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Summary
The POU domain family of transcription factors regulates
developmental processes ranging from specification of the early
embryo to terminal differentiation. About half of these factors
display substantial affinity for an 8 bp DNA site termed the
octamer motif, and are hence known as Oct proteins. Oct4
(Pou5f1) is a well-known Oct factor, but there are other Oct
proteins with varied and essential roles in development. This
Primer outlines our current understanding of Oct proteins and
the regulatory mechanisms that govern their role in
developmental processes and concludes with the assertion that
more investigation into their developmental functions is needed.
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Introduction
A central tenet of developmental biology is the orchestration of
hierarchical gene expression patterns by sequence-specific
transcription factors. These gene expression patterns allow for the
precise translation of genetic information into the specification of
distinct cell lineages, which in turn determines the correct
formation of morphological structures. Understanding how this
process occurs at a molecular level represents a considerable
challenge in developmental biology. Oct transcription factors are
key developmental regulators capable of coordinating a spectrum
of developmental processes, ranging from the establishment of the
embryonic pluripotent ‘ground state’ to terminal differentiation. Oct
proteins are a subclass of the POU transcription factor family (Box
1) that recognize an 8 bp consensus sequence [ATGC(A/T)AAT]
termed the ‘octamer motif’ and variants thereof (Bodner et al.,
1988; Ingraham et al., 1988; Kemler et al., 1989). The 5� ATGC
motif associates with the POU-specific domain, while the 3� half-
site associates with the POU homeodomain (Box 1). The octamer
motif is found in the regulatory regions of both ubiquitous and
tissue-specific target genes. For example, ubiquitously expressed
histone and U small nuclear RNA genes contain the motif in their
regulatory regions, but so too do the B cell-restricted
immunoglobulin heavy and kappa light chain genes (Fletcher et al.,
1987; Henderson and Calame, 1995; Ström et al., 1996).

Although the basic octamer motif is the simplest sequence
capable of strong association with Oct proteins, combinations of
paired and inverted octamer half-sites are known to bind proteins
such as Oct1 (Pou2f1), Oct4 (Pou5f1, Oct3) and Brn2 (Oct7, N-
Oct3, Pou3f2). The proteins bind these sequences as dimers or
higher-order structures (Reményi et al., 2001; Nieto et al., 2007;
Tantin et al., 2008). The basis of this recognition lies in the
conformational flexibility of the linker domain, a covalent peptide

of variable length and sequence that allows the two DNA-binding
subdomains to reorganize relative to each other (Box 1). The
discovery of many diverse Oct protein binding sites mirrors the
pattern for other transcription factors, such as Notch intracellular
domain, NRSF/REST and T-box transcription factors, in which
variant sites with different half-site spacing have been shown to
bind the factor physiologically (Conlon et al., 2001; Cave et al.,
2005; Ong et al., 2006; Johnson et al., 2007). The capacity for
binding to alternative sequences also provides a mechanism for
differential regulation by Oct proteins because binding to some
sites but not others can be controlled by upstream signals such as
phosphorylation (Nieto et al., 2007; Kang et al., 2009).

With these basics in mind, the aim of this Primer is to provide
an overview of the known and likely developmental roles of Oct
proteins, in particular their relevance to stem cells and how our
knowledge of their mechanisms of action can inform their function.
Synthesis of prior literature and new mechanistic developments in
the field suggests that the time is right to refocus on the roles of
these proteins in development. Doing so might result in a
renaissance in our understanding of the developmental roles of
these key transcription factors.

Oct proteins: a brief overview
Oct proteins comprise POU domain transcription factor classes II, III
and V (Table 1). The distinction of these classes is based on
sequence similarity of the DNA-binding domain. The best-known
Oct protein is the pluripotency regulator Oct4 (Okamoto et al., 1990;
Rosner et al., 1990; Schöler et al., 1990), which together with the
related protein Sprm1 (Pou5f2) (Pearse et al., 1997), constitutes class
V. Oct4 is expressed in the early mammalian embryo and in the
germline. Within the early embryo, Oct4 is expressed in pluripotent
cells of the blastocyst inner cell mass (ICM) and epiblast, which will
eventually give rise to all the cells of the embryo proper. Oct4-
deficient embryos fail to establish pluripotency. Instead of forming
an ICM, the whole embryo differentiates into trophectoderm and
fails to develop following implantation (Nichols et al., 1998). Oct4
is also expressed in embryonic stem cells (ESCs) derived from the
ICM, and has been shown to induce reprogramming to ESC-like
induced pluripotent stem cells (iPSCs), either alone or in
combination with other factors (Takahashi and Yamanaka, 2006;
Kim et al., 2009; Zhu et al., 2010).

Class II POU domain proteins include prominent Oct proteins
such as the ubiquitously expressed Oct1 (Fletcher et al., 1987;
Sturm et al., 1987; Sturm et al., 1988) and Oct2 (Pou2f2), which is
expressed in the brain and blood (Landolfi et al., 1986; Staudt et
al., 1986; Scheidereit et al., 1987; Scheidereit et al., 1988; Staudt
et al., 1988; He et al., 1989). Oct1 and Oct2 are the most closely
related members, with more than 85% identity in the DNA-binding
domain. Another POU class II protein is Oct11 (Skn-1/Pou2f3),
which is expressed predominantly in epidermal keratinocytes and
taste receptor cells in the taste buds – two cell types that turn over
in adult mammals (Andersen et al., 1997; Matsumoto et al., 2011).
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Mammalian Oct6 (SCIP, Tst-1, Pou3f1), Brn2, Brn1 (Oct8,
Pou3f3) and Brn4 (Oct9, Pou3f4) constitute class III of the POU
family. Oct6 is expressed in ESCs, the developing brain and in
epidermis (Monuki et al., 1989; Suzuki et al., 1990; Andersen et al.,
1997). Brn2 is expressed in specific brain substructures including the
neuroendocrine hypothalamus and pituitary (Nakai et al., 1995;
Schonemann et al., 1995). Interestingly, Brn2 has been shown to
induce direct reprogramming to neuronal lineages when delivered
together with other neuronal lineage-specific transcription factors
(Pang et al., 2011). Brn2 and Oct4 are thus two POU domain
transcription factors with potent lineage reprogramming ability.

The developmental roles of Oct proteins are complex and do not
correlate in any obvious way with their degree of homology to one
another or with the POU protein class in which they are grouped.
Furthermore, it is known that some of these factors, such as Oct4,
have unique essential functions whereas others have redundant or
compensatory functions that can mask important developmental
roles. For example, Brn1 and Brn2 together, but not individually,
are crucial for the proper migration of cortical neurons and the
proper development of the mammalian neocortex (Sugitani et al.,
2002).

Oct protein regulation: interaction partners and
signal responsiveness
Recent studies have begun to reveal how Oct proteins respond to
signals and partner with other proteins to regulate target gene

transcription. Oct proteins can integrate multiple upstream signals,
which allows precise regulation of their levels, activity and
localization. These changes in Oct protein function ensure correct
developmental patterning and adult tissue homeostasis. An
example of regulated changes in Oct protein levels comes from
mammalian peri-implantation embryos. Here, loss of Oct4 is
associated with loss of pluripotency and differentiation of epiblast
cells (Nichols et al., 1998). Despite the fact that complete loss of
Oct4 abolishes pluripotency, slightly attenuated Oct4 levels have
been shown to enhance pluripotency in ESCs (Karwacki-Neisius
et al., 2013). Thus, the level of Oct4 protein can exert very fine
control over the pluripotent state. Oct protein activity can also be
regulated by upstream signals, as seen for example with Oct1 and
T lymphocytes. Oct1 has been shown to repress the gene that
encodes interleukin 2 (Il2) in naïve T cells but switches to an
activating mode upon T cell activation (Shakya et al., 2011). This
property may allow a single transcription factor to participate at
many levels in multistep developmental processes. Control of Oct
protein localization is evidenced by the interactions of both Oct4
and Oct1 with their respective upstream regulators (Table 2). Oct4
can be reversibly tethered to the nuclear periphery through
interactions with PIASγ (Pias4) (Tolkunova et al., 2007). Oct1 can
similarly reversibly associate with the nuclear periphery through
interactions with lamin B1. In this latter case association is known
to be regulated by oxidative stress, chronic overgrowth and cellular
aging (Imai et al., 1997; Malhas et al., 2009; Kang et al., 2013).
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Box 1. POU domain transcription factors

The POU family is a homeodomain subgroup characterized by the presence of a ~60 amino acid homeodomain (POUH) joined by a flexible linker
to a second, independently folded ~80 amino acid DNA-binding domain termed the POU-specific (POUS) domain (Herr et al., 1988). The two
domains make separate contacts with the DNA (Klemm et al., 1994), as illustrated (left) for Oct1 (pink) bound to DNA (gray) at the canonical
octamer DNA sequence, the 5� half of which associates with POUS (s) while the 3� half associates with POUH (h); in this case, DNA binding is
static. Oct proteins can also form dimers or higher-order structures at variants of the canonical binding site, as depicted (center) for an Oct1
homodimer bound to the alternative MORE (more octamer-related palindromic element) sequence (Remenyi et al., 2001), to which binding is
inducible by phosphorylation. The mode of multimer (e.g. Oct4) binding to sites identified in vitro by ChIP remains unknown (right), but might
be signal responsive in vivo. The combined 150-160 amino acid DNA-binding domain is the hallmark of POU proteins. The strongest single
distinguishing POU domain feature lies in the POUH recognition helix: all POU proteins contain the sequence RVWFCN, the sole exception being
the atypical POU protein HNF1α (Baumhueter et al., 1990). In non-POU proteins, the cysteine residue in this sequence is typically replaced with
a glutamine or serine. The POU DNA-binding structure is grossly similar to a complex of Hoxa9 and a cooperative binding partner, Pbx1, bound
to DNA (LaRonde-LeBlanc and Wolberger, 2003). It appears that in the course of POU protein evolution this cooperative association has been
solidified by fusing the two ancestral DNA-binding domains together.

POU proteins are expressed in patterns that vary from highly tissue-restricted to ubiquitous. Six POU protein subclasses, termed POU I through
POU VI, have been defined based on the sequence composition of the DNA-binding domain. Although POU factors recognize a continuum of
related sequences, three classes (POU I, IV and VI) do not display high affinity for the standard octamer motif and so are termed non-octamer-
binding factors. The other three classes (POU II, III and V) are termed Oct proteins because they display strong affinity for the octamer motif.
As a group, POU proteins tend to be broadly expressed early in development and become progressively more restricted as development proceeds.
In the adult, they show highly tissue-restricted expression patterns. An exception to this trend is Oct1, which appears to be the only POU protein
that is universally expressed.
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Other Oct proteins have not been afforded this level of scrutiny, but
their functions are likely to be regulated at multiple levels as well.

Many, possibly all, Oct proteins are subject to regulation through
post-translational modifications. These modifications are likely to
account for many of the changes in levels, activity and localization
described above. The two best-studied Oct proteins in this respect
are again Oct4 and Oct1, which are regulated by phosphorylation
(Segil et al., 1991; Nieto et al., 2007; Schild-Poulter et al., 2007;
Kang et al., 2009; Van Hoof et al., 2009; Kang et al., 2011;
Brumbaugh et al., 2012; Lin et al., 2012), O-GlcNAcylation
(Webster et al., 2009; Jang et al., 2012; Kang et al., 2013),
SUMOylation (Wei et al., 2007; Zhang et al., 2007) and
ubiquitylation (Xu et al., 2004; Kang et al., 2011; Kang et al.,
2013). These modifications control protein stability, their DNA
binding properties, co-factor association and tethering to the
nuclear envelope. This array of modifications is unlikely to produce
an on/off-type response, but rather a continuum of different
outputs.

Developmentally important transcription factors can be regulated
via changes in the levels or activity of partner proteins with which
they form cooperative (or sometimes antagonistic) DNA-bound

complexes. The ability to form these cooperative complexes alters
and expands the DNA sequence recognition space available to
individual factors. This paradigm applies in the case of Oct
proteins, although here the case is more unusual because POU
proteins are already in effect cooperative DNA-binding
‘complexes’ by virtue of their two independently folded DNA-
binding subdomains (Box 1). Both Oct1 and Oct4 associate with
Sox2 at DNA elements composed of ‘Oct/Sox’ composite binding
sites (Ambrosetti et al., 1997). The requirement for Sox2 in ESCs
can be eliminated by slightly elevating Oct4 expression, indicating
a fine balance of activities necessary to maintain pluripotency
(Masui et al., 2007). Recent findings suggest that Oct4 can also
bind DNA cooperatively with the related protein Sox17 at slightly
different composite elements with shorter spacing between the
DNA binding sites. These alternative sites are found in genes that
specify endoderm (Aksoy et al., 2013).

Oct4 has been shown to additionally associate with Klf4 (Wei et
al., 2009), ESRRB (van den Berg et al., 2008), Nanog (Liang et al.,
2008) and Zfp143 (Chen et al., 2008a) at different binding sites.
Oct1 has been shown to associate not only with transcription
factors such as Sox2, C/EBPβ, AP-1 (Fos), NFAT, NFκB and

Table 1. Mammalian POU transcription factors

Factor (synonyms) Gene Major known expression site(s) in mammals

Octamer-binding POU proteins (Oct proteins)
Class II

Oct1 (NF-A1, OTF-1, NF-III) Pou2f1 Ubiquitous (elevated in stem cells)
Oct2 (NF-A2) Pou2f2 Blood, brain
Oct11 (Skn-1a/i) Pou2f3 Epidermis, taste receptor cells

Class III
Oct6 (SCIP, Tst-1) Pou3f1 Early embryo, brain (Schwann cells), PNS, testes, skin
Oct7 (Brn2, N-Oct3) Pou3f2 Brain (endocrine hypothalamus, pituitary)
Oct8 (Brn1) Pou3f3 Brain
Oct9 (Brn4) Pou3f4 Brain (hypothalamus, hippocampus), inner ear, pancreas

Class V
Oct4 (Oct3) Pou5f1 Early embryo (and derived ESCs), primordial germ cells, germline
Sprm1 Pou5f2 Developing spermatids

Non-octamer-binding POU proteins
Class I

Pit1 (GHF-1) Pou1f1 Pituitary
Class IV

Brn3a (Brn-3.0) Pou4f1 Brain (sensory ganglia), retina
Brn3b (Brn-3.2) Pou4f2 Brain (retinal ganglia)
Brn3c (Brn-3.1) Pou4f3 Inner ear hair cells, retina

Class VI
Brn5 Pou6f1 CNS

Atypical
HNF1α Hnf1a Liver

CNS, central nervous system; PNS, peripheral nervous system.  

 
Table 2. Oct4 and Oct1 upstream protein regulators known to alter function 

Activity Known interaction partners Function References 

PIAS  (Pias4) Oct4 Tethering to nuclear periphery, inhibition 
of Oct4 activity 

Tolkunova et al., 2007 

Ubc9 (Ube2i) Oct4 SUMOylation, stabilization and increase in 
activity 

Wei et al., 2007; Zhang et al., 2007 

Wwp2 Oct4 Ubiquitylation, degradation Xu et al., 2004 
Lamin B1 Oct1 Tethering to nuclear periphery and mitotic 

structures, oxidative stress response 
Imai et al., 1997; Malhas et al., 2009; 

Kang et al., 2011; Kang et al., 2013 
NEK6 Oct1 Phosphorylation and inhibition of DNA 

binding during mitosis 
Kang et al., 2011 

OGT Oct1 and Oct4 O-GlcNAcylation blocks Oct1 association 
with lamin B1 and tethering to the 
nuclear periphery; O-GlcNAcylation 
regulates Oct4 transcriptional activity 

Jang et al., 2012; Kang et al., 2013 
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glucocorticoid receptor (Li-Weber et al., 1998; Préfontaine et al.,
1999; Belsham and Mellon, 2000; Hatada et al., 2000; van Heel et
al., 2002), but also with itself and with other Oct proteins such as
Oct2 and Oct6 to form homodimeric, heterodimeric and higher-
order complexes (Verrijzer et al., 1992; Reményi et al., 2001).
Interestingly, the ability to form these complexes can be controlled
by phosphorylation of Oct proteins at specific sites in the DNA-
binding domain (Nieto et al., 2007; Kang et al., 2009). Co-incident
Oct1 and Oct4 binding has been described for a specific subset of
Oct4 targets in ESCs. In some cases, sequential chromatin
immunoprecipitation (ChIP) indicates that binding occurs
simultaneously at the same DNA site (Ferraris et al., 2011). These
binding events might therefore be sites of Oct1/Oct4 heterodimer
or higher-order complex formation. Much more work will be
required to fully understand the interplay between different Oct
proteins at their binding sites in different tissues and developmental
stages.

Table 3 shows some of the proteins known to mediate the
downstream functions of Oct4 or Oct1. These co-factors can act
positively, combining with the Oct protein to activate gene
expression, or alternatively they may have inhibitory effects. For
example, general transcription factors may play an activating role
when the Oct protein-binding site in the DNA is exceptionally
close to the core promoter, as has been shown for Oct1 (Nakshatri
et al., 1995; Inamoto et al., 1997; Bertolino and Singh, 2002). Paf1,
Wdr5 and XPC have all been identified as positive co-factors,
interacting with Oct4 to maintain pluripotency in ESCs
(Ponnusamy et al., 2009; Ang et al., 2011; Fong et al., 2011).
Although the mechanisms are not always clear, these co-factors
colocalize with Oct4 at specific target genes and help Oct4 mediate
its positive transcriptional functions. By contrast, SETDB1 (ESET),
a histone H3K9 methyltransferase, associates with Oct4 to repress
target gene expression (Yeap et al., 2009; Yuan et al., 2009).
NuRD, a multi-subunit complex with nucleosome remodeling and
histone deacetylase activity, is another repressive activity known to
associate with Oct4 (Liang et al., 2008). Interestingly, three
separate studies have identified proteins that physically interact
with Oct4 using mass spectroscopy (Pardo et al., 2010; van den
Berg et al., 2010; Ding et al., 2012) but only a small number of the
proteins (18/263) overlap between the three studies. It is not clear
how many of these are direct rather than indirect Oct4 interaction
partners, but among the 18 proteins are subunits of NuRD. Oct1
also interacts robustly with NuRD to repress target genes (Shakya

et al., 2011). When Oct1 changes to an activating mode, it
associates with KDM3A (Jmjd1a), a histone lysine demethylase
that removes inhibitory histone marks (Shakya et al., 2011).
Upstream signaling through the MEK/ERK pathway mediates Oct1
switching between NuRD and KDM3A to regulate the expression
of target genes such as Il2 and Cdx2 (Shakya et al., 2011).

Despite the identification of numerous Oct-interacting proteins,
there are still fundamental unresolved questions concerning the
mechanisms that underlie the differential utilization of Oct co-
factors and regulators. Most of the work in this area has involved
Oct4 or Oct1, and it is not clear which of these mechanisms can be
generalized to all or part of the Oct protein family. Crucially, with
the exception of the Oct1 example provided above, it is still unclear
how the same Oct protein is able to switch between activating and
repressive states. Post-translational modifications, as well as the
specific complexes formed between the Oct protein and other
DNA-binding proteins, may determine the recruited effector
protein(s) and thus the transcriptional output.

Modes of transcriptional regulation and gene
poising by Oct proteins
Oct targets can be placed into three broad categories: (1) positive
targets that are actively expressed; (2) positive targets that are
transcriptionally silent; and (3) negative (repressed) targets (Fig. 1).
For those targets in category 2, the Oct protein or proteins maintain
epigenetically ‘poised’ gene expression states: situations in which
a target gene is silent but readily inducible upon reception of the
appropriate developmental cues.

Oct4 provides examples of all three classes. Category 1 Oct4
targets in ESCs include active pluripotency genes such as Nanog.
Oct4 also positively regulates its own gene (Pou5f1). Nanog, Oct4
and a small number of other proteins form what is termed the ‘core
pluripotency network’, which is required to maintain pluripotency.
Their expression is maintained not only by Oct4 but also by other
proteins encoded in the network such as Nanog and Sox2 (Boyer
et al., 2005; Rodda et al., 2005). In addition to the core
pluripotency network, a larger number of additional category 1
Oct4 targets encode constitutively expressed proteins such as
histones and metabolic enzymes (Chen et al., 2008b). Category 3
Oct4 targets include Cdx2, which is actively repressed by Oct4 and
is silent in ESCs (Yeap et al., 2009; Yuan et al., 2009). Finally,
hundreds of developmentally poised category 2 Oct4 targets are
silent in ESCs but become activated in different developing tissues,

PRIMER Development 140 (14)

 
Table 3. Mediators of downstream Oct protein activity 

Activity Known interaction partners Function References 

Wdr5 Oct4 Transcriptional co-activator van den Berg et al., 2010; Ang et al., 
2011 

XPC Oct4 Co-activator for Oct4/Sox2 complexes Fong et al., 2011 
Paf1 (PD2) Oct4 Transcriptional activation Ponnusamy et al., 2009 
SETDB1 (ESET) Oct4 Methylates histone H3K9, represses gene 

activity 
Yeap et al., 2009; Yuan et al., 2009 

NuRD Oct4 and Oct1 Deacetylates nucleosomes and mediates 
transcriptional repression 

Liang et al., 2008; Shakya et al., 2011 

OCA-B (Pou2af1, OBF-1) Oct1 and Oct2 B cells and activated T cells, transcriptional 
activation 

Kim et al., 1996; Schubart et al., 1996; 
Zwilling et al., 1997 

SNAPc Oct1 Activation of U snRNA transcription Ford et al., 1998 
OCA-S Oct1 Activation of S phase-specific transcription Zheng et al., 2003 
TBP, TFIIB and TFIIH Oct1 General transcription factors, 

transcriptional activation 
Nakshatri et al., 1995; Inamoto et al., 

1997; Bertolino and Singh, 2002 
KDM3A (Jmjd1a) Oct1 Histone H3K9 demethylation and 

transcriptional derepression 
Shakya et al., 2011 

Not included are the many transcription factors documented to engage in cooperative interactions with Oct proteins when both associate with proximal binding motifs. 
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e.g. Hoxa5, Hoxc6, Pax6, Otx2, Gata2 and Pou4f1 (Brn3a)
(Bernstein et al., 2006; Chen et al., 2008b). They often encode
tissue-specific, lineage-instructive transcription factors. In ESCs,
category 2 genes are characterized by a chromatin state free of
DNA methylation and containing both activating and repressive
histone marks (Bernstein et al., 2006; Meissner et al., 2008). These

genes are rapidly induced if differentiating cells encounter the
appropriate developmental cues, or become stably repressed if cells
proceed down other developmental trajectories. Oct4 is not only
expressed in ESCs but also in primordial germ cells and
spermatogonial stem cells (Rosner et al., 1990; Kehler et al., 2004).
It is possible that Oct4 associates with the same category 2 genes
in these cells as well, and thus the activity of Oct4 might be a
unifying feature of totipotent/pluripotent stem cells of both the
germline and embryo. It is difficult to test mechanistically the
poising function of Oct4 in ESCs because of its simultaneous role
in maintaining the pluripotency network. Ablating Oct4 in ESCs
causes the network to collapse and ESCs to differentiate.
Nevertheless, the strong correlation between Oct4 binding to these
targets and their poised configuration strongly suggests that Oct4
is executing a poising function. These findings regarding Oct4
target loci in ESCs highlight the importance of distinguishing
between silent repressed targets (in which active repression is
taking place) and silent poised targets (in which the molecular
action of the Oct protein at the target is presumably positive,
Fig. 1). Simple evaluation of target gene expression levels is
inadequate for this task. Instead, the presence of particular co-
factors and the status of local chromatin (Fig. 1) at the target need
to be determined.

Other Oct protein family members also mediate different target
gene expression states. Oct1 has been directly implicated in gene
poising at the Il2 locus in resting but previously stimulated CD4 T
cells (Shakya et al., 2011). In this study it was found that, within
6 hours of naïve CD4 T cell stimulation, Oct1 switches Il2 from a
repressive (category 1) to a poising (category 2) state. Switching
was dependent on MAP kinase signals, indicating that Oct proteins
can rapidly switch the manner in which they regulate target genes
in response to upstream signals. After withdrawal of the initial
stimulus and attenuation of Il2 expression, Oct1 blocked the
complete repression of this locus, maintaining it in a poised state
such that the cells responded more quickly and with greatly
augmented Il2 expression upon reactivation (Shakya et al., 2011).
This ‘anti-repression’ is achieved via an interaction of Oct1 with
the chromatin-modifying protein KDM3A, which opposes
inhibitory histone methylation of the Il2 promoter.

Mammalian ESCs co-express Oct4 with Oct1 and Oct6
(Okamoto et al., 1990; Rosner et al., 1990; Schöler, 1991). Oct1
co-occupies many of the same poised developmental Oct4 targets
but not the active pluripotency Oct4 targets (Ferraris et al., 2011).
Oct6 binding to endogenous target genes has not been tested. It is
unclear whether Oct1 or Oct6 is also involved in poising
developmental genes in ESCs and pluripotent cells of the embryo.

Indirect evidence implicates three other mammalian Oct
proteins, Oct2, Brn2 and Brn4, in gene poising. Although Oct2 is
increasingly expressed throughout adult B cell development, Oct2-
deficient B cells mature normally. Instead, mature B cells manifest
multiple defects upon activation, including poor proliferation and
poor terminal differentiation to plasma cells (Corcoran et al., 1993;
Corcoran and Karvelas, 1994; Emslie et al., 2008). These results
are consistent with a gene poising role of Oct2 during B cell
development in a manner that might be conceptually and
mechanistically similar to Oct1, its closest paralog. Similarly, the
POU III Oct protein Brn2 is expressed throughout mammalian
neuroendocrine hypothalamic development, but in the null
condition defects only manifest during terminal differentiation
(Nakai et al., 1995; Schonemann et al., 1995). It is therefore
possible that Brn2 is also involved in poising specific targets at the
earlier developmental stages, with the phenotype manifesting only

A  Gene activation 
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B  Gene poising (anti-repression) 
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Nucleosome

POUS 

POUH 

POUS 
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POUH 
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Fig. 1. Modes of Oct protein transcriptional regulation. The binding
of Oct protein (green) to a target gene depends on the presence of a
sequence-specific binding site (gray rectangle) and involves the POUH
and POUS domains (light green) within the Oct protein, which are
connected via a linker sequence (see Box 1). (A) Gene activation. The Oct
protein activates the expression of its target genes (green arrows) either
directly by promoting the assembly of a transcription complex at the
promoter or indirectly by acting through the nucleosomes (pink). In the
latter case, the Oct protein interacts with co-factors (blue) to deposit
positively acting chromatin modifications (small green circles) or to
remove repressive marks (small red circles). ATP-dependent chromatin
remodeling may also be employed (not shown). Active gene expression
(black arrow on the DNA) is typically associated with promoter DNA that
is free of cytosine methylation (white circles). (B) Poising of
transcriptionally silent genes. Targets genes of Oct1 and Oct4, and
perhaps other Oct proteins, can be transcriptionally silent (red X) but
epigenetically poised to rapidly initiate expression upon reception of the
correct developmental cues. Present evidence indicates that the Oct
protein mechanism in gene poising is positive, removing repressive
modifications. The effect of chromatin on gene expression can be
differentiated from that in A because a mixture of positively and
negatively acting modifications is present (simultaneous green and red
arrows). These genes typically lack DNA methylation (white circles). 
(C) Gene repression. In this case, the Oct protein recruits co-repressor
activities that remove activating marks or deposit repressive marks on the
chromatin to repress gene transcription (red arrow). These genes are
typified by a high degree of promoter DNA methylation (black circles).
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when critical target genes need to be properly induced. In the
developing brain, another POU III Oct protein, Brn4, is widely
expressed in the ventricular zone, including in striatal stem and
progenitor cells. However, depletion of Brn4 specifically reduces
the number of differentiated neurons (Shimazaki et al., 1999).
These findings are also consistent with a model in which Brn4
poises key targets at earlier developmental stages. These
possibilities await formal testing through assessment of the
chromatin at target genes and careful measurement of gene
induction following manipulation of these activities. In summary,
it is possible that many Oct proteins mediate poised chromatin
states at subsets of their targets.

Oct proteins and somatic stem cells
Pluripotent and somatic stem cells are critically dependent on
poised gene expression states for proper function. Stem cells also
frequently (but not uniformly) show properties such as a glycolytic
metabolic signature, relative resistance to oxidative and genotoxic
stress, and the ability to divide asymmetrically. Interestingly, both
Oct4 and Oct1 regulate target genes involved in core carbon
metabolism (Chen et al., 2008b; Shakya et al., 2009). Higher
levels of Oct1 promote both stress resistance (Tantin et al., 2005)
and a glycolytic metabolic profile associated with cellular
transformation (Shakya et al., 2009). The metabolic and stress
response phenotypes suggest that Oct1 might regulate functions
associated with stem cells. Recent results show that Oct1 is highly
expressed in the stem cell compartments of the gastrointestinal and
blood systems and that Oct1 promotes multiple phenotypes
associated with stem cell function, such as hematopoietic
engraftment ability (Maddox et al., 2012). These results strongly

suggest that Oct1 regulates stem cell function in a range of tissue-
specific contexts.

Apart from Oct1 and Oct4, there is tantalizing but tangential
evidence that other Oct proteins regulate the stem cell phenotype.
As mentioned above, the mammalian Oct2, Brn2 and Brn4 loss-of-
function phenotypes are consistent with a role in gene poising in
progenitor/stem cell compartments. Other evidence comes from
non-mouse models. A summary of POU proteins in three common
non-mammalian model organisms, Drosophila melanogaster,
Caenorhabditis elegans and Danio rerio, is shown in Table 4.
There are five Drosophila POU proteins (Table 4). Two of these,
Pdm1 (Nubbin – FlyBase) and Pdm2, are Oct proteins belonging
to POU class II, the same group in which mammalian Oct1, Oct2
and Oct11 are found. Pdm1 and Pdm2 are required to maintain
self-renewing asymmetric divisions in neuronal progenitor cells
and therefore to generate post-mitotic daughter neurons (Bhat and
Apsel, 2004). Interestingly, a specifically phosphorylated form of
mammalian Oct1 localizes to mitotic structures, such as spindle
pole bodies and the midbody, in symmetrically dividing HeLa and
fibroblast cells (Kang et al., 2011). The mechanism underlying this
function of Pdm1/2, and the potential role of Oct1 modification in
asymmetrically dividing cells, have not been tested.

Relatively little is known about the role of zebrafish Oct proteins
in stem cells and development (Box 2). The best studied is Pou5f1
(Pou2, Pou5f3), which shares similarities with mammalian Oct4,
although both the expression patterns and development defects
associated with its inactivation suggest a different mechanism and
function for Pou5f1. Further studies of zebrafish Oct proteins are
needed to better understand their diverse mechanisms and
functions. In addition to those listed in Table 4, there are published
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Table 4. POU domain proteins in three common model organisms 

Organism (no. of 
known examples*) 

Mammalian class/ 
       ortholog Mutant phenotype References 

C. elegans (3) 
UNC-86 POU IV family Neuroblast differentiation, asymmetric division Finney et al., 1988 
CEH-6 POU III family Neuronal, rectal epithelial, excretory cell Burglin and Ruvkun, 2001 
CEH-18 POU II family Oocyte meiotic prophase arrest Greenstein et al., 1994 

D. melanogaster (5) 
Pdm1 (Nub) POU II family Wing hinge, wing sensory bristles, CNS asymmetric 

division 
Ng et al., 1995; Neumann and Cohen, 

1998; Bhat and Apsel, 2004 
Pdm2 (Miti) POU II family Neuroblast differentiation, CNS asymmetric division Yang et al., 1993; Bhat and Apsel, 2004 
Pdm3 POU VI family Olfactory neuron axon targeting and receptor gene 

expression 
Tichy et al., 2008 

Cf1a (Vvl, Drifter) POU III family Trachea, glia migration, wing veins Certel and Thor, 2004 
Acj6 (I-POU) POU IV family Olfactory neuron receptor gene expression McKenna et al., 1989; Ayer and Carlson, 

1991; Clyne et al., 1999 
D. rerio (12) 

Pou1f1 Pit1 Untested  
Pou2f1a/b Oct1 Untested  
Pou3f1 Oct6 Untested  
Pou3f2 Oct7 Untested  
Pou3f3a/b Oct8 (Brn1) Untested  
Pou4f1 Brn3a Untested  
Pou4f2 Brn3b Untested  
Pou4f3 Brn3c Untested  
Pou5f1 (Pou2‡) Oct4 Late-phase epiboly microtubule and F-actin defects 

downstream of defective Egf expression, somites, 
notochord, endoderm; midbrain and hindbrain 
specification 

Belting et al., 2001; Burgess et al., 2002; 
Lachnit et al., 2008; Onichtchouk, 2012; 
Song et al., 2013 

Pou6f1 Brn5 Untested  

*Based on the 'POU domain' annotation in the UCSC genome browser (http://genome.ucsc.edu/) and/or annotation in the literature. Information on Danio rerio might 
not be complete. 
‡Pou2, which refers to a class V Oct protein, and class II factors such as Pou2f1 are not to be confused. 
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studies of Oct proteins from a number of other organisms (e.g.
Xenopus, fugu, medaka, axotoxl, opossum). Most of this work
involves comparative analysis of Oct4 orthologs and is beyond the
scope of this Primer. Work on other Oct proteins in these organisms
largely awaits investigation.

Not all Oct proteins are likely to promote stem cell phenotypes.
Some Oct proteins could antagonize stem cell phenotypes by
opposing other Oct proteins, for example by competitive binding
and/or through differential transcriptional regulatory mechanisms.
One interesting example comes from mammalian brain
development and POU class III Oct proteins. In neural progenitor
cells of the forebrain and midbrain the members of this class –
Oct6, Brn2, Brn1 and Brn4 – all associate with an Otx2 upstream
enhancer. By contrast, an antagonistic transcription factor, Gbx2,
associates and represses this locus in hindbrain (Inoue et al., 2012).
These results reveal a complex interplay between multiple Oct
proteins and other factors at a single enhancer binding site. Also,
different isoforms expressed from the same gene locus can oppose
other isoforms; for example, different Oct2 isoforms appear to play
opposing roles in the neuronal differentiation of ESCs (Theodorou
et al., 2009).

Oct proteins in development and stem cells: an
interim conclusion
Oct protein research should be spurred on by the impressive
findings of the last 10 years regarding Oct4. Nevertheless, many
unanswered questions remain regarding their mechanisms of
action and developmental functions. Importantly, the great
majority of zebrafish Oct proteins remain completely
uncharacterized. These issues are best addressed by leveraging
new molecular tools that enable a better understanding of the
target genes and regulatory mechanisms utilized by Oct proteins.
Powerful new methods for ablating specific genes in zebrafish

can be applied to manipulate Oct proteins. For many of the
mammalian family members, conditional knockout alleles have
not been constructed. The ability to ablate the activity of different
factors in a given cell type and in a temporally controlled fashion
will help to further elucidate the developmental roles of these
important transcription factors.

Based on the prior work in this field, the results of future
investigations are likely to be complex but also enlightening. One
specific area of focus will be gene poising by Oct proteins and how
this mechanism enables their different roles in pluripotent stem cell,
somatic stem cell and progenitor cell compartments. The fact that
Oct proteins are implicated in gene poising could complicate the
interpretation of their function during development. A specific
expression or DNA binding pattern may only partially indicate
function, as the protein might be poising critical target genes that
become activated at later developmental stages. Therefore,
investigations of developmental phenotypes associated with Oct
proteins in different model organisms and developmental
paradigms must go hand-in-hand with advances in understanding
the mechanisms by which these proteins function.
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