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Cell polarity: models and mechanisms from yeast, worms and

flies

Barry J. Thompson*

Summary

Determinants of cell polarity orient the behaviour of many cell
types during development. Pioneering genetic screens in yeast,
worms and flies have identified key polarity determinants that
are evolutionarily conserved across the animal kingdom. Recent
work in these three model organisms has combined computer
modelling with experimental analysis to reveal the molecular
mechanisms that drive the polarisation of determinants. Two key
principles have emerged: the first is the requirement for a
positive-feedback loop to drive self-recruitment of determinants
to the plasma membrane; the second is the requirement for
mutual antagonism between determinants that localise to
opposite ends of the cell.
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Introduction

Cell polarity is a fundamental feature of almost all cells. Different
cell types employ polarity to orient their behaviour in a variety of
different ways. For example, cells of an epithelial sheet display
both apico-basal and planar polarity, while migrating mesenchymal
cells have a clear front-to-back organisation. At one extreme are
highly polarised neurons with clearly segregated dendritic and
axonal domains; at the other are round cells, such as those in
budding yeast, that display obvious polarity only during certain
phases of their life cycle. However polarity is manifested, cells rely
on molecular polarity determinants (see Glossary, Box 1) that
localise to specific domains of the plasma membrane and then act
to polarise the action of other cellular systems (Etienne-Manneville
and Hall, 2002; Mellman and Nelson, 2008; Knoblich, 2010; St
Johnston and Ahringer, 2010; Goodrich and Strutt, 2011;
McCaffrey and Macara, 2011; Vichas and Zallen, 2011). These
polarity determinants can orient a whole host of cellular functions,
such as cell shape, cell adhesion, cell migration, cell division, cell
fate determination, and the uptake and release of molecules. Yet,
how polarity determinants manage to organise their own polarised
locations within cells remains a major unsolved problem.

One key feature of polarity determinants is their ability to
respond to extracellular cues from neighbouring cells or from the
environment. Such cues can guide the localisation of these proteins
to orient cell behaviour. However, polarity determinants can also
become polarised in the absence of any external cues, indicating
that their localisation can be determined simply by an intrinsic
ability to polarise spontaneously.

The molecular mechanisms that confer these special abilities
upon polarity determinants are now beginning to be revealed
through a combination of computer modelling with experimental
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testing of hypotheses. This review summarises early breakthroughs
with this approach from the yeast Saccharomyces cerevisiae, the
worm Caenorhabditis elegans and the fly Drosophila
melanogaster.

Cell polarity in budding yeast

S. cerevisiae are symmetrical cells that become polarised in order
to undergo asymmetric cell division, a process known as ‘budding’
(reviewed by Slaughter et al., 2009). The mother cell divides by
producing a small bud that grows into a daughter cell and then
detaches after cytokinesis by hydrolysis of the cell wall. Just prior
to budding, the cytoskeleton and membrane trafficking machinery
become polarised in order to deliver cargo selectively into the bud,
promoting growth of the daughter cell. The master regulator of cell
polarity in budding yeast is the small GTPase Cdc42 (cell division
control protein 42), which was discovered in genetic screens for
mutants with defects in the cell division cycle (Adams et al., 1990).
Loss of Cdc42 activity causes cells to grow without budding, so
that they arrest as large symmetric cells (Adams et al., 1990). In
addition, loss of Cdc42 disrupts another polarised process, known
as ‘shmoo’ formation, which occurs during yeast cell mating
(Adams et al., 1990).

The Cdc42 protein contains a C-terminal CAAX-linked
Geranylgeranyl membrane anchor and is uniformly distributed
around the plasma membrane in symmetric interphase cells, as well
as being present in the cytoplasm. When yeast cells initiate cell
division, Cdc42 polarises to a single plasma membrane domain that
defines the site of the future bud (reviewed by Slaughter et al.,
2009; Johnson et al., 2011) (Fig. 1A). Although Cdc42 can be
oriented by cues, such as the ‘bud scar’ from previous divisions
(Chant and Herskowitz, 1991), it can spontaneously polarise in the

Box 1. Glossary

Cooperativity. The tendency of a molecule to increase its activity
non-linearly according to its concentration.

Mutual antagonism. The ability of two sets of molecules to inhibit
the activity or localisation of one another.

Non-linearity. A process whose output is not directly proportional
to its input. For example, an equation that depends on the
concentration of a factor raised to the power of 2 or 3.

Polarity cue. An extracellular signal that orients the direction of
polarity but is not necessarily essential for polarization.

Polarity determinant. An intracellular or transmembrane molecule
that is localised in a polarized manner and is essential for polarity.
Positive feedback. Self-reinforcing loop in which the mathematical
sign of the net gain around the feedback loop is positive: input ‘A’
produces more of ‘A’. This is a process in which a small disturbance
of the system can induce an increase in the magnitude of the
perturbation.

Self-recruitment. The tendency of a molecule to localise to the
position at which it is already most concentrated. This is one type
of positive-feedback loop.
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Fig. 1. Cell polarity in budding yeast, the worm zygote and the fly follicular epithelium. (A-E) The localisation of polarity determinants
(A,C,E) and the domain structure and interactions between determinants (B,D,F) are shown for budding yeast (A,B), worm zygotes (C,D) and fly
epithelia (E,F). aPKC, atypical protein kinase C; Baz, Bazooka; Bem1, bud emergence mediator 1; Cdc/CDC, cell division control protein; CR1/CR3,
conserved region 1/3; CRIB, Cdc42/Rac interactive binding domain; Dlg, Discs large; Ex, Expanded; FERM, 4.1 protein, Ezrin, Radixin, Moesin; GUK,
guanylate kinase domain; KA, kinase-associated domain; L27, Lin2 and Lin7 domain; Lgl/LGL, lethal giant larvae; Mer, Merlin; P, phosphorylation
site; PAR/Par, partitioning defective; PATJ, PALS1-associated TJ protein; PB1, Phox and Bem1 domain; PDZ, post-synaptic density protein (PSD95),
Drosophila discs large tumour suppressor (DIg1) and zona occludens 1 protein (ZO1); Scrib, Scribbled; SH3, Src homology 3; UBA, ubiquitin-

associated domain.

absence of these cues to a single site with a random orientation;
budding proceeds normally from that site (Irazoqui et al., 2003).
Insights into how Cdc42 can break symmetry to become polarised
have come from a combination of mechanistic studies identifying
Cdc42-interacting proteins that are essential for polarity and from
computer modelling of Cdc42 polarisation.

Mechanistically, the spontaneous polarisation of Cdc42 does not
require microtubules or F-actin, indicating that Cdc42 can act
upstream of the polarisation of the cytoskeleton (Irazoqui et al.,
2003). However, Cdc42 polarisation does require the PB1 (Phox
and Bem1 domain) domain-containing GTP exchange factor (GEF)
Cdc24, which induces GTP loading of Cdc42, and several effector
proteins for Cdc42, including the Pak-family kinases Cla4 and
Ste20 (sterile 20), which act redundantly (Gulli et al., 2000; Bose
et al., 2001; Kozubowski et al., 2008), and the SH3 (Src homology
3) domain- and PB1 domain-containing scaffold protein Beml
(bud emergence mediator 1) (Chenevert et al., 1992; Irazoqui et al.,
2003), which binds to Cdc42, Cla4, Cdc24 and other proteins

(Peterson et al., 1994; Zheng et al., 1995; Bose et al., 2001;
Kozubowski et al., 2008; Slaughter et al., 2009) (Fig. 1B). These
results show that a GEF-Cdc42-scaffold-kinase complex has an
intrinsic ability to polarise spontaneously in budding yeast, but do
not provide an answer as to how this occurs. Understanding how
such a complex can polarise has required the use of computer
models of cell polarity.

Mathematical and computational models have been crucial for
establishing the notion that positive-feedback loops (see Glossary,
Box 1) can promote polarisation of polarity determinants in various
contexts. Early mathematical models made use of positive-
feedback loops and a variety of other abstract concepts from
mathematics and physics to generate patterns of different kinds
(Turing, 1952; Gierer and Meinhardt, 1972; Meinhardt and Gierer,
2000). These early models have inspired more recent efforts to
combine equation-based computer modelling of polarity
determinants with experimental approaches to understand cell
polarity (reviewed by Mogilner et al., 2012).
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Altschuler et al. modelled spontaneous polarisation of Cdc42
molecules that localise either to the plasma membrane or in a
homogeneous cytoplasmic pool (Altschuler et al., 2008). The
homogeneity of the cytoplasm allows the plasma membrane to be
simulated as a one-dimensional line, along which Cdc42 molecules
can diffuse and appear on/disappear from as they bind/unbind the
plasma membrane (Altschuler et al., 2008) (Fig. 2). Polarisation is
achieved via a simple positive-feedback loop in which the on rate
of Cdc42 from the cytoplasm to a particular region of the plasma
membrane depends linearly on the concentration of Cdc4?2 already
present at that point on the membrane (Altschuler et al., 2008)
(Fig. 2). Polarity in this model is unstable and the model only
polarises with relatively few (~200) molecules in the cell.
Interestingly, a more-detailed model, in which Cdc42 self-recruits
(see Glossary, Box 1) in a cooperative nonlinear fashion, can
polarise in the presence of larger numbers of molecules (Goryachev
and Pokhilko, 2008); non-linearity (see Glossary, Box 1) is a
common feature of many models of polarity in different cell types
(Jilkine and Edelstein-Keshet, 2011; Mogilner et al., 2012).

Together, the experimental data and computer modelling suggest
that the GEF-Cdc42-scaffold-kinase complex self-recruits to the
plasma membrane to polarise spontaneously in budding yeast
(Altschuler et al., 2008; Goryachev and Pokhilko, 2008;
Kozubowski et al., 2008). How, at the molecular level, one of these
complexes promotes recruitment of the next remains to be explored
(Johnson et al., 2011). These explorations should keep in mind one
complication, which is that this rapid Bem1-mediated polarisation
of Cdc42 acts redundantly with a second, slower, mechanism of
Cdc42 polarisation that involves polarisation of the actin
cytoskeleton itself, but whose mechanistic details are still unclear
(Wedlich-Soldner et al., 2004; Johnson et al., 2011; Layton et al.,
2011). Interestingly, computer modelling by Brandman et al.
(Brandman et al., 2005) suggests that redundant, but interlinked,
fast and slow positive-feedback loops may help ensure the
robustness of polarisation. Thus, actin-dependent polarisation of
Cdc42 may be a second level of positive feedback that is
superimposed upon the first level to stabilise polarity in yeast
(Slaughter et al., 2009). Finally, recent work has combined
computer modelling with experiments to suggest that a negative-
feedback loop exists that mediates competition between initial
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clusters of Cdc42 so that a single polarised domain emerges in a
robust fashion (Howell et al., 2009; Howell et al., 2012).

Many of the discoveries made in yeast that have been highlighted
above are also important for cell polarity in other organisms. In
particular, analyses in worms and flies have confirmed that principles
identified in yeast also apply in multicellular organisms, and have
identified new molecules and mechanisms that are necessary to
mediate cell polarity in animals. These are reviewed below.

Cell polarity in the C. elegans zygote

The C. elegans egg is initially symmetrical along the anterior-
posterior axis, but becomes polarised after fertilisation, an event
that also triggers the first cell division, which is therefore an
asymmetric one (reviewed by St Johnston and Ahringer, 2010)
(Fig. 1C). The entry of the sperm provides the second of each
chromosome pair and a pair of centrioles to initiate the cell cycle.
The position of the sperm centrosome provides a cue that orients
the cell by defining the posterior pole in the one-cell zygote. How
the sperm centrosome acts as a polarity cue (see Glossary, Box 1)
is still not fully understood, as there appear to be multiple
redundant mechanisms at work (Cowan and Hyman, 2007; Zonies
et al., 2010; Motegi et al., 2011). Nevertheless, the key polarity
determinants that respond to these early signals and maintain
polarity were discovered in pioneering genetic screens for mutants
that affect the asymmetric partitioning of granules during the first
cell division (Kemphues et al., 1988). The genes identified were
named ‘partitioning defective’ (PAR) genes.

The PAR proteins were found to localise to one or the other pole
of the zygote (reviewed by Suzuki and Ohno, 2006) (Fig. 1C).
PAR-1 is a kinase (Guo and Kemphues, 1995) and PAR-2 is a
RING domain protein (Boyd et al., 1996); both localise to the
posterior of the zygote along with the lethal giant larvae (LGL)
protein (Hoege et al., 2010), named after its Drosophila homologue
(see below) (Fig. 1D). PAR-3 (Etemad-Moghadam et al., 1995),
called Bazooka (Baz) in Drosophila, is a multiple PDZ-domain
protein that forms a complex with another PDZ-domain protein,
PAR-6, atypical protein kinase C (aPKC) and Cdc42 at the anterior
pole of the zygote (Watts et al., 1996; Izumi et al., 1998; Joberty et
al., 2000; Lin et al., 2000; Gotta et al., 2001; Welchman et al.,
2007; Li et al., 2010) (Fig. 1D).
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Fig. 2. Comparison of computational models of cell polarity in budding yeast, the worm zygote and the fly follicular epithelium. For
each of the three different computational models (yeast, Altschuler et al., 2008; C. elegans, Goehring et al., 2011; D. melanogaster, Fletcher et al.,
2012), a schematic summary diagram of the basic components of the model is shown. Simulated polarity determinants are shown as red or green
dots that can diffuse along a simulated one-dimensional membrane. Binding and unbinding the plasma membrane from a cytoplasmic pool is
determined by kon and ko rates, by positive feedback loops of self-recruitment to the point of highest concentration, and/or by mutual
antagonism between red and green determinants. The outcome of each polarity model is shown in the simulated cells below (circular for yeast or
worm zygote, rectangular for epithelial cells). Either positive feedback or non-linearity is required for polarisation in each of the models.



16 REVIEW

Development 140 (1)

Loss of the anterior PAR-3 complex causes the posterior polarity
determinants to spread abnormally around the entire plasma
membrane (see Gotta et al., 2001). Conversely, loss of the posterior
LGL/PAR-2/PAR-1 complex causes aberrant spreading of anterior
determinants around the entire plasma membrane (see Motegi et
al.,, 2011). These findings indicate that anterior and posterior
polarity determinants act in a mutually antagonistic manner to
exclude one another from the plasma membrane (reviewed by
Suzuki and Ohno, 2006; St Johnston and Ahringer, 2010).
Following on from work in Drosophila (see below), mutual
antagonism (see Glossary, Box 1) between anterior and posterior
polarity determinants appears to involve aPKC-mediated
phosphorylation of LGL, PAR-1 and PAR-2 (Hurov et al., 2004,
Hoege et al., 2010; Motegi et al., 2011), and PAR-1-mediated
phosphorylation of PAR-3 (Cuenca et al., 2003; Motegi et al.,
2011) — phosphorylation events that are thought to inhibit plasma
membrane association directly (Betschinger et al., 2005; Krahn et
al., 2010b; Motegi et al., 2011) (Fig. 3). Curiously, the aPKC
phosphorylation sites in LGL are required not only to remove it
from the anterior plasma membrane, but also for the function of
LGL in removing anterior PARs from the posterior membrane
(Hoege et al., 2010). This led to the proposal that an interaction
between anterior and posterior polarity complexes at the border
between these two domains leads to mutual elimination of the two
complexes from the plasma membrane (Fig. 3) (Hoege et al.,
2010).

Whether the principle of mutual antagonism between two groups
of polarity determinants is sufficient to explain how they polarise
to opposite ends of the cell requires testing with computer models.
Goehring et al. devised a model of mutual antagonism between
anterior and posterior determinants in the zygote (Goehring et al.,
2011). In this model, determinants can localise either to the plasma
membrane, simulated as a one-dimensional line upon which they
can diffuse, or in a homogeneous cytoplasmic pool, similar to the
yeast models (Altschuler et al., 2008; Goryachev and Pokhilko,
2008; Goehring et al., 2011; Mogilner et al., 2012) (Fig. 2).
Surprisingly, providing two different determinants with the ability
to antagonise the membrane association of the other was not
sufficient for generating polarity (Goehring et al., 2011).
Polarisation was achieved only by the addition of cooperativity (see
Glossary, Box 1), a mathematical function in which the strength of
antagonism increased in a non-linear fashion with the concentration
of each determinant at the plasma membrane (Goehring et al.,
2011). The requirement for non-linearity in this model appears to
correspond to the requirement for positive-feedback loops in both
yeast (see above) and Drosophila (see below), suggesting that self-
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recruitment of polarity determinants may also underpin polarity in
C. elegans embryos (Fig. 2).

Goehring et al. also use their model (Goehring et al., 2011) to
investigate how the sperm centrosome acts as a cue to orient
polarity by triggering cortical flows of acto-myosin that generate a
bulk fluid motion in the cytoplasm, called ‘advection’, that pulls
the PAR-3 complex to the anterior (Jenkins et al., 2006; Cowan and
Hyman, 2007). However, this mechanism appears to be redundant
with another microtubule-based mechanism that stabilises PAR-2
at the posterior (Zonies et al., 2010; Motegi et al., 2011). In
addition, Goehring et al. have investigated the issue of domain size,
using their model to show that the relative levels of anterior and
posterior determinants can define the relative size of each domain
(Goehring et al., 2011).

Thus, the application of genetics, biochemistry and cell biology,
as well as computational modelling, has been crucial for
establishing the key principle of mutual antagonism in polarisation
of the C. elegans zygote. Further work is needed to test whether the
principle of positive feedback acts in these cells to drive self-
recruitment of polarity determinants. Excitingly, results from
Drosophila support the notion that PAR proteins and other polarity
determinants do indeed act in this way, as described below (Benton
and St Johnston, 2003a; Fletcher et al., 2012).

Cell polarity in Drosophila epithelia

Epithelial tissues are composed of polarised cells with distinct
apical and basolateral plasma membrane domains, and a ring of
adherens junctions located at the interface of these two domains. A
distinct basal domain can also appear where epithelial cells contact
a basement membrane. In the fruit fly Drosophila, apico-basal
polarity is first established during cellularisation of the early
embryo and is thereafter maintained in epithelia that derive from
the embryo, such as imaginal disc epithelia. In this Review, I focus
mainly on the follicular epithelium, a well-established model
system for epithelial polarity that is derived from apparently
symmetrical stem cells that then develop epithelial polarity in
response to cues from the germline (apical) and basement
membrane (basal) (Tanentzapf et al., 2000; Franz and Riechmann,
2010) (Fig. 1E). Given the conservation of polarity mechanisms
across evolution, it is likely that lessons learned from recent
analyses in the follicular epithelium will apply in other Drosophila
epithelia, as well as in equivalent systems in other species.

Many of the key polarity determinants discovered in yeast
(Cdc42) and worms (the PAR proteins) also control polarity in fly
epithelia, and genetic screens in Drosophila have uncovered many
other important polarity determinants (reviewed by St Johnston and

Fig. 3. Potential mechanisms for positive
feedback and mutual antagonism in the
worm zygote. In C. elegans zygotes, the
anterior and posterior determinants polarise
via mutual antagonism — each complex
phosphorylates components of the other to
promote its removal from the plasma
membrane. PAR-3 may also engage in a
positive-feedback loop of self-recruitment
via oligomeric interactions, based on its
similarity to Drosophila Baz. aPKC, atypical
protein kinase C; Baz, Bazooka; Cdc42, cell
division control protein 42; LGL, lethal giant
larvae; P, phosphorylation site; PAR,
partitioning defective.

Posterior domain




Development 140 (1)

REVIEW 17

Ahringer, 2010; Tepass, 2012) (Fig. 1F). For example, mutation of
the basolateral determinants Lgl [L(2)gl — FlyBase], Scribble
(Scrib) or Discs-large (DIg) causes abnormal spreading of apical
determinants around the plasma membrane and consequently a
failure to localise the belt of adherens junctions or maintain cell
shape in fly epithelia (Bilder et al., 2000; Bilder and Perrimon,
2000; Bilder et al., 2003). However, mutation of the core apical
determinants Cdc42, aPKC or Par6 causes loss of the apical
domain and consequent localisation of the basolateral determinants
all around the plasma membrane (Wodarz et al., 2000; Rolls et al.,
2003; Hutterer et al., 2004; Harris and Tepass, 2008; Franz and
Riechmann, 2010; Fletcher et al., 2012). These core determinants
form an apical complex with either the Bazooka (Baz) protein
(Miiller and Wieschaus, 1996; Joberty et al., 2000; Lin et al., 2000;
Wodarz et al., 2000; Petronczki and Knoblich, 2001; Abdelilah-
Seyfried et al., 2003; Franz and Riechmann, 2010) or the
transmembrane protein Crumbs and its PDZ domain-containing
binding partner Stardust (the Crb-Sdt complex) (Miiller and
Wieschaus, 1996; Tepass, 1996; Tanentzapf et al., 2000; Tanentzapf
and Tepass, 2003; Fletcher et al., 2012) (Fig. 1F). Thus, apical and
basolateral determinants appear to act in a mutually antagonistic
manner in Drosophila epithelia, a striking parallel with polarity in
the C. elegans zygote.

A Apical domain
The Par3/Baz complex self-recruits to the plasma membrane

Adherens junctions

The apical Baz and Crb-Sdt complexes act in a semi-redundant
fashion in fly epithelia, such that removal of both is necessary to
eliminate completely the apical domain in a fully penetrant manner
(Tanentzapf and Tepass, 2003; Fletcher et al., 2012). In tissues
undergoing morphogenetic movements that involve relocalisation
of Baz to the adherens junctions, such as the gastrulating embryo
or developing photoreceptors, Crb-Sdt becomes essential for
maintaining epithelial polarity (Miiller and Wieschaus, 1996;
Tepass, 1996; Pellikka et al., 2002; Campbell et al., 2009). In the
case of the embryo, Baz then functions in regulating the
localisation of adherens junctions during morphogenetic
movements rather than apical identity (Harris and Peifer, 2005;
Simoes et al., 2010; Wang et al., 2012). In tissues where Crb is not
expressed, such as the cellularising embryo, neuroblasts or very
early stage follicle cells, Baz is necessary for polarity establishment
(Miiller and Wieschaus, 1996; Schober et al., 1999; Wodarz et al.,
1999; Wodarz et al., 2000; Harris and Peifer, 2004; Atwood et al.,
2007; Franz and Riechmann, 2010; Morais-de-Sa et al., 2010).
Thus, the Baz complex and Crb-Sdt complexes can act
independently to specify the apical domain. Nevertheless, as both
complexes contain the same core components (Cdc42-Par6-aPKC)
and can colocalise at the apical membrane, one complex can assist
the polarisation of the other (Benton and St Johnston, 2003b; Harris
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and Peifer, 2004; Franz and Riechmann, 2010) and the two can
even directly interlink via Baz-Sdt interactions (Krahn et al.,
2010a).

The involvement of Cdc42 as a polarity determinant that
localises through two redundant but interlinked mechanisms is a
common theme in yeast and Drosophila polarity. In yeast, Cdc42
polarises via positive-feedback loops (see above), implying that
same mechanism may operate in Drosophila epithelia. A computer
model of Drosophila epithelial polarity from Fletcher et al.
(Fletcher et al., 2012) suggests that the combination of positive
feedback among apical determinants plus mutual antagonism
between apical and basal determinants is sufficient to
spontaneously generate and maintain polarity (Fig. 2). The model
of Fletcher et al. (Fletcher et al., 2012) is therefore similar to that
of Goehring et al. (Goehring et al., 2011) in that it combines mutual
antagonism with another essential principle (positive feedback in
the case of Drosophila as opposed to non-linearity in the C. elegans
model) to achieve polarisation (Fig. 2). Both models also raise the
issue of how the Baz complex or Crb-Sdt complex might self-
recruit to the plasma membrane to mediate positive feedback and
how mutual antagonism between apical and basolateral
determinants might occur.

In the case of Baz, there is potential for self-recruitment via a
conserved N-terminal oligomerisation domain (CR1) that is
essential for Baz to localise to the plasma membrane (Benton and
St Johnston, 2003a; Mizuno et al., 2003) (Fig. 4A). The basolateral
determinant Parl phosphorylates S151 in the Baz CRI1
oligomerisation domain, as well as S1085 in the Baz CR3 domain
— which contains both lipid-binding and aPKC-binding regions
(Krahn et al., 2010b) — to prevent Baz associating with the plasma
membrane (Benton and St Johnston, 2003b). Phosphorylation is
thought to recruit 14-3-3 proteins and thereby inhibit
oligomerisation of Baz and prevent binding to either lipids or
aPKC, thus disrupting self-recruitment of the Baz complex to the
plasma membrane (Benton et al., 2002; Benton and St Johnston,
2003b; Krahn et al., 2010b). However, it remains unclear how
apical determinants restrict Parl to the basolateral domain. One
possibility is that Parl might bind to Lgl, which is excluded from
the apical domain upon phosphorylation by aPKC (Betschinger et
al., 2003; Betschinger et al., 2005). However, results from C.
elgans and mammalian cells suggest that Parl is directly excluded
from the apical domain by aPKC phosphorylation (Hurov et al.,
2004; Suzuki et al., 2004). Whatever the precise mechanism, these
insights are consistent with a model of polarity that is driven by the
combination of positive feedback and mutual antagonism.

In the case of the Crb-Sdt complex, there is evidence for
oligomeric interactions between neighbouring Crb molecules via
the Crb extracellular domain (Fletcher et al., 2012), as well as for
potential trans-phosphorylation of the Crb intracellular domain by
aPKC from a neighbouring Crb-Sdt complex, both of which appear
to stabilise Crb at the plasma membrane (Fig. 4B) (Sotillos et al.,
2004; Fletcher et al., 2012). Other undiscovered mechanisms may
also exist to promote self-recruitment of Crb, and the multiple
PDZ-domain protein PATJ (PALS1-associated TJ protein) is an
interesting candidate that could conceivably promote a network of
interactions between Crb-Sdt complexes (Roh et al., 2003; Shin et
al., 2005; Richard et al., 2006; Zhou and Hong, 2012). The model
of Fletcher et al. (Fletcher et al., 2012) suggests that basolateral
determinants must in some way antagonise self-recruitment of
apical determinants to the plasma membrane, and Lgl has been
shown to bind to aPKC-Par6 and to inhibit the kinase activity of
aPKC — an action that could directly disrupt the Crb-mediated

positive-feedback loop (Betschinger et al., 2003; Plant et al., 2003;
Yamanaka et al., 2006). The roles of Dlg and Scrib remain unclear,
but one possibility is that these proteins antagonise the action of
Sdt and PATJ — which have, respectively, similar domain structures
to Dlg and Scrib (Fig. 1F).

Unlike Baz, Crb is a transmembrane protein that polarises
through regulated membrane trafficking. Endocytosis of Crb via
the AP2/Clathrin machinery is essential to remove it from the
basolateral domain (Lu and Bilder, 2005; Fletcher et al., 2012) and
recycling via the retromer (Pocha et al., 2011; Zhou et al., 2011)
and Rabl1 endosomes (Fletcher et al., 2012), as well as polarised
exocytosis via the exocyst machinery, help deliver Crb to the apical
domain (Fig. 4B) (Blankenship et al., 2007). Recent studies have
implicated roles for FERM (4.1 protein, Ezrin, Radixin, Moesin)
domain proteins in regulating the localisation of Crb, which
contains a FERM-binding motif in its intracellular domain (this
motif is also the site at which aPKC phosphorylates Crb). The
apically localised FERM domains Expanded and Merlin — which
act redundantly (Hamaratoglu et al., 2006) — were found to bind to
Crb (Sotillos et al., 2004; Ling et al., 2010; Robinson et al., 2010)
and to promote localisation of Crb to the plasma membrane
(Fletcher et al., 2012). Expanded and Merlin also bind to and
function together with Kibra (Baumgartner et al., 2010; Genevet et
al., 2010; Yu et al., 2010), a protein that can also be phosphorylated
by aPKC (Biither et al., 2004), suggesting a possible mechanism
by which Expanded and Merlin functions might be regulated. By
contrast, the basolateral FERM-domain proteins Yurt and Coracle
were found to inhibit Crb localisation at the basolateral membrane,
presumably by inducing endocytosis of Crb (Laprise et al., 2006;
Laprise et al., 2009). Precisely how these FERM domain proteins
regulate Crb trafficking to promote polarisation remains to be
discovered.

Conclusion

Pioneering genetic screens in yeast, worms and flies have
uncovered key determinants of cell polarity that are responsible for
orienting cell behaviour. More recent work has employed
computational models to make sense of how molecular interactions
between these determinants can organise their polarised
localisations within cells, and hence how polarity is generated and
maintained. The results of these studies point to central roles for
positive feedback and mutual antagonism mechanisms in
organising polarity. Nevertheless, several unresolved issues remain
and these are summarised below.

Issues for future research

Understanding self-recruitment

Further work is needed to understand how polarity determinants
can self-recruit to the plasma membrane in yeast, worms and flies.
Computational models currently use very simple approximations
for self-recruitment and these can be improved by making the
computer models more closely resemble known mechanisms of
interaction among apical determinants. How the Crb-Sdt system
self-recruits is still not fully understood and the roles of proteins
such as PATJ and the Ex/Mer/Kibra complex are particularly
unclear. Moreover, the degree to which the principles uncovered in
model organisms apply in other animal tissues has yet to be
ascertained.

Understanding mutual antagonism
Although mutual antagonism is quite well understood in the case
of the Par-3/Baz system in worms and flies, it is less clear for the
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fly Crb-Sdt system. In particular, how the Drosophila proteins Dlg,
Scrib, Yurt and Coracle are removed from the apical membrane by
apical determinants and act to antagonise the Crb-Sdt complex in
epithelia remains a mystery. The role of polarised lipids such as
phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol
(3,4,5)-triphosphate also requires further exploration.

How is domain size determined?

In the C. elegans zygote, computer modelling suggests that domain
size is simply determined by the relative amounts of anterior and
posterior determinants. In fly epithelia, there is evidence to support
this notion, but the situation is complicated by the presence of
adherens junctions between the apical and basolateral domains.
Adherens junctions can be neatly re-localised by altering the levels
of apical aPKC, or basolateral Par-1 — both of which appear to act
via phosphorylating Baz, which then determines the position of
adherens junctions at this stage of embryogenesis (Wang et al.,
2012). Incorporating adherens junctions into computer models of
epithelial polarity is an important priority, as they could
conceivably play an important role in determining domain size.

What orients up?

The cues that provide the initial orientation of cell polarity are not
always fully understood. For example, in the early Drosophila
embryo, it is clear that the outside face of the forming epithelium
becomes apical, whereas the inside face becomes basal, but it is not
known how cells sense outside and inside, and transduce this
information such that Baz localises to the apical region of the
forming epithelium. Similarly, in the follicular epithelium, how cell
polarity initially responds to cues from the overlying germline and
underlying basement membrane remains unclear.

How do polarity determinants regulate downstream
effectors?

Cell polarity is responsible for orienting many cellular functions,
such as cell shape, cell adhesion, cell migration, cell division, cell
fate determination, and the uptake and release of molecules. Many
of these functions depend on effector proteins that localise in
response to polarity determinants, yet — with a few exceptions
(Schober et al., 1999; Wodarz et al., 1999; Smith et al., 2007;
Atwood and Prehoda, 2009) — how they do so remains poorly
understood. For example, it is still unclear how adherens junctions
are positioned at the interface of apical and basolateral domains in
epithelia.

Modelling polarity in other systems

Combining computational models with experiments has led to great
progress in understanding cell polarity in yeast budding, the worm
zygote and fly follicular epithelium. Other cell types polarise in
different ways, but the same combination of modelling and
experiments is a highly promising approach to understanding each
of them. Progress is being made here (see Neilson et al., 2011) but
much more work needs to be carried out in order to understand the
commonalities and differences in the mode of cell polarisation in
cells from different tissues and organisms.
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