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Cilia in vertebrate development and disease

Edwin C. Oh and Nicholas Katsanis

Summary

Through the combined study of model organisms, cell biology,
cell signaling and medical genetics we have significantly
increased our understanding of the structure and functions of
the vertebrate cilium. This ancient organelle has now emerged
as a crucial component of certain signaling and sensory
perception pathways in both developmental and homeostatic
contexts. Here, we provide a snapshot of the structure,
function and distribution of the vertebrate cilium and of the
pathologies that are associated with its dysfunction.
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Introduction

Once considered to be vestigial organelles, cilia are microtubule-
based structures found in unicellular flagellates and in multicellular
organisms and have recently been discovered to have a profound
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influence on tissue development and homeostasis. Although the
presence of cilia is restricted to specific cell types in invertebrates,
their near ubiquitous localization on the apical surface of most
vertebrate cell types suggests that this ancient organelle has
evolved to facilitate a broad range of functions. Recent findings in
humans and in model organisms have fuelled a renewed interest in
the cilium as a sensory hub and as generator of fluid flow; both of
these functions underpin fascinating developmental processes, such
as the initiation of left-right (L-R) asymmetry (Hirokawa et al.,
2006), as well as certain disease pathologies, such as the
modulation of cancer progression and metastasis (Han et al., 2009;
Wong et al., 2009). Consistent with the developmental roles of the
cilium in vertebrates in fluid flow generation, mechanosensation,
osmosensation, olfaction, photoreception, chemosensation and
thermosensation (Berbari et al., 2009; Hirokawa et al., 2006), and
based on the diverse range of cell types that can form a cilium, the
clinical features of several human disorders have been attributed to
dysfunctional cilia. In this poster article, we provide an overview
of ciliary biology with an emphasis on signaling pathways and
modes of ciliary dysfunction in which selected ciliary expression
is associated with specific developmental events and disease states.

Cillary signaling pathways
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Ciliary biology

Tethered to most differentiated vertebrate cell types (Gerdes et al.,
2009; Olsen, 2005), cilia are microtubule-based structures that can
be classified as immotile 9+0 primary cilia or motile 9+2 cilia,
depending on the presence of a central microtubule pair that is
surrounded by nine pairs of microtubule doublets (Satir and
Christensen, 2007). However, exceptions to these traditional
classifications do occur; renal cilia have a motile 9+0 configuration
(Kramer-Zucker et al., 2005), motile cilia of the mouse embryonic
node have both 9+0 and 9+2 configurations (Caspary et al., 2007,
Nonaka et al., 1998), and cilia in the frog appear to have an
immotile 9+2 design (Reese, 1965). Although the number of motile
cilia can range from 200 to 300 per cell type, a single immotile
primary cilium is typically present on most cell types.

Pioneering studies in the green alga Chlamydomonas reinhardtii
delineated a dynamic process of intraflagellar transport (IFT) that
is responsible for the transport of cytoplasmic proteins along the
ciliary axoneme. As schematized in the poster, the axoneme is a
microtubule-based cytoskeleton that is enclosed by the ciliary
membrane (Kozminski et al., 1993; Scholey, 2008). Anterograde
transport (towards the plus end — the ciliary tip) is achieved by a
heterotrimeric kinesin 2 motor (Scholey, 2008), whereas retrograde
transport (towards the minus end — the ciliary base) is driven by
cytoplasmic dynein 2 (Kardon and Vale, 2009; Scholey, 2008).
Together with IFT particle A (retrograde) and B (anterograde)
subcomplexes, these motors facilitate the transport of multi-subunit
protein complexes along the axoneme. In vertebrates, the IFT A
and B subcomplexes consist of at least six and 13 components,
respectively (Cole and Snell, 2009; Scholey, 2008).

Through the use of genomic, transcriptomic and proteomic
approaches, the molecular components of the cilia proteome have
been studied (Andersen et al., 2003; Avidor-Reiss et al., 2004;
Blacque et al., 2005; Broadhead et al., 2006; Efimenko et al., 2005;
Keller et al., 2005; Li et al., 2004; Liu et al., 2007; Ostrowski et al.,
2002; Pazour et al., 2005; Stolc et al., 2005) and ~2500 putative
proteins identified (see www.ciliaproteome.org) (Gherman et al.,
2006). These studies have led to the identification of candidate
proteins that have been implicated, directly or indirectly, in
transport mechanisms and structural components of the cilium, and
in cilia-associated human disorders.

Recent interest in ciliary biology stems from studies in
vertebrates that link this organelle to developmental processes,
ranging in roles from the control of L-R extra-embryonic nodal
fluid flow, which initiates L-R patterning, to the detection of fluid
flow in the kidney, light perception by photoreceptors in the retina,
and the mediation of morphogenetic signaling pathways (Badano
et al., 2006). Within the last decade, defective cilia have been
linked causally to at least 13 clinically discrete pathologies (Bardet-
Biedl syndrome, Mekel-Gruber syndrome, Joubert syndrome,
Senior-Loken syndrome, Alstrom syndrome, polycystic kidney
disease, nephronophthisis, cholangiopathies, retinitis pigmentosa,
primary ciliary dyskinesia, Hirschsprung disease, oral-facial-digital
syndrome and cancer) (Badano et al., 2006; Brugmann et al., 2010;
Han and Alvarez-Buylla, 2010; Masyuk et al., 2009) and are
predicted to underscore >120 disorders of unknown etiology
(Baker and Beales, 2009).

Cilia-related disease

Most vertebrate cell types can develop a cilium during their life
cycle, a fact highlighted by the finding that both human and mouse
embryonic stem (ES) cells grow a primary cilium in culture (Corbit
et al., 2008; Kiprilov et al., 2008). Although it is unclear why some

cells do not ciliate in a differentiated state, this absence of cilia
appears to be the exception to the rule. Mutations in certain ciliary
genes, such as KIF34 and KIF3B (which encode kinesin family
members 3A and 3B, two proteins that participate in IFT) affect
early developmental processes, such as L-R patterning (Hirokawa
et al., 2006). However, mutations in some genes, such as those
encoding retinitis pigmentosa GTPase regulator (RPGR) and
RPGR-interacting protein 1 (RPGRIP1), which cause retinitis
pigmentosa (Ferreira, 2005), do not result in deleterious effects
until later in development or postnatally. The variance in
phenotypic severity can be attributed to the role of the affected
protein; for example, whether core IFT transport components are
mutated or whether mutations lie in protein cargo destined to the
cilium. In this poster article, we present a snapshot illustrating the
temporal and spatial variables that affect ciliary function and
disease progression in the mouse retina, kidney and embryonic
node. We highlight these specific tissue types to emphasize: (1)
structural deficits: the loss of ciliary/centrosomal proteins leads to
the degeneration of the ciliary axoneme and in turn photoreceptor
death; (2) temporal regulation: the loss of a ciliary protein at
postnatal day (P) 12 can result in cystic tubules within 3 weeks,
whereas loss of the same protein at P14 can take up to 4 months to
cause kidney failure; and (3) mechanosensory and chemosensory
defects: the loss of ciliary proteins can alter responsiveness to
morphogenetic gradients and flow and can lead to situs inversus.

Cilia and developmental signaling

As a signaling conduit, the primary cilium participates in several
signal transduction pathways, including the Hedgehog (Hh), Wnt
(canonical and non-canonical), platelet-derived growth factor
(PDGF) and fibroblast growth factor (FGF) signaling pathways
(Berbari et al., 2009; Gerdes et al., 2009; Gorbatyuk et al., 2007).
We have highlighted the role of the major components of these
pathways on the accompanying poster and provide a summary
below, with the full expectation that additional signaling pathways
will be linked, either directly or indirectly, to the cilium as we come
to understand further the functions and protein content of this
organelle.

Hedgehog signaling

The Hh pathway regulates a broad range of key developmental
activities. In mammals, the pathway is activated by the binding of
the Hh ligands sonic hedgehog (Shh), Indian hedgehog (IThh) and
desert hedgehog (Dhh) to the transmembrane receptor patched
(Ptch) and results in internalization of the receptor/ligand complex.
Smoothened (Smo), which is normally repressed by Ptch, then
facilitates the processing and potential nuclear-cytoplasmic
distribution of Gli transcription factors through suppressor of fused
(Sufu) (Chen et al., 2009; Humke et al., 2010; Lum and Beachy,
2004).

Recent data suggest that Hh signaling is regulated through the
primary cilium. This connection was first established when a
genetic screen to characterize mice with neural tube closure
defects, a process that is mediated by Shh, identified mutants for
components of anterograde and retrograde IFT: If#88, Ift172 and
dynein cytoplasmic 2 heavy chain 1 (Dync2hl) (Huangfu et al.,
2003). Disruption in Kif3a also led to similar patterning defects,
supporting the notion that IFT proteins are necessary for Hh
signaling. Dissection of the IFT-Hh signaling relationship further
revealed that IFT proteins control the function of Gli transcription
factors by regulating Gli repressor (GliR) and activator (GliA)
forms. This observation is best illustrated in some IFT mutants that
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show either a loss (loss of GliA resulting in defective neural
patterning) or gain (loss of GliR resulting in defective limb
development) of Hh signaling phenotypes (Liu et al., 2005; May et
al., 2005).

Interestingly, Hh effectors localize to the cilium where they
transduce the Hh signal. Ciliary targeting of Smo, for example, is
augmented in response to Shh ligand in Madin-Darby canine
kidney (MDCK) and mouse embryonic fibroblast (NIH-3T3) cell
lines (Corbit et al., 2005). Importantly, a ciliary localization motif
in Smo appears to control Smo translocation to the cilium (Corbit
et al., 2005). Subsequent findings have demonstrated that Gli
proteins and Sufu (a negative regulator of Gli) also localize to the
primary cilium where, like other IFT proteins, they regulate
physiological processes such as limb development and cell
migration to the brain and craniofacial skeleton (Corbit et al., 2005;
Han et al., 2008; Rohatgi et al., 2007; Spassky et al., 2008; Tobin
et al., 2008; Willaredt et al., 2008).

Whnt signaling

Similar to the Hh pathway, several Wnt and planar cell polarity
(PCP) components (e.g. adenomatous polyposis coli, Apc; van
gogh-like 2, Vangl2; and B-catenin) have been localized to the
cilium (Corbit et al., 2008; Ross et al., 2005). Loss of ciliary and
basal body proteins results in dysregulation of B-catenin signaling
(Corbit et al., 2008; Gerdes et al., 2007; Lancaster et al., 2011a;
Lancaster et al., 2011b), with concomitant defects in non-canonical
signaling (impaired convergent extension movements, neural tube
closure failure and disorganization of stereocilia in the mouse inner
ear), highlighting an emerging role for the basal body and primary
cilium in Wnt/PCP signaling (Ferrante et al., 2009; Gerdes et al.,
2007; Hunkapiller et al., 2010; Lancaster et al., 2009; McDermott
et al., 2010; Simons et al., 2005).

The physiological relevance of dysregulated Wnt/PCP signaling
is evident in the development and function of several vertebrate
organs, such as kidney, cochlea and neural tube. By patterning the
planar surface of an epithelium or tissue, PCP proteins, such as
disheveled 1 (Dvll), DvI2 and Dvl3, can regulate the apical
movement of basal bodies from deep within the cytoplasm to the
cell surface and, thus, cilia formation and positioning in the
Xenopus mucociliary epithelia (Park et al., 2008). In the mouse
node, the rotational axis of the primary cilium is tilted towards the
posterior side (where velocity of fluid flow is highest), presumably
because the basal body is preferentially located at the posterior side
of node cells (Nonaka et al., 2005; Okada et al., 2005). Recent
evidence suggests that the posterior displacement of centrioles and
of cilia in nodal cells is regulated by the asymmetric localization
of PCP components and the interaction of PCP signals and fluid
flow (Borovina et al., 2010; Guirao et al., 2010; Hashimoto et al.,
2010).

Although evidence for the relationship between Wnt signaling
and the basal body and cilium has been robust, two recent reports
have described normal Wnt signaling in mice with single-gene
mutations in the cilia-associated genes [f188, Ift172, Kif3a and
Dync2hl (Ocbina et al., 2009), and in zebrafish without cilia (for
example, the maternal-zygotic ift§8 mutant) (Huang and Schier,
2009; Ocbina et al., 2009). These data suggest that the previously
published Wnt defects are cilia-independent and represent a
secondary, unrelated function of some basal body/axonemal
proteins. Alternatively, or additionally, the specific genetic lesion
(Lancaster et al., 2011b) and background of the animals used in
these studies might explain why the same assays yielded different
data in different animal colonies. Variable penetrance and

expressivity is a common feature of disease phenotypes across
phyla (most notably in humans) (Nadeau, 2001; Weatherall, 2001);
as such, alleles that exacerbate, or, more excitingly, protect against
defective signaling downstream of ciliary dysfunction might be of
significant medical utility.

Other signaling pathways

Additional receptor-ligand components have been localized to the
cilium. Although their precise roles in this organelle remain to be
elucidated, the examples discussed below reflect our growing
appreciation of the complexity of ciliary signaling.

Somatostatin receptor 3 (Sstr3), melanin-concentrating hormone
receptor 1 (Mchrl) and serotonin subtype 6 receptor (5-HTs) are
G-protein coupled receptors (GPCRs) that localize to the cilium in
neurons (Berbari et al., 2008; Brailov et al., 2000; Handel et al.,
1999). Interestingly, Bardet-Biedl syndrome (BBS) proteins are
required for ciliary function in diverse cell types, and loss of Bbs4
and Bbs2 results in mislocalization of the Sstr3 and Mchrl
receptors and attenuation of GPCR signaling. Given the role of
Mchrl in the regulation of feeding behavior, the depletion GPCRs
from the ciliary axoneme has been linked to the hyperphagia
feeding phenotypes observed in Bbs mutant mice (Berbari et al.,
2008).

Platelet-derived growth factor receptor alpha (Pdgfror) signaling
through the cilium leads to the activation of two pathways: the Akt
and the MEK1/2-ERK1/2 (mitogen-activated protein kinase kinase-
extracellular signal regulated kinase) pathways (Schneider et al.,
2005). Similar to Hh signaling, the localization of Pdgfr to cilia is
necessary for PDGF-A activation in cultured embryonic fibroblasts
derived from orpk mice (Oak ridge polycystic kidney — a mouse
mutant with a hypomorphic f#88 allele) (Schneider et al., 2005;
Yoder et al., 1997). Although these data suggest that Pdgfro. has a
mitogenic signaling role during development, the relevance of this
pathway in vivo is currently unclear.

The established role of FGF signaling in L-R patterning, through
the release of nodal vesicular parcels (NVPs) of Shh and retinoic
acid (Tanaka et al., 2005), has also spearheaded new studies into
understanding the relationship between morphogenetic fields and
ciliary biology. Importantly, transient inhibition of FGF signaling
revealed defects in the release of NVPs and calcium signaling but
not nodal flow, suggesting that FGF and NVP signaling had no
effect on ciliogenesis (Tanaka et al., 2005). However, FGF
signaling has recently been implicated in IFT transport and ciliary
length (Hong and Dawid, 2009; Neugebauer et al., 2009; Yamauchi
et al., 2009). Knockdown studies of both Fgfrl and FGF ligands
cause laterality defects and shortened cilia in the L-R organizer of
both =zebrafish (Kupffer’s vesicle) and Xenopus embryos
(gastrocoel roof plate) (Hong and Dawid, 2009; Neugebauer et al.,
2009; Yamauchi et al., 2009), suggesting that FGF defects might
arise from impaired ciliary function.

Mechanosensation and osmosensation

The discovery that the cation channel proteins polycystin-1 (PC1;
Pkd1l — Mouse Genome Informatics) and polycystin-2 (PC2; Pkd2
— Mouse Genome Informatics) localize to primary cilia in MDCK
cells provided the first evidence that cilia function in mammalian
mechanosensation (Praetorius and Spring, 2001; Praetorius and
Spring, 2003). In the mouse embryonic node, ciliary localization
of PCI and PC2 is crucial for a fluid-induced Ca®" and cyclic
adenosine monophosphate (cAMP) response, influencing cellular
responses during development. Given the essential roles of PC1
and PC2, mutant mouse models reveal disease phenotypes that are
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typically associated with ciliary dysfunction, such as laterality
defects and polycystic kidney disease (McGrath and Brueckner,
2003; Nauli et al., 2003). As PC2 also localizes to motile cilia, it is
likely that PC2 regulates both the motility of cilia and Ca®" levels
at the node (McGrath et al., 2003; Sleigh and Barlow, 1982). The
expression of the purinergic receptors P2X and P2Y, which belong
to a family of cation channels that bind to extracellular nucleotides,
along the ciliary axoneme also mediates changes in intracellular
cAMP levels (Masyuk et al., 2008). Interestingly, components of
the A-kinase anchoring protein (Akap) signaling complex have
been discovered on cilia present on cholangiocytes (bile duct
epithelial cells), further supporting the role of the cilium in
detecting changes in bile flow, and demonstrating how changes in
fluid flow can influence organogenesis (Masyuk et al., 2008).

Osmosensation in cilia is partly facilitated by the expression of
transient receptor potential vanilloid 4 channel (Trpv4), a homolog
of Caenorhabditis elegans osmotic avoidance abnormal family
member 9 (OSM-9). Activation of Trpv4 results in an increase in
intracellular Ca>* concentrations and might influence ciliary beat
frequency and ductal bile formation (Gradilone et al., 2007;
Lorenzo et al., 2008).

Perspectives

Our understanding of the role of the cilium in developmental
genetics and in human disease has advanced significantly in recent
years. Over the next ten years, we are likely to witness more
discase states associated with dysfunctional cilia (Baker and
Beales, 2009; Gilissen et al., 2010; Walczak-Sztulpa et al., 2010),
providing additional avenues by which to link developmental
processes to disease pathology. Given the diversity of cilia and the
unique composition of protein complexes at the transition zone in
different tissue types (Garcia-Gonzalo et al., 2011), the
spatiotemporal and genetic context-dependent functions of cilia
will need to be examined. This is particularly pertinent in light of
recent findings, which show Smo-dependent and -independent
(potentially cilia-dependent and -independent) regulation of
tumorigenesis (Han et al., 2009; Wong et al., 2009) and the
discrepancy of Wnt phenotypes in some IFT mutant models
(Huang and Schier, 2009; Ocbina et al., 2009). Finally, given the
localization of IFT proteins in other non-ciliary compartments, such
as the Golgi complex (Follit et al., 2006), and in non-ciliated cell
types, such as lymphocytes (Finetti et al., 2009), we must be
careful not to link all IFT mutant phenotypes to ciliary dysfunction,
as it is likely that a subset of ciliary proteins will have distinct
subcellular roles in cycling and non-cycling cells (Delaval et al.,
2011).
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