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Robo2 determines subtype-specific axonal projections of
trigeminal sensory neurons

Y. Albert Pan'*, Margaret Choy'?, David A. Prober'* and Alexander F. Schier!34>#

SUMMARY

How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous
system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal
sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized
functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed.
Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses
trpalb, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter
(IsI1SS). We found that Trpa7b and Is/1SS neurons have overall similar axon trajectories but different branching morphologies and
distributions of presynaptic sites. Compared with Trpa1b neurons, Is/1SS neurons display reduced branch growth and
synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Is/7SS neurons depends on the
guidance receptor Robo2. robo2 is preferentially expressed in the Is/71SS subset and inhibits branch growth and synaptogenesis. In
the absence of Robo2, Is/15S afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-

specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system.
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INTRODUCTION

The remarkable diversity and specific connectivity of sensory
neurons are crucial for the ability to sense and distinguish
environmental stimuli (Kay et al., 2011; Luo and Flanagan, 2007;
Marmigere and Ernfors, 2007; Mombaerts et al., 1996). In the
somatosensory system, chemical, mechanical and thermal stimuli
to the head are sensed by different trigeminal sensory neuron
subtypes that have varied morphologies and distinct axonal
connections to second-order neurons (Brodal, 2010; Erzurumlu et
al., 2010; Todd, 2010). Trigeminal sensory neuron subtypes can be
characterized by several molecular criteria, such as the expression
of high-affinity neurotrophin receptors (t7kA, trkB and trkC; also
known as ntrkl, ntrk2 and ntrk3, respectively), transcription
factors, neuropeptides, ion channels and G protein-coupled
receptors (Basbaum et al., 2009; Liu and Ma, 2011; Woolf and Ma,
2007). Examples include transient receptor potential (TRP) ion
channels that confer sensitivity to temperature and chemicals
(TRPV1 for heat and TRPA1 for noxious chemicals), and P2X
class ion channels that detect ATP and modulate pain sensation
(Caterina et al., 1997; Chen et al., 1995; Story et al., 2003). These
markers are conserved in vertebrates and allow specific labeling of
genetically defined sensory subtypes, enabling the study of specific

"Department of Molecular and Cellular Biology, Harvard University, 16 Divinity
Avenue, Cambridge, MA 02138, USA. 2Developmental Genetics Program, New York
University School of Medicine, New York, NY 10016, USA. *Harvard Stem Cell
Institute, Harvard University, Cambridge, MA 02138, USA. “Broad Institute of MIT
and Harvard, Cambridge, MA 02142, USA. °Center for Brain Science, Harvard
University, Cambridge, MA 02138, USA.

*Present address: Division of Biology, California Institute of Technology, Pasadena,
CA 91125, USA
FAuthors for correspondence (yapan@mch.harvard.edu; schier@fas.harvard.edu)

Accepted 1 December 2011

sensory subcircuits (Caron et al., 2008; Cavanaugh et al., 2011;
Dhaka et al., 2008; Kucenas et al., 2006; Takashima et al., 2007,
Zylka et al., 2005).

Afferent morphologies of different trigeminal subtypes share
several features. Each trigeminal sensory neuron extends a single
axon shaft along the lateral white matter of the hindbrain and spinal
cord. Numerous medially projecting branches are later formed and
innervate a series of target nuclei along the anteroposterior axis of
the hindbrain and spinal cord (Erzurumlu et al., 2006; Jacquin et al.,
1986). The anteriorly located principal sensory nucleus (PrV) is the
main relay station for mechanical stimuli, whereas the posteriorly
located spinal trigeminal nucleus (SpV) and cervical spinal dorsal
horn are important for sensing noxious and thermal stimuli (Brodal,
2010; Noma et al., 2008). Functional specificity is determined by the
spatial pattern of branch termination, which differs greatly between
subtypes (Erzurumlu et al., 2010; Marmigere and Ernfors, 2007). For
example, axon terminals that express TRPA1 and P2x3 (also known
as P2rx3) are sparse in PrV and dense in SpV (Kim et al., 2008; Kim
et al., 2010). Despite the importance of accurate subcircuit formation
for the proper transmission of sensory information, it has remained
unclear how different trigeminal sensory neuron subtypes select
specific targets along the anterior-posterior axis.

One possible mechanism for selective anterior-posterior targeting
is through regulation of branch growth and synaptogenesis by
Robo/Slit signaling. Robo proteins are cell surface receptors that bind
to the secreted ligand Slit. Signaling via Robo receptor activation
plays diverse roles in shaping the developing nervous system,
including axon targeting, synaptogenesis and cell migration
(Campbell et al., 2007; Cho et al., 2007; Cho et al., 2011; Dickson
and Gilestro, 2006; Xiao et al., 2011). Robo/Slit signaling can exert
either positive or negative influences on axonal growth and
branching, in some cases having both effects on the same cell (Ma
and Tessier-Lavigne, 2007; Ypsilanti et al., 2010). Previous reports,
however, are conflicting regarding how Robo/Slit signaling affects
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somatosensory primary afferents. In rats, exogenously supplied Slit2
can promote growth and branching of trigeminal afferents (Ozdinler
and Erzurumlu, 2002). By contrast, genetic studies in zebrafish and
mice suggest that Robo activation acts to repel trigeminal afferent
branches (Ma and Tessier-Lavigne, 2007; Yeo et al., 2004). For
example, Yeo et al. (Yeo et al., 2004) found that overexpression of
Slit is sufficient to repel trigeminal afferents in zebrafish embryos,
but it has been unclear whether Slit/Robo signaling is necessary for
normal trigeminal morphogenesis. Furthermore, it is unclear whether
Robo signaling plays a role in regulating the formation of subtype-
specific projections.

To determine how subtype-specific axonal projections are formed,
we used zebrafish (Danio rerio) trigeminal sensory neurons as a
model system. Zebrafish larvae are small, transparent and contain
only ~60 trigeminal sensory neurons per ganglion, making it possible
to observe axonal morphogenesis in vivo at single-cell resolution
(Caron et al., 2008; Knaut et al., 2005; Sagasti et al., 2005). Using
this system, we defined two trigeminal sensory neuron subtypes with
distinct afferent morphologies and projection patterns and discovered
that Robo2 regulates the development of subtype-specific afferent
projections by inhibiting branch growth and synaptogenesis. These
results reveal that Robo2 function is essential for subcircuit
morphogenesis in the somatosensory system.

MATERIALS AND METHODS

Zebrafish strains

Embryos and larvae were raised at 28.5°C in water containing 0.1%
Methylene Blue hydrate (Sigma, St Louis, MO, USA). At 24 hours post-
fertilization, embryos were transferred to water containing 0.003% 1-
phenyl-2-thiourea (PTU; Sigma) to prevent pigment formation.
Developmental stages are as described by Kimmel et al. (Kimmel et al.,
1995). robo2 (astray) homozygous mutant larvae (astray"’*7127%?) were
obtained from the Chien laboratory (University of Utah, Salt Lake City,
UT, USA) (Fricke et al., 2001).

Generation of transgenic fish lines

The Is5/1SS:Kaede reporter construct was generated by replacing the coding
sequence of eGFP from the Tg(sensory:gfp) construct (Sagasti et al., 2005)
with the coding sequence of Kaede (Ando et al., 2002). Is/1SS:Kaede
germline transgenic fish were generated by co-injecting plasmid DNA and
I-Scel meganuclease into one-cell stage embryos (Thermes et al., 2002).
One stable transgenic line was recovered. Kaede expression is variegated
within each batch of embryos, which is likely to be due to epigenetic
silencing of UAS elements (Goll et al., 2009). Is//SS:Kaede larvae with
high Kaede expression levels were used for analysis.

The Trpalb:GFP reporter construct was generated by ET recombination
of a bacterial artificial chromosome (BAC) (Zhang et al., 1998). BAC
clone CHORI211-236120 contains 115 kb upstream of the zebrafish Tipalb
translation start site followed by a 52 kb region that encodes the
extracellular domain of Trpalb. The eGFP gene and the kanamycin
resistance gene were inserted at the f7palb translation start site, replacing
the first two #rpalb exons. The recombinant clone was validated by PCR,
sequencing and transient expression assays. To generate a stable transgenic
line, linearized BAC DNA was injected into one-cell stage zebrafish
embryos followed by screening of adults for fluorescent progeny. One
stable transgenic line was recovered. We and others (C. B. Chien, personal
communication) have been unable to generate transgenic lines that allow
the expression of full-length Robo2 under UAS control.

Subtype-specific single trigeminal sensory neuron labeling

To label single Is/1SS:Kaede trigeminal sensory neurons, 1 nl of 10 pg/nl
Is118S:Kaede plasmid DNA was injected into the yolk of one-cell stage
embryos. Injected embryos were kept in the dark and screened at 2-3 days
post-fertilization (dpf) for labeling of single trigeminal sensory neurons.
Trigeminal sensory neurons were then photoconverted with a 405 nm
confocal laser, as previously described (Caron et al., 2008). To label single

Trpalb:GFP trigeminal sensory neurons, 0.5 nl of 45 pg/nl Tipalb:GFP
BAC DNA was injected into a single cell of a four- to eight-cell stage
embryo. Injected embryos were screened at 2-3 dpf. To label presynaptic
puncta, Is/1SS.:Gal4 was co-injected with the UAS-Syp:GFP-DSR plasmid,
obtained from the Meyer laboratory (King’s College London, London, UK)
(Meyer and Smith, 2006).

Image acquisition and processing

All images were acquired using the FV1000 laser-scanning confocal
imaging system (Olympus, Tokyo, Japan) on an upright microscope with
a 20X XLUMPlanF1 water-immersion objective. Larvae were anesthetized
with 0.01% tricaine methanesulfonate (MS-222, Sigma) and transferred to
a glass-bottomed Petri dish (P35G-0-14-C, MatTek). Molten 1.5% low-
melt agarose (UltraPure LMP agarose, Invitrogen), kept on dry heat at
40°C, was then added to the dish. Fish were arranged so that the surface to
be imaged was facing the glass bottom. The dish was inverted for imaging
(glass side up). For multi-time point experiments, larvae were released
from the agarose after imaging with fine forceps and returned to a 28.5°C
incubator for recovery.

Images were processed using FluoView (Olympus), Image] (NIH,
http://rsbweb.nih.gov/ij/) and Photoshop (Adobe Systems, San Jose, CA,
USA) software. Varicosities were counted manually. Branch length was
measured using the NeuronJ plug-in in ImageJ. Hindbrain segments were
delineated using the following criteria: segment 1 was defined as areas
anterior to the anterior (utricular) otolith (AO); segments 2-4 were located
between the AO and the posterior third of the posterior (saccular) otolith
(PO); segments 5-7 were located between the posterior third of the PO and
the posterior boundary of the first somite; segments 8-9, 10-11, 12-13 and
14-15 corresponded to the anterior and posterior halves of somites 2, 3, 4
and 5, respectively (Fig. 4A). To correlate segments with rhombomeres,
hindbrain cranial motor nuclei were labeled using the Islet!:GFP
transgenic line (Higashijima et al., 2000). Using cranial motor nuclei as
markers, the positions of rhombomeres 2-8 were identified and mapped
onto the segments as defined above (Ma et al., 2009; Mapp et al., 2011)
(Fig. 4A, supplementary material Fig. S1). Varicosities were assigned to
segments where they were physically located, whereas branch number and
branch length were assigned to segments where branches originated.

Statistical analysis

One-way analysis of variance (ANOVA) with Newman-Keuls post test was
used to compare total varicosity number, branch number and branch length
between different genotypes and sensory neuron subtypes. Two-way
ANOVA with Bonferroni post test was used to compare the morphological
features of different genotypes or sensory neuron subtypes at a given
anterior-posterior segment or time point. Statistical tests and P-values were
calculated using Prism statistical software (GraphPad, La Jolla, CA, USA).

Fluorescent in situ hybridization and immunohistochemistry
trpvl, trpalb and p2x3b (p2rx3b — Zebrafish Information Network) DIG-
labeled antisense RNA probes were synthesized as previously described
(Caron et al., 2008). trkA, trkC1 and trkC2 (ntrkl, ntrk3a and ntrk3b,
respectively — Zebrafish Information Network) probes were generated by
5'RACE (SMART RACE c¢DNA Amplification Kit, Clontech, Mountain
View, CA, USA) using 3’ primers based on Ensembl exon predictions. The
cgrp (calca — Zebrafish Information Network) probe was generated by RT-
PCR with Superscript II reverse transcriptase (Invitrogen) using primers
based on Ensembl exon predictions. Sequences are available from
GenBank (#rk4, IN837101; trkC1, IN837102; trkC2, IN837103; cgrp,
JN837104). robo2 and Slit gene probes were obtained from the Chien
laboratory (Hutson and Chien, 2002; Hutson et al., 2003; Lee et al., 2001).
Fluorescent in situ hybridization was performed using protocols
described previously (Schoenebeck et al., 2007). In brief, embryos were
hybridized with DIG-labeled RNA probes overnight at 68°C followed by
stringent washes. Samples were incubated with anti-DIG POD-conjugated
Fab fragments (Roche, 1:400) and mixed with Cy3-labeled tyramide
(PerkinElmer, 1:25). GFP- or Kaede-labeled neurons were identified by
incubation with rabbit anti-GFP or rabbit anti-Kaede antibody, respectively
(MBL International, 1:1000). Trigeminal sensory neurons were identified
with anti-HuC/D (Elavl3/4) antibody (Invitrogen, 1:1000). Fluorescent
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secondary antibodies coupled to Alexa dyes were used to detect primary
antibodies (Invitrogen, 1:500). To distinguish GFP and Kaede in
Trpalb:GFP;1Isl1SS:Kaede double transgenics, GFP was stained with a
mouse anti-GFP antibody (Roche, 1:300) coupled to Alexa 647 (near
infrared), whereas Kaede was stained with rabbit anti-Kaede coupled to
Alexa 546 (red).

RESULTS

Subtype-specific gene expression of trigeminal
sensory neurons

To explore how sensory neuron subtypes form distinct axonal
projections, we aimed to identify genetically defined trigeminal
sensory neuron subpopulations in larval zebrafish. We had
previously found that Trpalb, the zebrafish homolog of the
mammalian TRPA1 channel, is expressed in a subset of trigeminal
sensory neurons and is required for sensitivity to several
environmental and endogenous chemical irritants (Caron et al.,
2008; Prober et al.,, 2008). To label this subpopulation of
nociceptive neurons, we generated a Trpalb:GFP BAC transgenic
line (Fig. 1A-C). GFP was observed in trigeminal sensory neurons
and Rohon Beard sensory neurons (the spinal cord equivalents of
the trigeminal sensory neurons), similar to endogenous trpalb
expression (Prober et al., 2008). We also observed non-specific
GFP expression in olfactory neurons, the retina and the tectum. To
test whether GFP expression within the trigeminal ganglion is
specific, we performed trpalb in situ hybridization in Trpalb:GFP
transgenic larvae and found that GFP accurately marked trigeminal
sensory neurons that expressed #palb (supplementary material Fig.
S2). Consistent with Trpalb being a subtype-specific marker, GFP
expression was seen in a small subset of trigeminal sensory
neurons (10.52+0.51 cells out of 60 neurons at 2 dpf).

To identify an additional trigeminal sensory neuron subtype, we
generated a second reporter line, Is/1SS:Kaede. This reporter line
uses zebrafish islet] enhancer elements to drive gene expression in
somatosensory neurons (Fig. 1A-C) (Higashijima et al., 2000;
Sagasti et al., 2005). Kaede expression was seen in a subset of
trigeminal sensory neurons (11.53+0.65 cells/ganglion) that were
largely distinct from Tipalb:GFP-expressing neurons (12%
overlap; 1.840.4 double-positive neurons/ganglion; n=238
Trpalb:GFP" neurons; Fig. 1C,D). Additionally, neither
subpopulation overlapped with the larger #7kA4 (nerve growth factor
receptor)-expressing population (17.3841.66 cells/ganglion) (Knaut
et al., 2005; Liu and Ma, 2011; Martin et al., 1995) (Fig. 1D,
supplementary material Fig. S3). These results indicate that 7Trpalb
and Is/1SS label specific trigeminal sensory neuron subpopulations.

To further examine whether Trpalb and Isl1SS subsets are
distinct subtypes, we tested a panel of sensory neuron subtype
markers by whole-mount in situ hybridization and antibody
staining against GFP (in Trpalb:GFP) or Kaede (in
Isl1SS:Kaede) (Fig. 1E, supplementary material Fig. S3).
Trigeminal sensory neurons were identified based on their
location, morphology and expression of the pan-neuronal marker
HuC/D. trkC1, which encodes a receptor for Neurotrophin 3
(Martin et al., 1998; Williams et al., 2000), was preferentially
expressed in the Trpalb subset (94% of Trpalb' neurons)
compared with IsI1SS (24% of Is/1SS" neurons). A similar trend
was observed with the #kC paralog trkC2. Several markers of
nociceptive neurons were also differentially expressed: p2x3b
(ATP receptor and marker for non-peptidergic nociceptors) was
preferentially expressed in Trpalb neurons (100%, versus 24%
in Is/1SS), whereas calcitonin gene-related peptide (cgrp; a
marker for peptidergic nociceptors) was preferentially expressed
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Fig. 1. Trigeminal subtype reporter lines and marker gene
expression. (A) Transgenic constructs used to generate Trpalb:GFP
(left) and Is/7SS:Kaede (right) transgenic lines. (B) lllustration of a
trigeminal sensory neuron (green cell abutting the eye) in a fish at 5
dpf. The trigeminal ganglion (boxed area) is shown in C. (C) Trigeminal
ganglion in a 5 dpf Trpa1b:GFP;Is|15S:Kaede double-transgenic larva.
GFP-positive (green) and Kaede-positive (magenta) trigeminal sensory
neurons are largely distinct. Asterisk indicates a double-labeled cell.
(D) Summary Venn diagram of distinct trigeminal subtypes defined by
neurotrophin receptors (trkA and trkC7) and transgenic reporters. The
box represents the entire trigeminal ganglion (Tgg) and circles indicate
populations of trigeminal sensory neurons labeled by the markers
indicated. (E) Quantification of marker gene expression (%) in each
subset at 2 dpf. Error bars indicate s.e.m. Three to ten ganglia were
counted for each marker. Scale bar: 20 um.

in /Is/1SS neurons (78%, versus 6% in Trpalb neurons). These
results establish that Trpalb and Is/ISS neurons belong to
different subtypes of trigeminal sensory neurons.

Subtype-specific morphologies of trigeminal
sensory neurons

In addition to specific gene expression profiles, neuronal cell types
are defined by morphological properties such as the position and
branching pattern of neurites. These features also provide clues as
to the connectivity patterns of the overall neural circuit (Masland,
2004). To test whether Trpalb and Is/ISS neurons are
morphologically distinct, we investigated the branching pattern and
target specificity of their afferent axons by in vivo imaging. To
obtain sparse labeling and allow unambiguous tracing and
measurement of axon collaterals, we used DNA microinjection to
generate mosaic transgenic fish with only one trigeminal sensory
neuron labeled per ganglion (Fig. 2A-C). We found that Trpalb
and Is/1SS axons were distinct and stereotyped. The main axon
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Fig. 2. Mosaic single-cell labeling of trigeminal sensory neuron subtypes. (A) Schematic of a 5-dpf larval zebrafish, viewed from the dorsal
side. The boxed area corresponds to the imaged areas shown in B,B’. (B,B’) In vivo imaging of single trigeminal sensory neurons. Fluorescent image
is shown in green and bright-field image is superimposed in gray. Extensive branch growth is seen in the Trpa7b subset (B), but not the /s/75S subset
(B"). Boxed area corresponds to imaged area shown in E. (C,C") Axon traces of multiple trigeminal sensory neurons are shown for both subtypes.
Red arrowheads point to branches that form along the main axon tract. (D,D’) lllustrations of trigeminal afferents from Trpa7b (D) and /s/1SS (D’)
subtypes. (E) High-magnification image of boxed area in B. Trpa7b axon extends branches and forms numerous varicosities (asterisks).

(F-F") Trigeminal axon labeled with cytoplasmic RFP (magenta, F) and Synaptophysin-GFP (Syp-GFP, green, F'), a fluorescent label for synaptic
vesicles (with merge in F”). The presence of varicosities reliably predicts the presence of Syp-GFP puncta (yellow arrowheads). AO, anterior otolith;

PO, posterior otolith. Scale bars: 100 um in B-C’; 10 um in E-F".

shaft follows a similar trajectory in both subtypes. However,
compared with Is//SS neurons, Trpalb axons had more branches
and increased total branch length (Fig. 2D, Fig. 3A,B). Tipalb
axons also tended to extend further down the spinal cord than
Is11SS axons. In both subtypes, numerous varicosities were seen
along the main axon shaft and on axon collaterals (Fig. 2E). Axonal
varicosities, as seen by cytoplasmic fluorescent protein labeling,
have previously been found to represent presynaptic puncta in
many different zebrafish neuronal cell types (Appelbaum et al.,
2010; Campbell et al., 2007; Meyer and Smith, 2006). To test
whether this is also the case for trigeminal sensory neuron
afferents, we co-expressed a red fluorescent protein (RFP) and
Synaptophysin-GFP, a marker of presynaptic puncta, using the
Isl1SS promoter (Meyer and Smith, 2006). We found that
varicosities and GFP puncta were colocalized (Fig. 2F), and the
number of varicosities and puncta were significantly correlated
(R?=0.74, P<0.0001; see supplementary material Fig. S4).
Therefore, we used varicosities as a reporter for presynaptic puncta.
Comparison of the two trigeminal sensory neuron subtypes
revealed that 7Trpalb axons had significantly more varicosities than
Isl1SS axons (83.54+3.04 versus 55.8443.36, P<0.001; Fig. 3C).
Together, these results indicate that genetically defined trigeminal
sensory neuron subtypes are morphologically distinct, both in
branch morphology and the number of presynaptic puncta.

Subtype-specific projection patterns of trigeminal

sensory neurons

The distinct morphologies of 7Trpalb and Is/1SS neurons raised the
possibility that these trigeminal subtypes have distinct projection
patterns (Masland, 2004). To map the projections of individual
afferents, we used mosaic transgenic labeling with combined
fluorescent and bright-field imaging. The bright-field images,
which show anatomical landmarks such as otoliths and somites,
were used to delineate 15 anterior-posterior segments (Fig. 2A,B,
Fig. 4A). These segments were reproducible between individual
fish and correlated with rhombomeres 2-8 and anterior regions of
the spinal cord (see Materials and methods). Using this anatomical
map, the number of branches, the branch length and the number of
presynaptic puncta (varicosities) of individual trigeminal sensory
neurons were measured and compared between Trpalb and Isl1SS
neurons.

The number of varicosities revealed subtype-specific patterns of
innervation. Trpalb afferents showed two prominent peaks of high
varicosity number, one in segments 3-4 and the other in segments
9-11 (Fig. 4B). By contrast, varicosities in the Is//SS afferents
showed a broader distribution, with only a minor peak in segment
5. The posterior Trpalb peak corresponded to the areas flanking
the hindbrain-spinal cord junction, which is an important
processing and relay area for trigeminal pain in mammals
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Fig. 3. Comparison of trigeminal sensory neuron subtype
morphologies. Total branch number (A), branch length (B) and
varicosity number (C) compared between subtypes and genotypes. Red
bar and black bracket are mean and s.e., respectively. Colored circles
are values for individual trigeminal sensory neurons. Sample sizes are:
13, Trpa’b in wild type; 25, Is/1SS in wild type; 13, Trpalb in trpalb™;
14, Trpalb in robo27~; 17, Isl1SS in robo27. *, P<0.05; **, P<0.01;
*** P<0.001; N.S., no significant difference.

(Goadsby and Hoskin, 1997; Nash et al., 2009; Noma et al., 2008).
Trpalb innervation in this region is consistent with its nociceptive
function and suggests that the hindbrain-spinal cord junction might
also be part of the nociceptive circuitry in zebrafish.

The distribution of branches also differed greatly between
Trpalb and Isl1SS (Fig. 4C,D). Trpalb afterents formed shorter
branches in the anterior segments and longer branches in the
posterior segments. Approximately one-quarter (3/13) of Trpalb
trigeminal sensory neurons had posterior branches that reached the
contralateral side. These contralaterally projecting branches are also
seen in the posterior hindbrain of mammalian species and appear
to be a feature of nociceptive fibers (Clarke and Bowsher, 1962;
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Fig. 4. Mapping subtype-specific axonal projections. (A) Branches
and varicosities are mapped to defined segments in the zebrafish
hindbrain and spinal cord along the anterior-posterior axis. Segments
align with positions of rhombomeres (r1-r8) and somites.

(B-D) Distribution of varicosity number (B), branch number (C) and
branch length (D) along segments 1-15. Similar trends are observed for
a given subtype in all three parameters: Trpa7b neurons form a minor
peak at segments 3-4 and a major peak at segments 9-11, whereas
Is/15S neurons do not form any pronounced peaks. Error bars indicate
s.e.m. *, P<0.05; **, P<0.01; ***, P<0.001. AO, anterior otolith; PO,
posterior otolith.
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dpf zebrafish brain viewed from the dorsal
side, corresponding to images shown in G-J.
Green lines show the trajectory of the
trigeminal afferent track. Brackets indicate
segments 3-4 and 9-11. (G-J) Whole-mount
in situ hybridization for Slit genes co-stained
for a neuronal marker (HuC/D). Images are
maximal projections of confocal z-stacks.
(G,l)slit1a and slit2 are strongly expressed in

Sugimoto et al., 1997a; Sugimoto et al., 1997b). By contrast, Is//SS
afferents had only a few short branches in the anterior segments
and did not have contralaterally projecting afferents (0/24). These
results indicate that 7rpalb and Is/1SS subpopulations have distinct
and stereotypic axonal projections and branch growth patterns.

Expression of robo2 and Slit genes marks
trigeminal sensory neurons and afferent target
fields

What are the molecular mechanisms that establish subtype-specific
afferent projections? The differential expression of trpalb itself
does not appear to be involved because Trpalb neurons in trpalb
mutants had normal axonal morphology (Fig. 3). We hypothesized
that there might be subtype-specific growth-promoting or
inhibitory cues that regulate this process and searched for signaling
molecules that were differentially expressed in the two trigeminal
subtypes. The axon guidance receptor Robo2 is expressed in the

the ventral midline (VML) and rhombic lip
(RL). (H) slit1b is expressed in the ventral
midline as well as in several distinct nuclei in
the hindbrain (green arrowheads). (J) slit3 is
expressed in the cranial motor nuclei (yellow
arrowheads). (K-N) Optical transverse
sections at the hindbrain-spinal cord
boundary (red line in F) of 3-dpf Trpa1b:GFP
larvae stained for Slit genes (red) and
Trpa1b:GFP (green). slit1a is also diffusely
expressed in the caudal hindbrain (K). Yellow
dashed lines mark the outlines of the
hindbrain and arrowheads indicate
trigeminal axons. Mb, midbrain; Hb,
hindbrain; SC, spinal cord. Scale bars: 20 um
in A-D; 100 um in G-J; 50 um in K-N.

rodent and zebrafish trigeminal ganglion, but it has been unclear
whether it is expressed in all or a subset of sensory neurons and
whether it exerts positive or negative effects on axon
morphogenesis (Ma and Tessier-Lavigne, 2007; Ozdinler and
Erzurumlu, 2002; Yeo et al., 2004). We therefore examined the
expression of robo2 in more detail by fluorescent in situ
hybridization. We found that robo2 was dynamically expressed in
trigeminal sensory neurons during development. After initially
broad expression (Fig. 5A,B), robo2 expression became restricted
to a subset of trigeminal sensory neurons (Fig. SC-E). Strikingly,
more than 80% of Is//SS neurons and less than 30% of Trpalb
neurons expressed robo2 at 2-5 dpf. These results raised the
possibility that Robo2 expression might account for some of the
differences in the morphology of Is//SS and Trpalb afferents.

To determine where Robo signaling might be activated, we
examined the expression of Slits, the secreted ligands for Robo2.
In the hindbrain, all four zebrafish Slit genes were expressed
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(Fig. SF-N). slitla and slit2 were highly expressed in the ventral
midline and the rhombic lip, relatively distant from the
trigeminal target field. By contrast, slit/b and sl/it3 were
expressed in discrete domains along the anterior-posterior axis,
immediately dorsal-medial to the trigeminal afferent track. Slit
expression partly overlapped with the anterior and posterior
Trpalb peaks, but expression of individual Slit genes did not
define its boundaries (Fig. SF-J, brackets). These results reveal
that robo2 expression is enriched in Is//SS neurons and that
multiple Slit genes are expressed in the vicinity of the trigeminal
sensory neuron afferents.

robo2 regulates subtype-specific projection
patterns

Robo2 enrichment in Is//SS neurons suggests that Robo/Slit
signaling might regulate the afferent projection pattern in the Is//SS
subtype. To test this, we examined the axonal morphology of
Trpalb and Is/ISS subtypes in robo2 (astray) loss-of-function
mutants (Fricke et al., 2001; Hutson and Chien, 2002). Strikingly,
Isl1SS afferents were partially transformed to Trpalb-like
morphology in robo2 mutants (Fig. 6A,B). In either subtype, there
were no changes in branch number in robo2”" relative to wild-type
controls (Fig. 3A). However, Is/1SS sensory axons had significantly
increased branch length and varicosity number in r0bo2 mutants
(Fig. 3B,C). By contrast, Trpalb neurons displayed no differences
between mutants and controls. Notably, the subtype-specific
differences in branch length and varicosity number between Is/1SS
and Trpalb axons were abolished in 70bo27~ larvae. These results
suggest that robo2 acts to regulate subtype-specific branch length
and presynaptic differentiation with no effect on branch formation.

—=— Trpaib
—— Trpalb in robo2-/-

Fig. 6. Robo2 regulates subtype-
specific projection patterns.

(A-B’) Trigeminal axonal morphology in
wild-type and robo27 zebrafish. Red
arrowheads point to branches. Trpalb
axonal morphology in robo27 is
indistinguishable from that of wild type
(A,A"). By contrast, there is a noticeable
increase in branch length and varicosity
number in the /s/7SS subtype in robo27~
(B,B’). (C-E) Comparison of Trpalb
morphology in wild type (green) versus
robo27~ (black). No differences were
seen in varicosity number (C), branch
number (D) or branch length (E).

(F-H) Comparison of /s/7SS morphology
in wild type (magenta) versus robo2™
(black). Significant differences were seen
in varicosity number (F) and branch
length (H), but not branch number (G).
Error bars indicate s.e.m. *, P<0.05; ***,
P<0.001. Scale bars: 100 um.
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To test whether Robo2 also determines the localization of
varicosities and branches, we examined their anterior-posterior
distribution in 70bo2 mutants (Fig. 6). The projection patterns for
Trpalb neurons were not affected by loss of Robo2 (Fig. 6C). By
contrast, /s//SS neurons had increased varicosities in both anterior
(segments 3-4) and posterior (segments 9-11) segments in robo?2
mutants, compared with wild-type controls (Fig. 6F). Thus, Is/1SS
and Trpalb neurons acquired very similar varicosity distributions.
Segment-specific changes were also observed for branch number
and branch length, but the changes were less pronounced than those
observed for varicosities (Fig. 6D,E,G,H). These results indicate
that signaling through robo?2 is a key regulator of the region-
specific morphology of a subset of trigeminal sensory neurons.

Morphogenesis of subtype-specific branch growth
and synaptogenesis

Subtype-specific differences in branch morphology and synapse
number may arise from (1) selective addition and growth in 7Trpalb
afferents or (2) equal growth in both subpopulations followed by
selective pruning in Is//SS afferents. To distinguish between these
possibilities, we analyzed the dynamics of branch growth and
varicosity formation at the hindbrain-spinal cord junction by in vivo
imaging (segments 9-11, Fig. 7A). At 2 dpf, Trpalb and Is/1SS
neurons showed very similar morphology, with short branches and
comparable varicosity number (Fig. 7B-E). Morphological changes
arose between 2 and 3 dpf, when Tipalb neurons increased branch
number, branch length and varicosity number. Branch growth slowed
down over the next few days (4-5 dpf), while varicosity number
steadily increased. Is/1SS neurons, by contrast, had only modest
increases in varicosity number and no changes in branch number and
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branch length. These results reveal that the morphological divergence
of trigeminal subtypes depends on selective growth and
synaptogenesis rather than selective pruning.

To determine how Robo2 affects axon morphogenesis, we
examined the growth of Is//SS axons in robo2 mutants. Loss of
robo?2 did not affect axonal morphogenesis in early development (2
dpf), despite the early expression of 70bo2 in wild type (Fig. 7B,
right column). As the afferent axons matured, robo2”" Isl1SS axons
began to form more varicosities and branches, whereas their wild-
type counterparts remained largely unchanged (Fig. 7C-E). These
results reveal that Is//SS axons have an intrinsic capacity for
growth that is suppressed by Robo2.

DISCUSSION

The hindbrain is the first relay and processing station of
somatosensory neural circuits. Sensory afferents carrying diverse
sensory modalities, such as touch, chemicals and temperature,
project to specific regions in the hindbrain and spinal cord. Our
study defines a mechanism by which two trigeminal sensory
neuron subtypes acquire distinct afferent morphologies and axon
projections: subtype-specific expression of Robo2 inhibits branch
growth and presynaptic terminal formation (Fig. 8).

Regulation of axonal morphology in
somatosensory subtypes

There is a growing understanding of the molecular and
physiological properties of different trigeminal sensory neuron
subtypes and their afferent targets (Liu and Ma, 2011; Perl, 2007).
However, it has been unclear whether systematic differences exist
in the afferent branching patterns and synaptic densities between
defined trigeminal sensory neuron subtypes (Hayashi, 1985a;
Hayashi, 1985b; Jacquin et al., 1986; Light and Perl, 1979). Our
results reveal that subclasses of trigeminal sensory neurons have

overall similar axon trajectories but display very different afferent
branching morphologies. Differences in Robo/Slit signaling play a
major role in ensuring subtype-specific projections. Most notably,
Robo2 acts to dampen synaptogenesis and branch growth but not
branch number in the Is/1SS subtype.

In the hindbrain, Slit proteins are expressed in the floor plate,
rhombic lip and in several hindbrain nuclei (Hammond et al., 2005;
Marillat et al., 2002; Yuan et al., 1999). The expression of Slit genes
might prevent trigeminal afferents from forming inappropriate
contacts with Slit-expressing cells. We found s/iz3 expression in the
cranial motor nuclei, similar to mammalian S/iz2/3 expression
(Geisen et al., 2008). Several cranial motor nuclei (V, VII and XII)
are involved in the nociceptive reflex triggered by strong trigeminal
stimulation, but they are not directly connected to trigeminal sensory
neurons (Dong et al., 2011). Given the close proximity of cranial
nuclei and trigeminal afferents, Robo2/Slit3 signaling might be
required to prevent erroneous innervations.

In addition to cell type-specific inhibition mediated by Robo2
signaling, growth-promoting signals may also play a role in
establishing sensory subcircuits. In the absence of Robo2
inhibition, we found that Is//SS neurons are also able to increase
growth and synaptogenesis in the same Tpralb peak segments.
This suggests that both subtypes can respond to a putative growth-
promoting signal that might be localized to these segments.
Previous studies have identified potential candidates for such a
signal. For example, expression studies in other model systems
suggest that multiple axon guidance pathways are active in
trigeminal sensory neurons, including Neurotrophin/Trk,
Netrin/Unc5 and Semaphorin/Neuropilin (Erzurumlu et al., 2010;
Masuda et al., 2008). Other Robo family members (Robol and
Robo3) might also play a role (Ma and Tessier-Lavigne, 2007). It
is a challenge for the future to identify potential growth-promoting
signals and investigate their interactions with the Robo2 pathway.
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Isl1SS:Kaede Slit
robo2-/-

Fig. 8. Robo2-dependent morphogenesis in trigeminal sensory
neurons. Trigeminal sensory neurons from /s/7SS (magenta) and Trpa7b
(green) subtypes have similar morphology during early development. In
wild-type fish, developmental maturation leads to preferential
expression of robo2 in the Is/1SS subtype (marked by ‘+') but not in the
Trpa b subtype (marked by ‘~'). Robo2, which is likely to be activated
by secreted Slit proteins in the hindbrain (yellow oval), inhibits branch
growth and synaptogenesis specifically in the Is/7SS subtype. In robo2™~
fish, both subtypes lack Robo2. The Is/71SS subtype, now relieved of
Robo2 inhibition, extends axon branches and forms synapses in the
same areas as in the Trpa1b subtype.

Functional implications of subtype-specific
projection patterns
Somatosensory afferents innervate selective hindbrain and spinal
cord regions in a cell type-specific manner and thereby activate
divergent downstream targets to initiate distinct behavioral responses
(Braz et al., 2005; Brodal, 2010). We observed two regions, one
anterior and one posterior, where Tipalb and Is/1SS neurons showed
different innervation density (as measured by varicosity number).
The anterior region (segments 3-4) corresponds to rhombomeres 5-
6, which contain reticulospinal neurons (the Mauthner array neurons)
important for the trigeminal-mediated fast escape response in
zebrafish (Caron et al., 2008; Douglass et al., 2008; Kohashi and
Oda, 2008; Liu and Fetcho, 1999; Sagasti et al., 2005). The observed
high (in Tipalb) and low (in Is/ISS) innervation density in this
region suggests that there might be subtype-specific patterns of
Mauthner array activation and initiation of the fast escape response.
The posterior region (segments 9-11) corresponds to the caudalis
subnuclei of the SpV, which is known to be crucial for trigeminal
sensory neuron-mediated pain (e.g. toothache, headache, migraine)
(Sessle, 2000). Selective innervation by nociceptive Tipalb
afferents suggests that there might be functional similarity between
fish and mammals in this anatomical region. The identities and
function of Trpalb target cells are not yet known, but this region
has recently been proposed to contain specialized cells that can
initiate persistent swimming (Kyriakatos et al., 2011). This would
be consistent with the observation that Trpalb activation increases
overall motor activity (Prober et al., 2008) and raises the possibility
that Is/1SS and Trpalb subtypes have distinct abilities to trigger
persistent swimming.
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