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SUMMARY
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ientation of the apical-basal cell division plane is defined by the
cell fate determinants (CFDs), e.g. Numb and Par proteins. Intrinsic
Ds are asymmetrically localized in dividing cells, and
prentially segregate into one of two sibling daughters in order
ediate asymmetric divisions (Betschinger and Knoblich, 2004).
The regulation of spindle orientation is often associated with cell
polarity regulation in polarized cells in model organisms. The
orientation and positioning of mitotic spindles, which determine the
plane of cell division, are tightly regulated in polarized cells such
as epithelial cells by intrinsic and extrinsic cues, e.g. cell
polarity/geometry. Orientation of mitotic spindle and cell division
axis can impact normal physiological processes, including
epithelial tissue branching and differentiation (Betschinger and
Knoblich, 2004). Despite their likely importance for lung
branching, little is known about cell polarity and spindle
orientation, and factors/mechanisms that regulate these processes
are not well understood in the embryonic lung epithelium.

The Eyes Absent (Eya) proteins possess dual functions as both
protein tyrosine phosphatases and transcriptional co-activators, and
are involved in cell-fate determination and organ development
(Jemc and Rebay, 2007). In mammals, Eyal-4 and sine oculis (Six)
family genes exhibit synergistic genetic interactions to regulate the
development of many organs (Xu et al., 1997a; Xu et al., 1997b;
Ford et al., 1998; Coletta et al., 2004). Eyal~~ and SixI”~ mouse
embryos have defects in the proliferation/survival of the precursor
cells of multiple organs, and die at birth (Xu et al., 1999; Xu et al.,
2002; Li et al., 2003; Zou et al., 2004). The phosphatase function
of Eyal switches Six1 function from repression to activation in the
nucleus, causing transcriptional activation through recruitment of
co-activators, which provides a mechanism for activation of
specific gene targets, including those regulating precursor cell
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proliferation/survival during organogenesis (Li et al., 2003).
Although Eyal transcriptional activity has been extensively
characterized, little is known about the targets and functions of its
phosphatase activity. Moreover, the physiological requirements for
Eyal phosphatase activity in the lung epithelium remain obscure.

Herein, we show that Eyal is located in the distal epithelium,
wherein it regulates cell polarity, spindle orientation, and both
aPKCC phosphorylation and Numb segregation. Interfering with
Eyal function in vivo or in vitro results in defective cell polarity,
spindle disorientation and Numb segregation into both daughters,
as well as inactivation of Notch signaling in embryonic lung
epithelium. Furthermore, activation of Notch signaling in Eyal™~
distal epithelium partially rescues Eya/~~ embryonic lung epithelial
defects.

MATERIALS AND METHODS
Animals
Eyal™, Spc-rtTA""~ and Notchl conditional transgenic (NICD) mice, and
their genotyping have been published (Xu et al., 1999; Xu et al., 2002; Perl
et al., 2002; Yang et al., 2004). Wild-type littermates were used as controls.
Conditional NICD;Eyal*’~ female mice were generated by intercrossing
Eyal'~ mice with NICD mouse strain. Eyal*"Spc-rtTA" " tet(o) Cre"~
mice were generated by intercrossing Eyal*’~ mice with Spe-rtta*™ tet(o)
Cre'”* mouse strain previously generated in our laboratory. The resultin
Eyal™ Spc-rtTA* tet(o) Cre"’~ mouse males were intercrossed witl
NICD;Eyal™"~ females to increase Notchl activity in the distal epitheliu
of mutant lungs by generating NICD-Eyal™; Spc-rtTA* tet(o) Cre*’~
mutant mice for analysis. Pregnant NICD;Eyal*"~ females were maintained
on doxycycline (DOX) containing food (Rodent diet with 0.0625%
Doxycycline, Harlan) from E6.5 till sacrifice. Ten compound mutant
embryos, which showed more increase of pulmonary Notchl g
than Eyal~" littermates, were generated at expected Mendelian
examined at different stages.

Phenotype analyses, antibody staining, western blot and
immunoprecipitation

Antibody staining on paraffin sections or fixed MLE-15
and immunoprecipitation were performed in triplicates
available antibodies following the manufacturer’s ins
protocols as described previously (Tefft et al., 20,

lungs using the method of Dobbs et al. (Dobb
for 24 hours. The cells were lysed in RIPA
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experiments, there is
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efficiency was analyzC8 gtern blot/immunostaining of targeted
protein. In addition, we used al ion vector encoding a VP16 fusion
protein, and the transfection e was further monitored by

fluorescence staining using anti-VP16 antibody. aPKCC inhibitor was used

at a concentration of 50 umol/l, atw
cytotoxicity [as reported i
Buteau et al., 2001)].

ich it is effective without displaying
stems (Davies et al., 2000;

Quantification of LG
orientation and statj
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ed by phospho-histone3/
A/lnsc localization and
ed previously (Lechler and
ed as described previously

d, other members of the protein phosphatase
phosphatase 2A, are crucial regulators of cell
rientation and cell fate in Drosophila neural
a et al., 2009; Wang C. et al., 2009). In this study,
sed as the developmental stage of choice to analyze
the behavior of distal epithelium because cell proliferation and
expression of progenitor cell markers Sox9, Id2 and N-myc (Mycn
renome Informatics) are relatively high. In addition,
1~ early lung development is normal and Eyal~~ epithelial lung
enotype is evident at E14-E14.5, as discussed later.

The polarity proteins LGN (Gpsm2 — Mouse Genome
aformatics), NuMA (Numal — Mouse Genome Informatics) and
regulate mitotic spindle orientation during epithelial
notphogenesis (Siller and Doe, 2009; Zheng et al., 2010).
pithelial cells in interphase or undergoing lateral/planar divisions
have a diffuse or basolateral localization of LGN, whereas cells
undergoing perpendicular (i.e. apical-basal) divisions have LGN
only at the apical cell side (Lechler and Fuchs, 2005). In wild-type
lungs, an apical staining of anti-LGN labeling was seen at the
cortex of most mitotic cells of distal epithelial tips (Fig. 2A,A",J),
which are highly mitotic (Bishop, 2004).

In Eyal™" distal epithelial tips, no apparent changes in LGN,
NuMA, Par3 and Insc expression levels were observed (Fig. 1G),
and most mitotic cells had a diffuse, basolateral or basal
localization of LGN (Fig. 2B,B’,K). Closer inspection revealed that
cells with an apical localization of LGN accounted for about
86+5.0% of all mitoses in wild-type tip cells, but in Eyal~~ distal
epithelial tips, this number decreased markedly to about 5.0+4.0%
(Fig. 2C; P<0.05). These quantified data are further presented in
the diagrams in Fig. 2J,K, in which each dot represents the centre
of an LGN localization in a mitotic cell. Concomitantly, and as
shown in Fig. 2M, spindle orientations were overwhelmingly
lateral in Eyal™ (i.e. parallel to the basement membrane), as
measured in mitotic cells at most distal epithelial tips in Eyal~~
compared with control lungs (Fig. 2L) and following methods
described by Lechler and Fuchs (Lechler and Fuchs, 2005).
Similarly, most Eyal~" distal epithelial cells had a diffuse or
basolateral localization of NuMA and Insc, which were apically
localized in wild-type lungs (Fig. 2D-I; 87.0+6.0% versus 7+5.6%,
respectively; P<0.05), suggesting that Eyal deletion changes cell
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polarity/spindle orientation and induces lateral (i.e. planar) cell
divisions. Similarly, interfering with Eyal functions disrupted
asymmetric localization of Par, myosin I1Ib (Myh10 —0Mg

To facilitate quantification of cells dividing perpendicu
versus laterally, we stained E14 Eyal”~ distal epithelium
centrosomes with anti-pericentrin antibody. Then, _zai

perpendicular spindle alignments in mitotic cells
were oriented at 0+30° to the basement mem}
parallel; those that were oriented at 90+
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membrane, while about 12+5% mitotic ,
ild-type cells where

appeared perpendicular in contrast
perpendicular alignments were abun,

and Numb regulates the
epithelial cells in vitro d
phosphatase activity
Next, we addressed whether
in the regulation of spindle,
lung epithelial
ecause of their
and progenitor/

Fuchs, 2005), LGN,
polarized  distribuj
asymmetrically to,
positioned direct

d a mitosis-specific
, often localizing
tx with one of the spindle poles
which indicates a perpendicular
alignment of the spindle (S A,B,J,K,L in the supplementary
material). Knock-down of Insc, 8 or Numal function caused
obvious mitotic defects, as judged by the misoriented and disrupted

espread expression of
ithelium and
b-£12.0 (arrowheads),
yal signals in the
12.5-E14.0 (B,C;
mmunofluorescence
umb expression at E11.5-
elium (D), and strong

ble arrowheads) rather than
helium (inset b” in E;
from E13-E13.5. (G) Western

itotic spindles in transfected cells, compared with
A-transfected cells (Fig. 3A-D and data not shown).
, Eyal expression did not apparently change after
ith the function of different polarity proteins in vitro (see
. S2Q-U in the supplementary material).

We next test Eyal functions in controlling spindle-orientation-
egulatory proteins in culture. Although polarization of LGN,
MA and Insc in culture was more variable, it was observed in at
60+7% and sometimes as many as 73+6% of mitotic MLE-
S Cells (see Fig. S2IM in the supplementary material). Upon Eya!
ockdown, LGN/Insc/NuMA/Par3 were seen at both apical and
basal cell sides or were diffuse (see Fig. S2C,D,N-P in the
supplementary material). Thus, the percent of cells with a polarized
localization of LGN/NuMA/Insc greatly decreased upon Eyal
knockdown to about 6-8%. Rescuing Eyal function by expressing
wild-type murine Eyal construct, not targeted by the siRNAs, into
these siRNA-transfected cells rescued the polarized distribution of
LGN/NuMA/Insc proteins (see Fig. S2I,M in the supplementary
material), while a phosphatase-dead mutant Eyal failed to rescue
(examples are shown for LGN in Fig. S2A,C-H in the
supplementary material). This suggests that the polarized
localization of LGN/Insc/NuMA/Par, and hence proper spindle
orientations are dependent on Eyal phosphatase activity.

The polarity protein Numb is essential in maintaining vertebrate
epithelial progenitors by allowing cells to choose progenitor over
differentiation fates, and specifies cell fate by repressing Notch
signaling (Petersen et al., 2004; Betschinger and Knoblich, 2004;
Hutterer and Knoblich, 2005). We therefore investigated Numb
functions in epithelial cell differentiation versus proliferation by
staining MLE15 cells for SP-B (Sftpb — Mouse Genome Informatics)
and Sox9, which are markers for epithelial differentiation and
progenitor cells, respectively. As shown in Fig. 3E-I, the number of
Sox9-positive cells increased fivefold (9.0+2.0% versus 50.3+5.0%,
respectively; P<0.05), while SP-B-positive differentiated cells greatly
decreased upon knockdown of Numb (60.0+4.0% versus 12.5+5.0%,
respectively; P<0.05). Moreover, Notch signaling was activated upon
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cells, which is necessary to maintain Numb asymmetric segregation
into one of the daughter cells and its function as a cell fate
determinant (Smith et al., 2007; Wang Z. et al., 2009).

The disrupted cell polarity, mislocalized Par3/6 and increased
lateral (planar) divisions in Eyal~" mitotic distal epithelium (Fig.
2; see Fig. S1 in the supplementary material) raise the possibility
that Numb segregation/functions are disrupted in these cells, which
result in distribution of Numb equally to their two daughters at
cytokinesis after Eyal deletion. To test this possibility, we first
examined Numb distribution in distal epithelial tips (Fig. 4). Numb
concentrates in the cell-cortex area overlying one of the two spindle
poles and is preferentially inherited by one of the two daughter
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Hes-5 staining for experiments showing in J-M. (P) Quantitation of Hes-1-
cells, of the experiments shown in J-K. In O,P, Error bars indicate s.e.m. Scale

staining was cortical and started to be confined to one side of the
cell at prophase, then localized asymmetrically in metaphase/
anaphase, and was inherited by one daughter cell in anaphase/
telophase in most mitotic cells (Fig. 4M). Upon Eyal knockdown,
Numb staining was diffuse in the cytoplasm at prophase and
became cortical later in metaphase (Fig. 4N). Numb failed to
localize asymmetrically in metaphase, and was inherited by both
daughters in anaphase/telophase in most mitotic cells (Fig. 4N).
In mammalian epithelium, phosphorylation of phosphotyrosine-
binding domain is essential for asymmetric localization of Numb
to the cortical membrane (Dho et al., 2006; Smith et al., 2007). We
therefore tested whether Numb phosphorylation changed in Eyal~~
lungs. Numb proteins were detected as two bands, with the higher
band representing the modified form of Numb (Rhyu et al., 1994).
If Numb phosphorylation changes, the modified form of Numb,
which is the putative phosphorylated form, will increase in
Eyal™ lungs. Indeed, phosphorylated Numb increased in E14-
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the cytoplasm/cell membrane as small puncta and exhibited
increased Ser295 phosphorylation (Fig. 5B,H,R). In the rescue
experiments, re-expression of wild-type Eyal, not targeted by the
siRNAs, rescued the polarized distribution and phosphorylation
level of Numb, whereas re-expression of the tyrosine-phosphatase-
dead mutant Eyal did not (Fig. 5C,D,L,J,R). This suggests that
Numb phosphorylation is Eyal dependent.

Recently, we reported that Eyal controls the balance between
self-renewal and differentiation of distal epithelial cells, where
progenitor cells greatly decreased in number while differentiated
cell number increased in Eyal~~ embryonic lung epithelium. In
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fivefold (9.0£5.0% versus 50+7.0%, P<0.05), while SP-B-positive
differentiated cells decreased (60.0+£4.0% versus 12-1443.0%,
respectively; P<0.05) following, respectively, Numb knockdown or
Eyal overexpression in MLE-15 cells. Overexpression of Eyal,
together with the knockdown of Numb in MLEILS cells led to a
greater increase in the number of Sox9-positive cells (eightfold),
and a more severe decrease in the number of SP-B-positive cells
(45%; Fig. 5Q) compared with control cells.
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confirmed by inhibiting aPKCC activity in EyalsiRNA-transfected
MLEI15 cells, which rescued the polarized distribution and
phosphorylation level of Numb (compare Fig. 5A,B,G,H with
5E.K,R).

We next assessed Eyal phosphatase activity on aPKCE by co-
immunoprecipitation. The endogenous aPKCC forms a complex
with Par3/Par6/Numb, which binds to LGN/Insc/NuMA in
epithelial cells (Lechler and Fuchs, 2005; Suzuki and Ohno,
2006; Nishimura and Kaibuchi, 2007). Expectedly, Eyal co-
immunoprecipitated aPKCC and other polarity proteins in AEC2
cell lysate (Fig. 5S). To determine whether Eyal binds to aPKCC-
Par-Numb/polarity protein complex by binding to aPKCE, we
performed Eyal/aPKC{ co-immunoprecipitation studies and
analyzed other polarity proteins in cells treated with aPKCEsiRNA.
Indeed, co-immunoprecipitation of Eyal, Numb, Par/polarity
proteins was not observed after aPKCC knockdown, but was
observed after knocking down Numb or other polarity proteins
(Fig. 5T).
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Numb functions as a neg ator of Notch in mammals and
Drosophila (French et al., 20023 uette and Raff, 2002), and
inactivated Notchl signaling in MLE15 lung epithelial cells (Fig.
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3J-P). As Eyal controlled Numb segregation/function (Figs 4, 5),
we next investigated whether Eyal also regulates Notch signaling
in distal lung epithelium.

Signals for activated (cleaved) Notchl and for its downstream
transcriptional targets Hesl and Hes5 were strong in wild-type
distal epithelium, but greatly decreased in Eyal~" distal epithelium
(Fig. 6A-F). This was also shown by immunoblot analysis (Fig.
6G). Similarly, activated Notchl expression decreased after Eyal
knock-down in MLE-15 cells (Fig. 61,J,H). Rescuing Eyal function
by expressing wild-type murine Eyal construct, not targeted by the
siRNAs, into these siRNA-transfected cells rescued the expression
levels of activated-Notch1, while a phosphatase-dead mutant Eyal
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failed to rescue (Fig. 6K,L,H). Interestingly, inhibition of aPKC
activity in EyalsiRNA-transfected cells led to near-Eyal wild-type
transfected level of activated Notchl (Fig. 6K,M,H).

To determine whether Numb is involved in Eyal control of
Notch signaling in the lung epithelium, we tested whether the
magnitude of Eyal effects on Notch activity in MLELS cells
changes in a Numb knockdown background. As shown in Fig.
6N,R,S, T, Hesl nuclear signal levels and Hesl-positive cells
greatly increased, and were higher than Hesl signals/number after
either Eyal overexpression (Fig. 6Q,N,S,T) or Numb knockdown
(Fig. 3J,K,N-P), carried out separately in MLEI1S5 cells.

Genetic activation of Notch signaling in Eya1~-
lungs partially rescues epithelial progenitor
defects and branching phenotype

Notch signaling promotes progenitor cell identity at the expense of
differentiated cell phenotypes (Jadhav et al., 2006; Mizutani et al.,
2007). It also controls cell fates in developing airways (Tsao et al.,
2009), while Notch activation inhibits the differentiation of distal
lung progenitors into alveolar cells (Guseh et al., 2009). Loss
of epithelial progenitors from E14-E14.5, reduced epithelial
branching/lung size and increased epithelial differentiation are
major Eyal”" lung phenotypes (Fig. 7A-E,LI,N,0,S,T; see Fig. S
in the supplementary material) (El-Hashash et al., 2011). Wi
therefore tested the hypothesis that inactivation of Notch signalin;
causes the epithelial defects in Eyal”~ embryos by conditional
genetic increase of Notchl levels in Eyal~" lung epithelium, using
NICD; Spe-rtTA™ tet(O) Cre*Eyal™" compound mutant mice. No
changes in lung phenotype or gene/protein expression wergsenide
in controls: DOX-fed Spc-rtTa and Spc-rtTa-tet(O) Cre i
not shown).

compound mutant lungs versus Eyal}
but substantial rescue of the Eyal~~
Finally, we examined whether th

blunted in a Notchl knockdown
shown in Fig. 7C, Notchl k
progenitors (60%; 10+£3.0% ve;
positive differentiated ce
respectively; P<0.05). By

kground in MLE-15 cells. As
down reduced Sox9-positive

B was restored into t
Numb siRNA and wi
overexpressing cell

ector versus Eyal-

DISCUSSION
The function and growt onary epithelial cells lining the
distal tubes/air sacs depend of polarity, which its loss is
involved in lung cancers, chronic obStructive pulmonary disease

and disruption of lung epitheligl d 1ﬂ‘erent1at10n (Matsui et al., 1999;

ains uncharacterized in lung
distal lung epithelium,
pool (Rawlins et al.,
dicular divisions that

itotic spindle
# lung epithelium
Mammalian osphatgse has been implicated in cell

polarlty, be

r the maintenance of cell polarity
f distal epithelium. Eyal~" distal

indle orientation? From the present study, Eyal
his effect by influencing multiple processes,
I cell localization of Par, Insc, LGN and NuMA
¢ evolutionarily conserved and essential for the
1 polarity/spindle orientation, as well as aPKCZ/
osphorylation (discussed below). In mammalian
epithelium, the Par3/6 proteins localize predominantly to apically
t junctions and bind to aPKCC, Insc and LGN. This
ding is crucial for the establishment of epithelial polarity and
Or apical-basal/perpendicular spindle orientation (Macara, 2004;
uzuki and Ohno, 2006; Siller and Doe, 2009). Thus, the proper
acalization of aPKCC-Par3/6-LGN-Insc polarity complex is crucial
ell polarization (Ohno, 2001). Our findings that Eyal may
bigd to aPKC( and that Eyal deletion causes mislocalization of
fir/Insc/LGN, together with increased planar cell divisions at the
expense of perpendicular/apical-basal division (Figs 2, 5; see Figs
S1, S2 in the supplementary material), provide strong evidence that
Eyal is indeed required for controlling cell polarity and spindle
orientation in the embryonic lung.

Eya1 regulates Numb segregation and Notch
signaling in distal lung epithelium
Notch signaling is used for cell fate determination throughout the
animal kingdom, and differences in Notch activity between two
daughter cells determine their future fates. Thus, Notch signaling
promotes progenitor cell identity at the expense of differentiated cell
phenotypes (Jadhav et al., 2006; Mizutani et al., 2007). Differences
in the Notch activities between two daughter cells can be specified
by the asymmetric localization and inheritance of Numb, a negative
regulator of the Notch pathway (Guo et al., 1996; Cayouette et al.,
2001; Petersen et al., 2002; Shen et al., 2002). In the embryonic lung,
Notch signaling controls cell fates in developing airways (Post et al.,
2000; Tsao et al., 2008; Tsao et al., 2009), and Notch activation
inhibits the differentiation of distal progenitors into alveolar cells
(Guseh et al., 2009). Yet the role of asymmetric segregation of cell
fate determinant/Notch inhibitor Numb during lung development,
and the way the process might be regulated are still unknown.
Herein, the failure of polarized Numb localization after Eyal
knockout/knockdown (Figs 4, 5) supports our conclusion that one
of the principal functions of Eyal is the regulation of asymmetric



Eya1-mediated control of embryonic lung epithelium

RESEARCH ARTICLE 1405

Numb localization/segregation in mitotic lung epithelium. This
is further confirmed by our finding that Eyal phosphatase
controls aPKC{ phosphorylation, which is essential for Numb
phosphorylation and asymmetric localization/segregation (Dho et
al., 2006; Smith et al., 2007), as reported for other phosphatases
(Nunbhakdi-Craig et al., 2002). Indeed, aPKCC-dependent
phosphorylation of Numb inhibits its cortical/polarized localization
(Casanova, 2007). Increased Numb expression in Eyal”~
epithelium provides further evidence, because Numb localization
is also inhibited upon overexpression of the protein, presumably as
a result of saturation of the localization machinery (Rhyu et al.,
1994). Upon overexpression, Numb is segregated into both
daughter cells that then adopt the fate of the daughter that normally
inherits Numb (Rhyu et al., 1994). Moreover, mislocalization and
perturbation of Par3/6 and myosin IIb, together with inactivation
of Notch signaling, in Eyal™" lungs further support our hypothesis
of Eyal control of Numb segregation/expression, because myosin
IIB and Par proteins regulate Numb asymmetric segregation/
localization (Barros et al., 2003; Betschinger and Knoblich, 2004).
Moreover, high levels of Notch activation cause a reduction in
Numb protein levels (Chapman et al., 2006).

Furthermore, the lack of polarized Numb localization, and
consequently loss of the difference in Numb levels between tw
daughter cells (both inherit Numb) may be responsible for th
failure of Eyal™ cells to upregulate Notch signaling pathway an
hence to execute the epithelial progenitor cell self-renewal program
at distal tips. This may explain enhanced epithelial differentiation
and the great reduction of both Notch activity and expression of
epithelial progenitor cell markers in the Eyal™" lung (FigseaZs

in daughter cells acts to inhibit Notch signaling (Chapma
2006). Consistent with our results, Eyal abrogation inhibits

neuronal differentiation, but expand the pool
neuronal progenitors (Schlosser et al., 2008).
genetically increasing Notch activity in Eyal™;
rescues the abnormal lung epithelial phenotyp
Fig. S3 in the supplementary material) provid
Eyal is indeed required for controlling No
ensure appropriate self-renewal/differ
epithelium. Whether Eyal directly or i
signaling will be the subjects of future

specific functio
theless, the Eyal mutants
el for congenital lung

epithelial cell development.
reported herein provide a new
hypoplasia/malformations a
mechanisms that control lun
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ansion of the progenitor cell
et al., 2008). No reports about ACD
in the embryonic lung have gred as yet to our knowledge, but
our study provides some evid p suggest that distal lung
epithelial cell populations that contain progenitor cells (Rawlins et
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