismore
active at the lateral and rear sides where it suppresses Rac1 activity.
RhoAaffects actomyosin contractility viaRho kinase (ROCK). In addition,
strong adhesions at the cell rear result in increased tension, the opening
of stretch-activated Ca2+ channels, and the subsequent activation of
proteases that have the potential to cleave focal adhesion proteins. (For
reviews on the topic, see Li and Gundersen, 2008; Ridley et al., 2003.)
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Once polarised, fibroblasts start moving in one preferred direction
by repeated cycles of protrusion, adhesion to the substrate,
contraction of the cell body, and rear retraction (Fig. 1A), as
identified in the seminal studies by Michael Abercrombie (Box 2).
Over time, the position of the dominant lamella changes and
fibroblasts turn and move in new directions showing an overall
random pattern of cell locomotion (Fig. 1B) (Bard and Hay, 1975;
Trinkaus, 1969;Weiss, 1961). This ‘intrinsic’ tendency of the cell to
develop multiple peripheral lamellae and exhibit random migration

seems to depend on the total level of activated Rac, which
translocates to the plasma membrane in its active form to induce
actin polymerisation and lamellar extension. Accordingly, when
plated on 2D surfaces, cells display relatively high levels of
activated Rac, which promotes the formation of multiple peripheral
lamellae and random migration (Fig. 1B) (Pankov et al., 2005). To
overcome such intrinsic random motility and acquire directional
migration, cells need to restrict protrusion formation to a single axial
lamella. This can be achieved in 2D systems by lowering the total
levels of activated Rac. Alternatively, moving cells from a 2D to a
3D culture environment can alter their intrinsic properties and
behaviours (Pankov et al., 2005; Petrie et al., 2009) and can promote
directional movements (for more details, see Box 3). However, as
we discuss below, environmental guidance cues can also restrict
protrusion formation and promote directional cell migration through
the local activation of Rac.

Guided in vitro cell locomotion
ECM-mediated contact guidance
In early studies, Paul Weiss and co-workers observed that cells and
axons seeded on 2D culture dishes elongate and migrate along
topographical features of the substrate, such as engraved parallel
microgrooves and oriented fibrillar structures (Weiss, 1945, 1959;
Weiss and Taylor, 1956). This ability of cells to use the lack of
homogeneity of the extracellular matrix (ECM) as cues to adhere,
polarise and orient their migration was defined as ‘contact guidance’
(Fig. 2A) (Carter, 1965; Dunn, 1982;Weiss, 1961). Contact guidance
has since been demonstrated in vitro for a wide variety of cell types
(Dickinson et al., 1994; Dubey et al., 2001; Teixeira et al., 2003;
Webb et al., 1995; Wood, 1988). Oriented features of the substrate,
such as aligned ECM fibrils, can induce contact-guided behaviours
by imposing geometrical constraints on cell-matrix adhesion sites and
by providing physical cues to initiate polarisation of cell shape,
orientation of cellular organelles and directional cell migration
(Doyle et al., 2009; Loesberg et al., 2007; Petrie et al., 2009; Weiss,
1945). In addition, tension imposed on the ECM (e.g. by substrate
stretching) can align a random fibrillar meshwork and thus promote
directed migration through a contact-guided mechanism (Fig. 2B)

Fig. 1. Cell migration in in vitro culture environments.
(A) A current view of Abercrombie’s cell migration cycle,
highlighting actin polymerisation-dependent processes (red),
cell-substrate adhesive structures (purple) and myosin II-
dependent events (green). Cells moving on 2D surfaces
undergo repeated steps of: (1) extension of the leading edge
and formation of immature cell-substrate adhesions;
(2) maturation of cell-substrate adhesions; (3) forward
translocation of the cell body; and (4) disassembly of focal
adhesions coupled to retraction of the rear edge. (B) Cells
under basic 2D culture conditions show intrinsic random
motility driven by multiple peripheral cell protrusions (top),
a behaviour that can be transformed into persistently directed
migration involving a single axial lamella (bottom) either by
lowering the total levels of activated Rac or by local activation
of Rac by chemical and physical guidance cues (depicted as
a horizontal purple gradient). Circular plots on the right depict
the distribution of motion vectors that are characteristic of
each behaviour.

Box2. Seminal contribution ofMichael Abercrombie
to the ‘cell migration cycle’
In the early 1970s, Abercrombie, Heaysman and Pegrum performed a
series of experiments that provided a basic framework for the study of cell
migration. Fibroblasts were carefully examined as they migrated away
from the edge of chick- and mouse-derived tissue explants onto a 2D
glass surface, uncovering the presence of repeated cycles of membrane
protrusion and withdrawal at the leading edge of migrating cells
(Abercrombie et al., 1970a). Fluctuations in the position of these
mobile sheet-like membrane projections, defined as lamellipodia,
resulted in membrane ruffles that appeared primarily at the transitions
between withdrawal and protrusion events, moving away from the
leading edge towards the cell body (Abercrombie et al., 1970b). Although
the rates of cell protrusion and withdrawal were similar, it appeared
that the net forward movement resulted from the greater time that
cells spent protruding (Abercrombie et al., 1970a). Furthermore,
ultrastructural analyses revealed that lamellipodia exhibit discrete
accumulations of dense material at sites of contact with the substrate,
as well as intracellular longitudinal filaments that resembled actin cables
(Abercrombie et al., 1971). This systematic description of the leading
edge of a migrating cell raised the idea that substrate adhesion can
provide a means of traction, which, together with contractile fibrils, allows
the cell to pull itself forward. Together, these findings led to the proposal
that cell migration is a cyclic process of protrusion, adhesion to the
substrate, contraction of the cell body, and rear retraction (Abercrombie
et al., 1971). During this cycle, cells require rapid insertion of new
material at the leading edge (Abercrombie et al., 1970c, 1972), which
allows the formation of new adhesions to the substrate and causes the
excess to move backwards, giving rise to membrane ruffles.
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(Nakatsuji and Johnson, 1984;Weiss, 1961). Alternatively, cells may
by themselves align a random fibrillar meshwork (Harris et al., 1981;
Stopak and Harris, 1982; Tranquillo, 1999) and thus assist their
own directed migration along fibrillar structures (Fig. 2B). A clear
example of the latter is observed in the case of epithelial tumour cells,
which can align collagen fibres at the tumour-stromal interface to
facilitate their local metastatic invasion (Provenzano et al., 2006,
2008). ECM-mediated contact guidance works as a mechanism that
promotes oriented cell migration, but in principle it does not provide
directionality (Fig. 2C) (Weiss, 1961). Additional cues must thus
impose the directionality of migration (Fig. 2C). For example, cells
showing contact-guided behaviour may direct their locomotion
towards regions of increasing ECM deformation (Angelini et al.,

2010; Reinhart-King et al., 2005) and rigidity (Lo et al., 2000).
Similarly, gradients of surface-bound ligands can direct cell migration
through a process of ‘haptotaxis’, which was initially described for
cultured fibroblasts (Carter, 1965, 1967) and later extended to the
oriented growth of axons on patterned collagenmatrices (Letourneau,
1975) and of tumour cells along gradients of laminin (McCarthy
et al., 1983). Finally, cell-cell contacts and polarised chemical signals
(Fig. 2C) may direct contact-guided cell locomotion, and are
discussed in turn below.

Guidance by cell-cell contact
Cell-cell contact plays an instructive role in directing cell migration.
This feature was noticed many years ago by Abercrombie and
Heaysmanwhen examining the behaviour of fibroblasts as they spread
radially from culture explants and collided with fibroblasts that were
moving in opposite directions from a confronted culture explant
(Abercrombie and Heaysman, 1954). In events of cell-cell collision,
fibroblasts exhibited a stereotypical behaviour whereby the cell front
adhered to the colliding cell and experienced contraction and paralysis
of protrusion and ruffling (Fig. 3A,B). Soon after, a new cell front was
established away from the cell-cell contact zone and the collided cells

Box 3. Cell migration in 2D versus 3D culture
environments

When transferred from 2D (e.g. standard Petri dishes, glass coverslips)
to 3D (e.g. gel matrix scaffolds, hanging drops) culture environments,
fibroblasts change their shape, cell matrix adhesive structures and
migratory behaviour (Bard and Hay, 1975; Elsdale and Bard, 1972;
Pankov et al., 2005; Petrie et al., 2009). Cells moving in 3D matrices
become elongated and display more directional movements than those
migrating on 2D surfaces. Such changes reflect distinct means by which
migrating cells interact with the substrate and sense their physical
properties (Garber, 1953; Weiss and Garber, 1952). Fibroblasts on 2D
surfaces develop prominent and stable elongated focal adhesions,
which associate with stress fibres over the broad lamellipodial region
(Geiger and Yamada, 2011; Parsons et al., 2010). By contrast, the
presence of focal adhesions in 3D environments is still a matter of
debate (Fraley et al., 2010, 2011; Geraldo et al., 2012; Harunaga and
Yamada, 2011; Kubow and Horwitz, 2011). An interesting observation is
that adhesions similar to those found in 2D can be observed at the edge
(but not at the centre) of the 3D culture dish, where the anchorage of
collagen bundles to the culture dish increases the rigidity of the matrix
and thus the tension experienced by cells (Fraley et al., 2011).
Accordingly, cells plated on soft 2D substrates show irregular and
unstable focal adhesions (Pelham and Wang, 1997) whereas adhesions
similar in structure and molecular composition to those found in 2D can
be detected in vivo in cells submitted to high tensile forces (Bokstad
et al., 2012; Ralphs et al., 2002). These observations suggest that the
formation and maturation of focal adhesions is sensitive to cellular
tension and substrate stiffness (Kuo, 2013; Parsons et al., 2010). Cells
migrating on 2D surfaces thus appear to form exaggerated versions of
the adhesive structures found in vivo in cells submitted to elevated
mechanical stress, whereas less rigid 3D matrices favour more discrete
adhesions that seem to resemble those in most in vivomigrating cells. In
the figure, labeled structures correspond to ECM fibrils (blue lines),
stress fibers (green lines), focal adhesions (purple dots) and integrin
heterodimers (pink/blue structures). A selected group of proteins
forming the adhesion complex include Actinin, Tensin, Paxilin, Talin,
Vinculin (Vinc) and Focal adhesion kinase (Fak).

Fig. 2. ECM-mediated contact guidance. (A) Contact guidance is the
process by which cells sense and use inhomogeneities of the substrate to
adhere, polarise and orient their migration. On a randomly oriented ECM
fibrillar meshwork (left), cells adopt a stellar shape and move with no preferred
directionality. By contrast, they elongate and orient their migration when
cultured on aligned fibrils (right). Fibrils are depicted as light blue lines; red
arrows indicate the directionality of movement. (B) A randomly organised
fibrillar meshwork (left, blue lines) can become aligned in a defined direction
(middle, purple lines) through local ECM remodelling mediated by the same
migrating cell. Alternatively, the application of external forces on the substrate
(right, depicted as spring stretching) can also align a fibrillar network and,
consequently, orient cell movements. (C) Contact guidance provides
orientation but not directionality of migration (left). However, cells can adopt a
preferred direction in response to gradients in ECMadhesiveness (haptotaxis),
rigidity (durotaxis) and substrate deformation (depicted as a blue gradient);
anisotropies in cell-cell contacts (green); and polarised chemical signals
(purple circles).
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moved apart (Fig. 3A,B) (Abercrombie and Ambrose, 1958). Such
‘contact inhibition of locomotion’ (CIL) (Abercrombie, 1970) was
then reported in other in vitro contexts, such as when two epithelial
sheets meet (Abercrombie andMiddleton, 1968) and in the process of
radial extension of nerve fibres (Dunn, 1971). In addition, CIL was
observed during the migration of corneal fibroblasts in their natural
stroma and in artificial 3D collagen lattices (Bard and Hay, 1975).
Furthermore,CILwasproposed as an explanation forwoundhealing in
epithelia (Abercrombie, 1970; Farooqui and Fenteany, 2005) and for
the invasiveproperties of certainmalignant cells in vitro,movements of
which were not restricted by contact with normal fibroblasts owing to
defective CIL (Abercrombie, 1979; Vesely and Weiss, 1973).
CIL works to re-set the polarity of migrating cells. Cells initially

sense contact with other cells either at the lamellipodium
(Abercrombie, 1970; Abercrombie and Heaysman, 1954) or at
longer distances through filopodial extensions (Carmona-Fontaine
et al., 2008; Davis et al., 2012; Heckman, 2009; Lesseps et al., 1975;
Steketee and Tosney, 1999; Teddy and Kulesa, 2004). Sensing is
mediated by cell surface molecules, often cell-cell adhesion proteins
of the cadherin family (Mayor and Carmona-Fontaine, 2010), which
are proposed to change the balance in small GTPases, with local
activation of RhoA at the cell-cell contact and suppression of Rac1
and repolarisation of the colliding cell (Nelson et al., 2004;
Theveneau et al., 2010). When the sensing of cell-cell contact is
perturbed, cells lose their ability to reset polarity and they produce
numerous protrusions that are able to extend on top of neighbouring
cells (Abraham et al., 2009; Theveneau et al., 2010; Villar-Cervino

et al., 2013). Furthermore, the balance between CIL and attractive
forces, which we discuss later, determines whether a group of cells
disperses as individuals or as a collective group (Fig. 3C).

Directed cell migration via chemotaxis
The ability of cells to undergo directed locomotion along a chemical
gradient, a process known as chemotaxis (Fig. 4A,B), was first
described in bacteria by Pfeffer (Pfeffer, 1884) and later in phagocytic
leucocytes by Metchnikoff (Metchnikoff, 1893). Since then,
chemotaxis has been a subject of intense research in both prokaryotic
(Hazelbauer, 2012) and eukaryotic cells, including the free-living
amoebaDictyostelium discoideum, mammalian leukocytes, fibroblasts
and neurons (Swaney et al., 2010; von Philipsborn and Bastmeyer,
2007; Vorotnikov, 2011). Despite exhibiting different modes of cell
locomotion (ameboid inD. discoideum and leukocytes; mesenchymal
in fibroblasts) and utilising different signal transduction mechanisms
[G protein-coupled receptor (GPCR)-dependent in D. discoideum
and leukocytes, and receptor tyrosine kinase (RTK)-dependent in
fibroblasts], most in vitromodels of eukaryotic chemotaxis share three
general principles. First, cells often exhibit intrinsic random motility.
Second, exposure to a chemoattractant gradient leads to small spatial or
temporal differences in receptor activation that are amplified within the
cell to induce Rac-mediated actin polymerisation and protrusion
formation on the side of the cell facing the highest concentration of
chemoattractant. Third, cell polarity is stabilised by positive-feedback
loops (at the cell front) combined with long-range inhibitory signals
(in the rest of the cell) that restrict protrusion formation towards the
cell front and increase its sensitivity to chemoattractants along
the gradient (Insall, 2013; Swaney et al., 2010; Vorotnikov, 2011;
Wang et al., 2011). Under these general principles, there is major
discussion concerning the mechanism by which receptor activation
leads to the formation of polarised protrusions. The ‘chemotactic
compass’ model (Fig. 4C, top) proposes that sensing of the gradient
results in local accumulation of intracellular signallingmolecules, such
as phosphatidylinositol-3,4,5-triphosphate (PIP3), towards the highest
chemoattractant concentration. Such localised signalling functions
upstreamof activatedRac and is used as a ‘compass’ to adjust the actual
cell polarity by turning the cell front towards the gradient (Bourne and
Weiner, 2002; Rickert et al., 2000; Swaney et al., 2010; Wang, 2009).
The alternative ‘chemotactic bias’ model (Fig. 4C, bottom) proposes
that chemoattractants simply bias the dynamic and self-organising
autocatalytic nature of protrusions towards the gradient without the
need of a compass (Arrieumerlou and Meyer, 2005; Insall, 2010). As
such, this model seems to better integrate recent data showing that
membrane tension resulting from actin polymerisation acts as a long-
range physical signal that inhibits protrusion formation in regions other
than the cell front (Batchelder et al., 2011;Houket al., 2012).Although
the compass and chemotactic biasmodelsmay differ in some aspects, it
should be noted that they are not mutually exclusive and thus both
probably operate in most eukaryotic cells (Insall, 2013).

Mechanical guidance of cell locomotion
In addition to gradients in ECM rigidity, which are known to direct
cell migration from soft to stiff substrates (Lo et al., 2000), it has
recently been shown that physical forces applied at the cell-matrix and
at cell-cell interfaces can also direct cell migration. For instance, cells
migrating on soft ECM matrices may produce patterns of substrate
deformation that serve as a cue to attract the migration of adjacent and
distant cells (Angelini et al., 2010; Reinhart-King et al., 2005). In
addition, cells forming a cohesive group can generate and sense
gradients of intercellular tension to coordinate the direction of their
collective migration (Tambe et al., 2011; Weber et al., 2012). These

Fig. 3. Contact inhibition of cell locomotion. (A) Contact inhibition of cell
locomotion (CIL) is the process by which migrating cells move apart from each
other following an event of cell-cell collision. It involves three well-defined
steps: (1) adhesion of the cell front to a colliding cell; (2) contraction and
paralysis of protrusion and ruffling; and (3) the formation of a new cell front and
migration away from the cell-cell contact zone. (B) A classic in vitro assay of
CIL. When two culture explants (labelled in red and purple) confront each
other, CIL drives both the radial cell spreading away from explants (unbroken
arrows) and the repolarisation of cell movement following events of collision
(dashed arrows). (C) The balance between repulsive (CIL) and attractive
(co-attraction, cell adhesion) forces determines whether a group of migrating
cells disperse as individuals or move as a collective cell group, forming
cellular streams (in the case of mesenchymal cells) or sheets (in the case of
epithelial cells). Cell density and spatial constraints imposed by the substrate
(depicted as a light blue box) also determine the spatial configuration of CIL
events, thus directing the formation of large, well-oriented and stable
protrusions at the front of the collective, facing the free space (red arrows).
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events of ‘mechanotaxis’ require strategies to sense physical forces
and transduce them into polarised chemical cues and directed cell
locomotion, which are still poorly understood. Recent work has
shown that such mechanotransduction may rely on force-induced
conformational changes to scaffolding proteins, such as filamin and
talin, that ultimately modulate the activation of small GTPases, such
as Rac (del Rio et al., 2009; Ehrlicher et al., 2011). In addition, cells
seem able to measure the force required to obtain a given substrate
deformation (Ghassemi et al., 2012; Ghibaudo et al., 2008) and
compute differences in intercellular tension among neighbours
(Tambe et al., 2011; Weber et al., 2012). Once force sensing and
polarity is established, mechanisms similar to those used during
chemotaxis appear to operate to reinforce polarity and direct cell
migration (Roca-Cusachs et al., 2013).

Mechanisms of cell migration during development
Embryo development is a highly dynamic process duringwhich cells
and their environment are constantly changing and communicating
with each other. In contrast to in vitro culture systems, in which
external variables can be easily manipulated, it is not easy to control
the chemical and physical guidance cues that affect cell migration
in vivo, which are often diverse in nature and overlapping in function.
In addition, embryonic cells can use either the ECM or other cells as
a substrate for migration, in contrast to the more typical ECM-
mediated mode of cell locomotion observed in vitro. Furthermore,
although cells can migrate as individuals they often move as
collective groups during development, which imposes an additional
challenge: to resolve whether guidance cues work at the individual
or the collective group level. In this context, the complexity
of developing systems challenges the ability to study guidance
mechanisms as isolated entities and to address how different
guidance strategies cooperate to generate in vivo patterns of cell
migration. In this section, we examine how the aforementioned
guidance principles of in vitro cell locomotion have been used to
explain a number of in vivo events of directed cell migration during
development (summarised in Table 1). We focus on developmental
examples in which individual guidance mechanisms and cues have
been dissected and explored to some extent. We also discuss the

insights that emerge from these analyses, which provide us with
clues as to how the migratory behaviours elicited by guidance
mechanisms generate the stereotypical patterns of migration that
shape developing tissues.

Random cell motility during tissue morphogenesis
Embryonic cells can activate random motility using various genetic
signals, and this seems to be a prerequisite for initiation of directional
migration in response to external guidance cues (Aman and
Piotrowski, 2010). Random motility results in random patterns of
cellmigration, which per se can impact cell and tissuemorphogenesis.
In the context of individual cell migration, random motility has a
dispersive and exploratory effect that prompts cells to colonise new
territories within the embryo. Such an effect is characteristic of the
early migratory phase of the zebrafish endoderm. During gastrulation,
zebrafish endodermal cells disperse from the margin towards the
animal pole following an intrinsic cell-autonomous ‘random walk’,
which is characterised by the formation of short-lived small
protrusions on cells in almost all directions (Fig. 5A, top) (Pezeron
et al., 2008;Woo et al., 2012). This randommigratory behaviour later
switches to become persistently directed as endodermal cells start
converging towards the midline in response to chemotactic cues
(discussed below), while forming broader and more stable dorsally
directedprotrusions (Fig. 5A, bottom) (Pezeronet al., 2008;Wooet al.,
2012). Randomwalking is induced byNodal signalling at least in part
through the expression of the Rac activator Prex1 (Woo et al., 2012):
when Rac1 activity is disrupted, endodermal cells anticipate their
dorsal-directed migration and, as a consequence, become mis-
localised and in some cases fail to maintain their original fate to
become mesoderm (Woo et al., 2012). These observations suggest
that, in addition to its role in cell dispersion, random motility might
also serve as a control mechanism for the response of the cell to
guidance cues, generating a ‘noise’ that reduces the ability of cells
to respond toweakenvironmental guidance cues that have thepotential
to interfere with their normal development (Woo et al., 2012).

When random motility occurs in gradients across developing
tissues it may also serve to direct collective cell migration. Such a
guidance role is observed during posterior elongation of the

Fig. 4. Chemotaxis and chemotactic gradients. (A) Chemotaxis
is the process by which cells undergo directed migration towards
higher or lower concentrations of chemical stimuli. In the example
shown, cells are attracted by gradients of two different chemicals
(depicted in blue and brown). (B) In the chemotactic ‘pipette assay’,
the open-tip of a pipette previously loaded with an attractant
[e.g. cAMP for D. discoideum, formyl-methionyl-leucyl-
phenylalanine (fMLP) for neutrophils, PDGF for fibroblasts] sets up
a diffusion gradient in the culture dish, which attracts cells towards
the source. (C) Two main models of chemotaxis have been
proposed. In the ‘compass’ model (top), the sensing of a chemical
gradient (purple) leads to intracellular accumulation of signalling
proteins (green) that function as the arrow of a compass to indicate
the presumptive direction of movement (green arrow). The
formation of polarised protrusions (red) then follows the direction of
the compass. In the ‘chemotactic bias’ model (bottom), the self-
organising, autocatalytic nature of cellular protrusions (red) is
constantly biased towards the gradient, without the need of a
compass. Once direction is defined, positive-feedback loops at the
cell front (red circular arrows) and long-range inhibitory signals (blue
lines) restrict protrusion formation towards the gradient in both
models. (D) In the ‘compass’ (top) and ‘chemotactic bias’ (bottom)
models, cells respond to changes in the chemoattractant gradient
by correcting the actual movement (red arrow) to the presumptive
direction (green arrow) or through the generation of new
biased protrusions towards the new signal source, respectively.
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Table 1. Summary of the guidance mechanisms of cell migration occurring during development

Mechanism/cell type Model Migration event References

Random motility
Cajal-Retzius cells Mouse Tangential spreading in the neocortex Villar-Cervino et al., 2013
Endoderm Zebrafish Random dispersion from the margin to the

animal pole in the gastrula
Pezeron et al., 2008; Woo et al., 2012

Deep cells Annual fish Scattered cell dispersion on the early
embryo

Lesseps et al., 1979

Presomitic mesoderm Chick Posterior elongation of the embryo Benazeraf et al., 2010

ECM and cell-cell mediated contact guidance
Anterior mesoderm Urodeles,

Xenopus
Extension of the anterior mesoderm
following aligned ECM fibrils in the BCR

Boucaut et al., 1990; Darribere and Schwarzbauer,
2000; Nakatsuji et al., 1982; Nakatsuji and
Johnson, 1984; Winklbauer et al., 1996

Neural crest cells Axolotl, chick Early migration from the dorsal neural tube Lofberg et al., 1980; Newgreen and Thiery, 1980
Primordial germ cells Mouse,

Xenopus
Migration from the developing gut to the site
of the future gonad

Garcia-Castro et al., 1997; Heasman et al., 1981

Primordial germ cells Drosophila,
C. elegans

E-cadherin-mediated hitchhiking by the
moving endoderm

Chihara and Nance, 2012; DeGennaro et al., 2011

Mesenchymal cells Killifish Migration along actinotrichia during fin
morphogenesis

Wood and Thorogood, 1984

Endothelial cells Rat Capillary sprouting along a scaffold of ECM Anderson et al., 2004
Gonadotropin-releasing
hormone (GnRH)

neurons

Mouse ‘Neurophilic/axonophilic’ cell migration
along vomeronasal axons

Cariboni et al., 2007

Pyramidal neurons Mouse ‘Gliophilic’ cell migration along radial glial
fibres in the developing cortex

Rakic, 1971

Neuroblasts Mouse ‘Vasophilic’ cell migration along the rostral
migratory stream of the forebrain

Saghatelyan, 2009

Contact inhibition of cell locomotion
Haemocytes Drosophila Individual cell dispersal on the ventral side

of embryo
Davis et al., 2012; Stramer et al., 2010

Cajal-Retzius cells Mouse Individual tangential cell spreading along
the cortical marginal zone

Borrell and Marin, 2006; Villar-Cervino et al., 2013

Deep cells Annual fish Individual cell dispersal on the embryo
surface during epiboly

Lesseps et al., 1979, 1975

Primitive myeloid cells Xenopus Individual cell scattering from the anterior
ventral blood islands

Costa et al., 2008

Anterior visceral
endoderm

Mouse Individual distal-to-proximal cell dispersion
on the epiblast surface

Pezeron et al., 2008

Epibranchial placodal
precursors

Xenopus Epithelial cell migration away from chasing
neural crest cells

Theveneau et al., 2013

Neural crest cells Xenopus Collective mesenchymal cell migration
away from the dorsal neural tube

Carmona-Fontaine et al., 2008, 2011

Chemotaxis
Primordial germ cells Zebrafish Individual cell migration towards

the future gonad, mediated by
Cxcl12a-Cxcr4b

Blaser et al., 2006; Boldajipour et al., 2008;
Kardash et al., 2010; Reichman-Fried et al., 2004

Border cells Drosophila Epithelial cluster migration towards the
oocyte, mediated by PVR-PVF1 and
EGFR-Gurken

Bianco et al., 2007; Duchek and Rørth, 2001;
Duchek et al., 2001

Posterior lateral line
primordium

Zebrafish Epithelial cluster migration along the
horizontal myoseptum, mediated by
Cxcl12a-Cxcr4b

Dona et al., 2013; Haas and Gilmour, 2006;
Venkiteswaran et al., 2013

Tracheal cells Drosophila Leading cell migration during branch
formation, mediated by Fgf-Branchless

Sutherland et al., 1996

Neural crest cells Xenopus Mesenchymal collective cell migration to
latero-ventral regions, mediated by
Cxcl12-Cxcr4

Theveneau et al., 2010, 2013

Anterior mesoderm Xenopus Mesenchymal collective cell migration to
the BCR, mediated by Cxcl12-Cxcr4 and
PDGFA-PDGFRα

Fukui et al., 2007; Nagel et al., 2004

Large-scale ECM flow
Epiblast Chick Composite movement of epiblast and sub-

epiblastic ECM during gastrulation
Zamir et al., 2008

Mesoderm Chick Composite movement of the mesoderm
and ECM during gastrulation

Czirok et al., 2004; Filla et al., 2004;
Zamir et al., 2006

Ectoderm, mesoderm Hydra Composite movement of the two epithelia
and intervening mesoglea during bud
outgrowth

Aufschnaiter et al., 2011
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amniote embryo, during which cells of the presomitic mesoderm
undergo directed posterior movements as a consequence of a
gradient of random cell motility that decreases in the posterior-to-
anterior direction and is controlled by a similar gradient of
fibroblast growth factor (FGF)/mitogen-activated protein kinase
(MAPK) signalling (Fig. 5B). Accordingly, genetic and chemical
disruption of the random motility gradient impairs embryo
elongation, and computer simulations that mimic a random
motility gradient can induce directional movements in a virtual
cell population (Benazeraf et al., 2010).

ECM- and cell contact-guided migration during development
Contact-mediated guidance can orient cell migration in a wide
variety of developmental contexts (Table 1). Key examples include
themigration ofmesenchymal cells along collagenous unsegmented
fibrils known as actinotrichia in the developing teleost fin (Fig. 6A)
(Wood and Thorogood, 1984), the migration of neuronal precursors
along pre-existing neuronal/axonal and glial scaffolds in the brain
(Fig. 6B), and the extension of anterior mesodermal cells along
ECM fibrils on the blastocoel roof (BCR) of the amphibian gastrula
(Fig. 6C,D). Studies of urodele and anuran embryos have been
especially illuminating as they have combined in vivo observations

with in vitro analyses of tissue explants and dissociated cells, and
with molecular manipulations of cell-matrix interactions (Boucaut
et al., 1991; DeSimone and Johnson, 1991). During gastrulation in
amphibians, the prospective head mesoderm migrates towards the
animal pole using the inner surface of the epithelial ectodermal BCR
as a substrate. Just before the onset ofmesodermmigration, a fibrillar
network of ECM fibrils forms on the BCR and becomes aligned
along the vegetal-animal pole axis (Fig. 6C,D) (Nakatsuji et al.,
1982; Nakatsuji and Johnson, 1983a). It was shown that dissociated
mesodermal cells seeded on a plastic substrate that contains the
ectodermal-derived fibrillar ECM network (obtained by previous
conditioning with ectoderm explants) are able to attach and orient
their migration along fibrils, as they do in vivo (Fig. 6E) (Nakatsuji
and Johnson, 1983b). Importantly, if the ectodermal layer is
artificially realigned by exerting mechanical tension in vitro (e.g.
by tilting the substrate), the mesodermal cells also reorient their
movements (Fig. 6F) (Nakatsuji and Johnson, 1984). Therefore,
aligned ECM fibrils appear to orient mesodermal cell migration on
the BCR through a contact guidance mechanism (Nakatsuji and
Johnson, 1984). This mechanism appears to involve fibronectin
(FN), which is a major component of the BCR fibrillar network
(Boucaut and Darribere, 1983; Davidson et al., 2004; Johnson et al.,
1992); blockage of FN synthesis, function or fibrillar assembly, as
well as abrogation of the integrin α5β1 receptor, leads to abnormal
adhesion, spreading and migration of mesodermal cells (Boucaut
et al., 1990; Darribere and Schwarzbauer, 2000; Davidson et al.,
2002; Nagel and Winklbauer, 1999; Rozario et al., 2009). Upon
contact with FN, mesodermal cells relocalise their intrinsic
protrusive activity along the BCR surface and replace filopodia
with lamelliform protrusions (Winklbauer and Keller, 1996;
Winklbauer and Nagel, 1991; Winklbauer and Selchow, 1992).
These results suggest that the FN-fibrillar network not only provides
oriented adhesiveness and resistance to mesoderm cell traction but
also regulates the protrusive activity of migrating cells. As described
for in vitro ECM-mediated contact guidance, the oriented migration
of anterior mesodermal cells requires additional cues and factors to
direct locomotion towards the animal pole, and these include CIL
among mesodermal cells (Johnson et al., 1992; Winklbauer and
Selchow, 1992) and attractive chemical signals produced by the
BCR, such as the chemokine Cxcl12a (Fukui et al., 2007) and
the ECM-bound platelet-derived growth factor A (PDGFA) (Nagel
et al., 2004).

In addition to features of the ECM, cells can orient their migration
by interactingwith a cellular substrate. Such cell-cellmediated contact
guidance is observed during the migration of neuronal precursors
along pre-existing neuronal/axonal and glial scaffolds in the
developing and adult brain, in processes referred to as ‘neurophilic/
axonophilic’ and ‘gliophilic’ cell migration, respectively (Table 1).
For example, gonadotropin-releasing hormone (GnRH) neurons
migrate from the nasal placode towards the olfactory bulb region
(Fig. 6B). The GnRH neurons follow vomeronasal axons and this
event is mediated by cell-cell interactions involving integrin β1
(expressed in GnRH neurons) and the glycophosphatidylinositol
(GPI)-linked semaphorin 7A (expressed in axons) (Cariboni et al.,
2007). However, contact with the vomeronasal axons only provides
orientation, and the nose-to-brain directionality of GnRH neuronal
migration depends on a chemotactic gradient of semaphorin 4D
(Fig. 6B) (Messina and Giacobini, 2013).

Cell-mediated contact guidance is also observed inCaenorhabditis
elegans and Drosophila primordial germ cells. These cells are
quiescent and establish E-cadherin-mediated adhesive interactions
with the endoderm, and as the endodermmoves they are carried along

Fig. 5. Random motility in morphogenesis. (A) Zebrafish endodermal cells
undergo a switch from random (top) to persistently directed (bottom) migration
during gastrulation. The early phase of ‘random walk’ is induced by Nodal
signalling at the blastoderm margin (purple gradient) and is characterised by
cells forming non-oriented and unstable membrane protrusions coupled to
random cell translocations (red arrows). The late phase of directionally
persistent endodermal migration is a response to Cxcl12b/Cxcr4a signalling
(green gradient), and involves the formation of broader and more stable
dorsally directedmembrane protrusions coupled to directed cell displacements
(blue arrows). Circular plots on the right depict the distribution of motion vectors
that are characteristic of each behaviour. (B) Posterior elongation of the
chick embryo is mediated by a gradient of random motility. During embryo
elongation, the presomitic mesodermmoves directionally towards the posterior
(red arrows). Mathematical subtraction of ECM motion (green arrows) from
global cell displacement (purple arrows) reveals a cell-autonomous random
motility gradient that decreases from posterior to anterior (blue stars),
which coincides with a posterior-to-anterior gradient of FGF/MAPK
signalling (purple). The inverse anterior-to-posterior gradient in cell density
is probably a result of the random motility gradient.
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bya ‘hitchhiking’mechanism (Chihara andNance, 2012; DeGennaro
et al., 2011). Importantly, contact-guided cell migration can be
regulated by switching the adhesion efficiency and/or by changing the
way that cells interpret the landscape along their route of migration.
For example, distal tip cells in the C. elegans gonad show an initial
phase of directional migration that is driven by the integrin INA-1 α
subunit which is followed byan arrest in cell migration after switching
integrin receptor expression from INA-1 α to PAT-2 α (Meighan and
Schwarzbauer, 2007, 2008). Similarly, GnRHneurons transform their
early directional migration along vomeronasal axons into a state of
decreased attachment and spreading byswitching integrin β1 to plexin
C1 after crossing the nasal-forebrain border (Fig. 6B) (Messina and
Giacobini, 2013).

Self-generated patterns of migration by contact inhibition of
locomotion
Analogous to its role in the radial dispersion of fibroblasts in culture
explants, CIL appears to be a driving force for cell dispersion during
development, in events when cells spread and colonise expanded

territories starting from confined regions of the embryo (Table 1).
For example, Drosophila haemocytes, attracted by a source of
the Drosophila platelet-derived growth factor (PDGF)/vascular
endothelial growth factor (VEGF) ligand PVF1, migrate from the
head mesoderm to form a linear cellular array at the ventral midline
(Cho et al., 2002; Wood et al., 2006), and from this position they
disperse laterally to form a ‘three-lined’ organisation pattern as
a result of CIL (Fig. 7A) (Davis et al., 2012; Stramer et al., 2010). As
haemocytes contact each other, a stable arm-likemicrotubule bundle
that extends into the lamellae collapses, enabling cell repulsion,
turning and dispersion (Stramer et al., 2010). In other in vivo
contexts, cells undergoing CIL do not disperse but instead organise
as a cohesive cluster owing to additional forces that restrict cell
dispersal. For instance, cell-cell adhesive interactions keep epithelial
cells together during collectivemigration driven byCIL, as observed
in the movement of Xenopus pre-placodal cells (Theveneau et al.,
2013). By contrast, mesenchymal cells moving by CIL organise in
collective migratory streams owing to attractant cues that the cells
themselves produce and sense. For example, the cohesive migration

Fig. 6. ECM- and cell-mediated contact guidance during development. (A) During teleost fin morphogenesis, mesenchymal cells migrate along an array
of banded collagen fibrils or actinotrichia (orange lines) aligned along the proximal-distal axis of the teleost fin bud. (B) In the developing mouse brain, GnRH
neurons migrate from the vomeronasal organ (VNO) towards the region of the olfactory bulb (OB) following the route of vomeronasal axons (VNA, arrow in
top diagram). The bottom panel shows that the early steps of migration within the nose are highly directional and depend on interactions between integrin β1
(in GnRH neurons, red line) and the glycophosphatidylinositol (GPI)-linked semaphorin 7A (expressed by vomeronasal axons) coupled to sensing of a
chemoattractant gradient of semaphorin 4D (purple circles). In the transition from nose to brain migration, GnRH neurons arrest their migration by switching
to expression of plexin C1 receptors (orange line). (C,D) During gastrulation in urodele amphibians, mesodermal cells (red) move from the blastopore to the
animal pole (red arrow) using the ectodermal blastocoel roof (BCR, dark blue line) as a substrate, while the ectoderm (blue) undergoes epibolic expansion
(blue arrow). Just before the onset of mesoderm migration (C), the BCR forms a network of ECM fibrils (C, right panel, blue lines) that later becomes oriented
along the animal-vegetal (A-V) axis (D, right panel), probably influenced by the epibolic expansion of the ectoderm (indicated by the stretched spring), which
serves as a guidance cue for oriented mesodermal cell migration (white arrows). (E) The BCR fibrillar network (blue) can be experimentally transferred to the
surface of a coverslip by preconditioning with late-gastrula ectodermal explants. Under such in vitro conditions, dissociated mesodermal cells (red) use the
aligned fibrillar array to direct their migration (white arrows). (F) Mechanical tension imposed on the ectodermal explant by tilting the coverslip by 30° can re-align
the BCR fibrillar network along the medio-lateral (M-L) axis, and also re-orients mesodermal cell movements along the axis of tension (stretched spring).
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of Xenopus neural crest cells (NCCs) (Fig. 7B) is favoured by the
C3a complement immune-derived component, which is produced
byNCCs andworks as an attractant cue for the same cells (Carmona-
Fontaine et al., 2011). When NCCs contact each other within the
cluster, cell-cell contact mediated by N-cadherin triggers a repulsive
response by activating RhoA at the contact site, leading to cell
repolarisation and promotion of cell dispersal (Carmona-Fontaine
et al., 2008). Therefore, NCCs within the collective migratory group
are not static but they constantly split, collide and reassemble,
showing cryptic protrusions when in inner positions but a strong
front-to-back polarity if placed at the free edge of the cluster
(Carmona-Fontaine et al., 2008, 2011; Theveneau et al., 2010).
Importantly, cells that in the embryo normally migrate as a cohesive
group (e.g. NCCs) can disperse as individuals if the forces of
attraction are inhibited, whereas the induction of attraction among
embryonic cells that normally disperse (e.g. myeloid cells) results in
the formation of cohesive migratory streams (Carmona-Fontaine
et al., 2011). These findings indicate that cells undergoing CIL are
able to switch between individual and collective migratory
behaviours according to the balance of attractive and repulsive
interactions that they experience (Fig. 3C). When the balance
favours repulsive interactions, CIL leads to cell dispersal. By
contrast, migratory cells organise as a cohesive group when
attractive forces become dominant.
Cell-cell contact repulsive interactions triggered by CIL seem

sufficient to generate self-organised patterns of individual and
collective cell migration, and the random versus directional nature
of thismigration is determined, at least in part, by factors that influence
the rate and spatial organisation of cell-cell collision events, such as
cell density, cell shape and the geometryof the substrate (Abercrombie
and Heaysman, 1954; Bindschadler and McGrath, 2007; Carmona-
Fontaine et al., 2011; Coburn et al., 2013; Costa et al., 2008; Davis
et al., 2012; Lesseps et al., 1979; Villar-Cervino et al., 2013). In
addition, intrinsic randommotilitymay favour stochastic cell dispersal
triggered by CIL, as observed in the ‘random walk’ of zebrafish
endodermal cells (Fig. 5A) (Pezeron et al., 2008) and mouse Cajal-
Retzius cells (Fig. 7C) (Villar-Cervino et al., 2013). Finally, external

guidance cues such as the chemokine Cxcl12 may be integrated into
the CIL process to either restrict CIL events within defined spatial
domains (Borrell andMarin, 2006) or promote directed cell migration
by enhancing the polarity induced by CIL (see next section).

Guidance by chemotactic signals in developing systems
Chemotaxis works as a guidance mechanism for individual and
collective cell migration in a variety of developmental contexts
(Table 1). Among the best-studied examples are the individual cell-
based migration of zebrafish primordial germ cells, the epithelial
cluster-basedmigration ofDrosophilabordercells andof the zebrafish
posterior lateral line primordium, and the mesenchymal collective-
based migration ofXenopus cephalic neural crest cells (Fig. 8) (Aman
andPiotrowski, 2010;Montell et al., 2012;Rørth, 2002; Tarbashevich
and Raz, 2010; Theveneau andMayor, 2012). These in vivo examples
share two main principles of chemotaxis. First, intrinsic random cell
motility is present before exposure to a chemoattractant gradient.
Indeed, genetic pathways that are independent of chemotaxis trigger
randomcellmotility, and this appears to bea pre-requisite for initiating
directional migration in response to chemoattractants. Second,
exposure to a chemoattractant gradient activates receptor-mediated
signalling that biases the intrinsic random cell motility towards the
gradient by directing front-to-back polarity, stabilisation of cellular
protrusions and cell translocation. Consistent with these observations,
both the abrogation of receptor-mediated signalling and the exposure
to homogeneous chemoattractant concentrations impair directional
cell migration in the same way, resulting in random polarity and
protrusion formation without affecting motility per se. Below, we
discuss each of these developmental examples of guidance by
chemotactic signals in turn.

Zebrafish primordial germ cells (z-PGCs) migrate as individuals
from their site of specification towards the future gonad (Fig. 8A,
top) displaying a unique mode of intrinsic locomotion that is
characterised by alternating phases of persistently directedmigration
(‘run’) and pauses (‘tumbling’) (Reichman-Fried et al., 2004),
which resemble the biphasic chemotactic behaviour of nerve growth
cones (Ming et al., 2002). During ‘runs’, z-PGCs form spherical

Fig. 7. Contact inhibition of cell locomotion during
development. (A) Haemocytes use contact inhibition
of locomotion (CIL) to disperse from the ventral midline
to form a ‘three-lined’ organisation in the Drosophila
embryo. (B) Cranial neural crest cells in Xenopus
migrate as cellular streams away from the dorsal side
of the neural tube towards both sides of the embryo.
(C) Cajal-Retzius cells in the E12.5 mouse
telencephalon spread tangentially from the cortical
hem (red), pallial septum (blue) and ventral pallium
(green) to distribute along the marginal zone of the
developing neocortex. The proposed mechanisms of
CIL are depicted below each example. In haemocytes,
CIL involves a collision of lamellae containing
conspicuous arms of microtubule bundles (red lines)
that disassemble upon cell-cell contact to enable cell
repulsion and turning. Neural crest and Cajal-Retzius
cells form highly dynamic membrane processes that
retract or are repulsed upon cell-cell contact, after
which cells repolarise andmove away from the cell-cell
contact zone. Cell retraction/repulsion is mediated by
N-cadherin adhesive interactions and downstream
RhoA activation in neural crest cells, and through
Ephrin/Eph bidirectional signalling in Cajal-Retzius
cells.
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blebs that are propelled by RhoA-mediated myosin II cortical
contraction and hydrostatic pressure, which result in a retrograde
flow of cortical actin. This event is modulated by chemokine

signalling, specifically Cxcr4b receptor activation by a gradient of
Cxcl12a, which induces local amplification of intracellular Ca2+

influx at the cell front resulting in enhancement of RhoA-mediated

Fig. 8. Chemotaxis and chemotactic gradients during development. (A) Top: Zebrafish primordial germ cells (PGCs, green) begin migrating (green
arrows) soon after their specification and cluster in the region of the future gonad, guided by Cxcl12a (purple). Bottom: PGCs move by linking retrograde
cortical actin flow (red arrows) to E-cadherin-mediated adhesions (blue) with surrounding somatic cells. A functional chemoattractant gradient (purple) is
shaped by somatic cells through Cxcr7-mediated endocytosis of Cxcl12a. (B) Top: Drosophila border cells (green/red) migrate in between and along large
nurse cells from the anterior pole of the egg chamber, moving in two distinct phases: early posterior (red arrow) and late dorsal (white arrow). Bottom: Border
cells migrate as a compact cluster containing two inner polar cells (red) and four to eight migratory cells (green). The PDGF/VEGF-related receptor (PVR)
and its ligand PVF1 have a dominant role in posterior migration, when the cluster moves by cells at its front forming long and stable cellular extensions. PVR
activates the atypical Rac exchange factor MBC and its co-factor ELMO. Signalling via the EGF receptor (EGFR) and its ligand Gurken, which activates
MAPK or phospholipase C γ (PLCγ), is required for dorsal migration, which is characterised by cells forming short, unstable extensions with a front-bias,
often exchanging positions (dashed arrows) and sometimes showing rotation of the entire cluster (solid arrows). (C) Top: The zebrafish posterior lateral line
primordium (red) forms a cluster of >100 cells that migrates from the anterior postotic area to the tail following a stripe of Cxcl12a (purple). Bottom: During
migration, the cluster transforms a uniform stripe of extracellular Cxcl12a (purple) into a gradient of Cxcl12a/Cxcr4b signalling (red) across the primordium.
Such a self-generated gradient is achieved by restricting Cxcr7-mediated endocytosis (green) to the rear of the cluster (middle panel, dashed box). Cxcl12a/
Cxcr4b signalling directs cell migration by enhancing actin dynamics at the front of the cluster (lower panel, dashed box), where Cxcr4b shows constant
turnover involving endocytosis/degradation and delivery of new receptor to the plasma membrane. Right-hand panels depict the process of internalization
and turnover of chemokine receptors (Cxcr7 in green, Cxcr4b in orange) in response to the ligand Cxcl12a (purple circles). (D) Top: Xenopus cranial neural
crest cells (red) move laterally, guided by a moving source of Cxcl12 produced by pre-placodal cells (purple). Bottom: Neural crest and pre-placodal cells
coordinate their migration by combining chemotaxis with CIL, engaging in repeating ‘chase-and-run’ cycles: neural crest cells, which are polarised and
activate Rac at their cell front, migrate towards (‘chase’) pre-placodal cells, attracted by Cxcl12 (purple circles). Upon cell-cell contact (green) CIL induces
cell repolarisation through Rac inhibition and pre-placodal cells move away from neural crest cells (‘run’).
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myosin II contraction, stabilisation of cell protrusions and increase in
the time spent in ‘runs’ (Blaser et al., 2006; Kardash et al., 2010;
Reichman-Fried et al., 2004). Traction forces for cell translocation
are generated by linking the retrograde actin flow to E-cadherin (also
known as Cadherin 1)-mediated adhesions with somatic cells
(Fig. 8A, bottom) (Blaser et al., 2006; Kardash et al., 2010). Such
behaviour differs from the most common mode of locomotion in
which cells move by forming protrusions through Rac-mediated
actin polymerisation at the front (Box 1).
Drosophila border cells (d-BCs) are organised as a cluster of six

to eight epithelial cells that migrates from the anterior follicular
epithelium towards the oocyte in two distinct phases that require
attachment to a cellular substrate through E-cadherin (also known as
Shotgun) (Fig. 8B, top) (Niewiadomska et al., 1999; Pacquelet and
Rørth, 2005). In the early phase (Fig. 8B, middle), d-BCs emit long
and stable extensions that firmly attach to nurse cells and allow the
cluster to be pulled forward in a highly directional manner through
actomyosin contraction (Bianco et al., 2007; Fulga and Rørth, 2002;
Poukkula et al., 2011). In the late phase (Fig. 8B, bottom), the BC
cluster adopts a round shape and moves with less directionality, and
cells exchange positions and form short and unstable extensions
with a front bias (Bianco et al., 2007; Poukkula et al., 2011). During
these events, d-BCs use two RTKs to sense chemoattractants,
although the PVF1 receptor PVR has a dominant role in the early
migratory phase whereas EGFR (and its ligand Gurken) takes over
at later stages to allow the final dorsal migration (Duchek and Rørth,
2001; Duchek et al., 2001; Poukkula et al., 2011; Prasad and
Montell, 2007). Both receptors utilise different effector proteins
and guidance strategies, which are based on the subcellular
localisation of signalling within the leading cell (in the case of
PVR) and differences in signal levels among the constituents of the
cluster (in the case of EGFR) (Assaker et al., 2010; Bianco et al.,
2007; Janssens et al., 2010; Jekely et al., 2005; Ramel et al., 2013).
However, signalling seems to converge on Rac activation, as focal
photoactivation of Rac is sufficient to direct protrusion formation
and rescue directional migration of the entire cluster when PVR and
EGFR function are disrupted (Wang et al., 2010).
The zebrafish posterior lateral line primordium (z-pLLP) is

organised as a cohesive cluster of >100 cells that migrate from the
otic placode towards the tail following the horizontal myoseptum
(Fig. 8C, top). The z-pLLP shows clear group polarity, displaying
more extensive protrusions at the front than at the back of the cluster
(Haas and Gilmour, 2006). Mosaic genetic analysis revealed that
individual cells containing a functional chemosensing receptor adopt
a front position within a cluster lacking the receptor, and are able to
rescue migration of the entire primordium (Haas and Gilmour, 2006;
Xu et al., 2014). This is similar to the behaviour observed in the early
phase of d-BC migration (Bianco et al., 2007), indicating that in both
developmental contexts the activity of front cells is fundamental for
cluster migration. Chemokine signalling is also involved in z-pLLP
migration;Cxcl12 is amajor chemoattractant, and graded activation of
Cxcl12a/Cxcr4b signalling, which decreases from front to back,
results in enhanced actin dynamics and the stabilisation of protrusions
towards the front of the cluster (Fig. 8C, bottom) (Dona et al., 2013;
Venkiteswaran et al., 2013; Xu et al., 2014).
Xenopus neural crest cells (x-NCCs) also migrate as a collective

group, from the dorsal neural tube to lateral and ventral regions of
the embryo (Fig. 8D, top). The traction forces for NCC locomotion
are generated by cell protrusions that adhere to the ECM (Theveneau
et al., 2010). Furthermore, x-NCCs coordinate their directed
movements by combining CIL with chemotaxis. As previously
described, the collective movement of NCCs away from the dorsal

neural tube is directed by both CIL and ‘co-attraction’ among
NCCs, which induces cell polarisation and protrusion formation
towards the free edge of the collective cell group (Carmona-
Fontaine et al., 2008, 2011). As NNCs migrate, they also sense a
source of the chemoattractant Cxcl12, which is produced by
epithelial epibranchial placodal precursors (EPPs), and they respond
to this cue by enhancing the polarity induced by CIL (Theveneau
et al., 2010). Bidirectional interactions between NCCs and EPPs
direct the coordinated migration of both cell populations towards
lateral and ventral regions (Fig. 8D). NCCs are attracted by Cxcl12
produced by EPPs (‘chase’) and, as both cell types make contact,
EPPs move away from NCCs through CIL (‘run’), leading to
forward displacement of the Cxcl12 source and the engagement of
both NCCs and EPPs in repeating cycles of ‘chase-and-run’
behaviour (Fig. 8D, bottom) (Theveneau et al., 2013).

Shaping chemoattractant gradients in vivo
As highlighted above, cell migration during development is often
dependent on gradients of chemoattractants, and studies have
shown that embryonic cells use different strategies to shape these
chemoattractant gradients in vivo. Chemoattractants may be produced
in discrete spatial domains and from there diffuse and exert their
graded effect over a long distance, as seen in the Drosophila egg
chamber where PVF1 is produced at the posterior pole and attracts
d-BCs located at the anterior pole (Fig. 8B) (Duchek et al., 2001). It is
also possible that a stable gradient of immobilised chemoattractant
is formed after diffusion, as observed for the mouse chemokine
CCL21, which is released by lymphatic vessels and attracts dendritic
cells through a decay-mediated gradient of CCL21 bound to heparan
sulfates (Weber et al., 2013). In addition, chemoattractants may work
over a short-distance. For instance, theDrosophila FGF Branchless is
expressed in focal domains surrounding the developing tracheal
system and exerts a local guidance effect that directs branch formation
(Sutherland et al., 1996). Similarly, x-NCCs exhibit short-range
attraction to a moving source of Cxcl12 produced by pre-placodal
cells, from which they never seem to distance themselves due to a
‘chase-and-run’ behaviour (Fig. 8D). However, embryonic cells may
also move directionally along stripes of homogeneously produced
chemoattractants, and for this to occur they require an active way to
shape the gradient. The principle of such a mechanism resembles the
source-sinkmodel (Crick, 1970) and relies on the asymmetric removal
of chemoattractants from the extracellular space by receptor-mediated
endocytosis, which can be performed either by cells forming the
substrate of migration or by the migrating cells themselves. An
example of the former is observed during the guidance of z-PGCs
when a functionalCxcl12a gradient is shaped bysomatic cells through
Cxcr7-mediated endocytosis (Boldajipour et al., 2008). However,
embryonic cells may by themselves generate a chemoattractant
gradient as theymigrate, as demonstrated in vitro for cancer cells in 3D
matrices (Shields et al., 2007) and for epithelial cells usingmicroscale
engineering techniques (Scherber et al., 2012). Cells in the z-pLLP
also promote their own directional migration along the horizontal
myoseptum through polarised Cxcr7-mediated endocytosis of
Cxcl12a at the back of the cluster, which generates a functional
linear gradient of Cxcl12a/Cxcr4b signalling across the migrating
primordium that increases towards the front (Fig. 8C) (Dambly-
Chaudiere et al., 2007; Dona et al., 2013; Valentin et al., 2007;
Venkiteswaran et al., 2013). Such a self-generated strategy for guiding
cellmigration differs fromclassical chemotaxis as it predicts that, once
formed, the gradient will continually move with cells and will lock
them in a persistent migratory phenotype until they encounter a stop
signal (or lose polarity).
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Directed cell migration by long-range tissue deformation
Recent in vivo studies have shown that the ECM itself displays
tissue-level movements that have been suggested to direct cell and
tissue locomotion (Aufschnaiter et al., 2011; Benazeraf et al., 2010;
Czirok et al., 2004; Filla et al., 2004; Zamir et al., 2006, 2008). For
example, during avian gastrulation the epiblast and the underlying
sub-epiblastic ECM move together as a tissue composite (Zamir
et al., 2008) and similar large-scale coordinated movements are
observed among mesodermal cells and their surrounding ECM
(Czirok et al., 2004; Zamir et al., 2006). In both cases, the directed
composite movements are proposed to be driven by both
long-range mechanical forces, which are transmitted from global
embryo morphogenesis into large-scale ECM flows, and by cell-
autonomous migratory activities (Benazeraf et al., 2010; Zamir
et al., 2008). Although the mechanism of force transmission is yet
to be elucidated, these findings challenge our view of how guidance
mechanisms based on chemoattractant gradients and cell-cell
contacts operate in developmental contexts in which cells and the
ECM move together as a composite.

Conclusions
Here, we have reviewed how themain guidance principles of in vitro
cell locomotion apply to defined developmental contexts in a variety
of vertebrate and invertebrate model organisms. Embryonic cells
transit between mesenchymal and epithelial states, and in both
conditions they must trigger motility to initiate random or
directional migration. Intrinsic random motility is observed in the
absence of guidance cues, when cells are unable to sense these
signals, and in the presence of homogeneous (non-graded) levels of
guidance cues. This random cell motility has a morphogenetic role
per se by promoting cell dispersion or, if spatially organised, by
coordinating the migration of collective cell groups. However,
migrating cells can also follow topographical features of the
substrate through contact guidance and, in these situations, the
directionality of movements is provided by additional chemical or
physical cues. Such guidance cues normally bias random cell
motility towards a polarised source of the signal or, in the case of
gradients, towards the highest or lowest concentration of the signal.
Motility bias relies on the induction of front-to-back cell polarity,
which involves actin polymerisation at the cell front and the
stabilisation of protrusion formation towards the signal. These
events are frequently mediated by signal transduction events
downstream of receptor activation that modulate the activity of
small GTPases and actin dynamics. The transmission of membrane
tension across the migrating cell also plays an instructive role in
directing polarised motility. All the aforementioned processes
show tight genetic regulation during development with respect to
both the timing of cellular events and the spatial configurations
of environmental signals. Such genetic control pre-configures
the substrate landscape and determines the possible response
mechanisms that cells can activate to direct their migration.
However, migrating cells can also self-organise the chemical and
physical substrate towhich theywill respond (e.g. by self-generating
a chemoattractant gradient). In addition, cells can generate patterns
of migration through interactions with other migrating cells
(e.g. by means of contact inhibition of locomotion). The latter
migratory events are not pre-configured and thus represent emerging
properties of the system. Further studies exploiting the advantages
offered by model organisms for embryo and tissue handling, optical
imaging and genetic manipulation, will provide novel insights
into how chemical and physical signals are integrated with intrinsic
cellular properties to produce stereotypical and robust migratory

responses. This task is especially crucial for the guidance of
collective cell groups, which is themost commonwayof locomotion
during critical stages of development.
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