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FGF/EGF signaling regulates the renewal of early nephron
progenitors during embryonic development

Aaron C. Brown', Derek Adams', Mark de Caestecker?, Xuehui Yang', Robert Friesel' and Leif Oxburgh®*

SUMMARY

Recent studies indicate that nephron progenitor cells of the embryonic kidney are arranged in a series of compartments of an
increasing state of differentiation. The earliest progenitor compartment, distinguished by expression of CITED1, possesses greater
capacity for renewal and differentiation than later compartments. Signaling events governing progression of nephron progenitor
cells through stages of increasing differentiation are poorly understood, and their elucidation will provide key insights into
normal and dysregulated nephrogenesis, as well as into regenerative processes that follow kidney injury. In this study, we found
that the mouse CITED1* progenitor compartment is maintained in response to receptor tyrosine kinase (RTK) ligands that activate
both FGF and EGF receptors. This RTK signaling function is dependent on RAS and PI3K signaling but not ERK. In vivo, RAS
inactivation by expression of sprouty 1 (Spry7) in CITED1* nephron progenitors results in loss of characteristic molecular marker
expression and in increased death of progenitor cells. Lineage tracing shows that surviving Spry7-expressing progenitor cells are
impaired in their subsequent epithelial differentiation, infrequently contributing to epithelial structures. These findings
demonstrate that the survival and developmental potential of cells in the earliest embryonic nephron progenitor cell

compartment are dependent on FGF/EGF signaling through RAS.
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INTRODUCTION

Nephrogenesis serves as an important model system for the study
of mesenchymal-epithelial interactions in development. Both
organ culture and gene inactivation studies have provided a
detailed understanding of many interactions between the
nephrogenic mesenchyme and ureteric bud that underlie the
development of the fully formed organ (Grobstein, 1953;
Grobstein and Dalton, 1957; Vainio and Lin, 2002). These
investigations have recently been complemented with high-
resolution mapping of gene expression and demonstrate that the
population of nephron progenitor cells capping the ureteric bud
(the ‘cap mesenchyme’) can be divided into a series of
subcompartments based on the expression of distinct
transcriptional regulators (Boyle et al., 2008; Brunskill et al.,
2008; Kobayashi et al., 2008; Mugford et al., 2009). Expression
of the transcriptional co-factor CITEDI characterizes early
nephron progenitors, whereas loss of CITEDI and gain of the
LEF1 transcription factor define the pretubular aggregate
compartment that precedes epithelialization of the nascent nephron
during differentiation. The functional significance of division of
the cap mesenchyme into discrete progenitor cell compartments is
at present not fully understood. One possibility is that early
CITEDI1" progenitors are resistant to the inductive activities of
Whnt signaling because they do not express the Wnt transcription
factor LEF1. Insulation from inductive signals would ensure the
maintenance of a progenitor cell pool for continued rounds of
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nephron differentiation. Compartmentalization, which is a feature
of numerous progenitor cell niches in the adult, prevents
premature exhaustion of the highest order progenitors, and it is an
intriguing possibility that progenitor cell organization in the
developing kidney might fit this paradigm (Greco and Guo, 2010).

Previous investigations identified a number of genes required for
nephron progenitor cell maintenance. Within nephrogenic
mesenchyme, expression of the W/ transcription factor is essential
for mesenchyme survival, whereas Six2 is crucial for self-renewal
and is required to suppress the premature differentiation of nephron
progenitor cells (Kobayashi et al., 2008; Kreidberg et al., 1993;
Self et al., 2006). Eyal, which lies upstream of Six2, is necessary
for induction of the mesenchyme (Kiefer et al., 2010;
Nishinakamura et al., 2001; Xu et al., 1999). Genetic inactivation
of Bmp7, which is expressed both in cap mesenchyme and ureteric
bud tissue, results in reduced proliferation and premature depletion
of nephron progenitor cells (Blank et al., 2009; Dudley et al., 1995;
Luo et al., 1995). Inactivation of FGF receptors 1 and 2 in
nephrogenic mesenchyme completely abrogates its growth,
suggesting an essential role for FGF signaling (Poladia et al.,
2006). FGF2 is secreted from the ureteric bud and recombinant
FGF2 maintains nephrogenic mesenchyme in culture, making it an
attractive candidate signal for progenitor cell maintenance in vivo
(Plisov et al., 2001). However, the lack of a kidney development
phenotype in the Fgf2 null mouse argues that a group of redundant
ligands might be responsible for progenitor maintenance (Dono et
al., 1998; Ortega et al., 1998).

Although genetic and biochemical studies have revealed
essential functions for specific genes and pathways in maintenance
of the cap mesenchyme as a whole, we have yet to define the
pathways required for the maintenance of specific progenitor
subcompartments. In this study, we utilize a recently established
system for the culture of primary cells derived from the mouse
embryonic kidney to screen for growth factors that promote
maintenance of the early CITED1" nephron progenitor cell
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compartment. We find that a specific group of FGF and EGF
ligands supports CITED1" progenitor maintenance by means of the
intracellular signaling mediator RAS (HRAS1 — Mouse Genome
Informatics). We test this hypothesis in vivo by driving
overexpression of sprouty 1 (Spryl), an inhibitor of the receptor
tyrosine kinases (RTKs) that activate RAS, specifically in the
CITED1" progenitor compartment. We find that progenitor cell
survival is impaired and that there is a reduced contribution of
Spryl-expressing progenitors to the development of epithelial
structures.

MATERIALS AND METHODS

Cell culture

Nephrogenic zone cells (NZCs) were extracted from E17.5 mouse kidneys
and cultured as previously described (Blank et al., 2009). Growth factors
used are listed in Table 1. The FGF inhibitor PD173074 (50 nM, Sigma),
RAS inhibitor FPT III (25 uM, EMD Biosciences), PI3K inhibitor
LY294002 (50 uM, Cell Signaling Technology) and ERK activation
inhibitor peptide I (2.5 uM, EMD Biosciences) and Wnt inhibitor IWR1
(10 uM, Tocris Bioscience) were used at concentrations verified by the
respective vendors to be specific for the kinases under study, with limited
off-target effects.

Immunofluorescence, X-gal staining and microscopy

Monolayer cells were fixed and stained as previously described (Blank et
al., 2009). Antibodies used were: CITED]1, 1:100 (NeoMarkers); SIX2,
1:50 (Santa Cruz Biotechnology); LEF1, 1:50 (Cell Signaling Technology);
PAX2, 1:100 (Invitrogen); pHH3, 1:100 (Cell Signaling Technology); GFP,
1:100 (Abcam); and WTI, 1:100 (Santa Cruz Biotechnology). Paraffin
sections were immunostained as previously described (Blank et al., 2009).
Immunofluorescence was quantified by measuring the integrated density
using ImagelJ. Values were normalized to the number of DAPI-stained
nuclei in each field. X-gal staining was performed as described (Dudley et
al., 1995).

Table 1. Growth factors used in this study

Quantitative (q) PCR

RNA was extracted from NZCs plated in monolayer derived from pools of
E17.5 mouse embryonic kidneys using the RNeasy Micro Kit (Qiagen).
cDNA synthesis was performed using qScript cDNA SuperMix (Quanta
Biosciences). qPCR was carried out using iQ SYBR Green Supermix (Bio-
Rad). Each assay was performed in triplicate and fold changes were
calculated using the AACT method, normalized to endogenous Actb levels
and displayed relative to the controls. Specificities of primer sets were
determined by melt curve analysis on qPCR-generated amplicons. Average
values (+ s.d.) of three technical replicates from NZCs of 20-24 pooled
embryonic kidneys are shown in the figures.

Statistics

P-values for protein quantitation of immunofluorescent images and
TUNEL staining were derived using a two-tailed homoscedastic Student’s
t-test. For qPCR, owing to the differing variance of data points as the cycle
threshold increases, P-values shown were calculated using a two-tailed
heteroscedastic Student’s z-test. P<0.05 was considered significant. The
standard deviation was calculated for technical replicates derived from
NZCs of 20-24 pooled kidneys or the standard error was calculated for true
biological replicates derived from independent mice.

Adenoviral vectors and transduction

Transduction with adenovirus was carried out as previously described
(Blank et al., 2009) for 24 hours with a multiplicity of infection of 500 in
fibronectin-coated wells using serum-free medium.

Mouse strains and tamoxifen injection

Animal care was in accordance with the National Research Council Guide
for the Care and Use of Laboratory Animals and protocols were approved
by the Institutional Animal Care and Use Committee of Maine Medical
Center. NZCs were derived from kidneys of E17.5 ICR mice. Cited!-
CreER™ mice, R26R"““” mice and Spryl-overexpressing transgenic mice
are maintained on an FVB/NJ background (Soriano, 1999; Boyle et al.,
2008; Yang et al., 2008). Pregnant mice were injected at the times indicated
with 6 mg tamoxifen in corn oil per 40 g mouse.

Growth factor Validated range for biological activity

Concentration used

Biglycan (BGN) 2-8 ug/mi
BMP4 10-30 ng/ml
BMP7 100-600 ng/ml
DKK1 0.8-4 ug/ml
EGF 0.1-0.4 ng/ml
FGF1 0.1-200 ng/ml
FGF2 0.5-2.5 ng/ml
FGF7 10-50 ng/ml
FGF8b 1-3 ng/ml
FGF9 1-5 ng/ml
FGF10 20-100 ng/ml
FGF12 1.6-100 ng/ml
FGF20 0.2-1 ng/ml
GDF11 2-8 ng/ml
GDNF 5-10 ng/ml
IL6 0.2-0.8 ng/ml
Inhibin, beta A (INHBA) 0.5-2 ng/ml
Insulin (INS) 0.001-20 pg/ml
LIF 5 ng/ml
MDK 0.1-10 ng/ml
NOG 0.006-0.3 ug/ml
PDGF-BB 1.5-6 ng/ml
PLGF 0.1-5 ng/ml
All-trans retinoic acid (RA) -

SCF 2.5-5 ng/ml
TGFo 0.2 ng/ml
TGFp1 0.04-0.2 ng/ml
TGFB2 0.1-0.3 ng/ml
VEGFA (165) 1-6 ng/ml
WNT4 15-60 ng/ml

2 ug/ml
50 ng/ml
50 ng/ml
1 ug/mi
100 ng/ml
25-100 ng/ml
25-100 ng/ml
25-100 ng/ml
25-100 ng/ml
25-100 ng/ml
25-100 ng/ml
25-100 ng/ml
25-100 ng/ml
100 ng/ml
50 ng/ml
20 ng/ml
40 ng/ml
10 ug/ml
20 ng/ml
7 nM (98.3 ng/ml)
1 ng/ml
100 ng/ml
20 ng/ml
200 nM
500 ng/ml
100 ng/ml
50 ng/ml
0.67 ng/ml
100ng/ml
50 ng/ml
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RESULTS A primary screen for effects on proliferation was conducted by
FGF/EGF signaling maintains an early nephron measuring phospho-histone H3 (pHH3)-positive nuclei in cultured
progenitor phenotype NZCs. Compared with untreated controls, FGF2 was the most

To identify signaling pathways that promote renewal of early  potent proliferative factor after 24 hours, increasing proliferation
nephron progenitor cells, a recently established ex vivo by over 300%, followed by TGFo, BMP7 and EGF (Fig. 1A).
nephrogenic zone cell (NZC) culture system was used to screen a ~ Morphologically, cultures treated with FGF2 showed increased
panel of factors with known expression and/or function in kidney  spreading, cellularity and attachment of NZCs to the well surface
development (Table 1) (Blank et al., 2009). Briefly, the capsules of  at 24 hours (Fig. 1A, inset).

embryonic day 17.5 (E17.5) mouse kidneys are removed and the Nephron progenitor cells are arranged into distinct compartments
underlying nephron progenitor cells and cortical interstitial cells are ~ within cap mesenchyme, with expression of the transcriptional
enzymatically separated from ureteric bud structures. The liberated ~ coactivator CITED]1 identifying the earliest nephron progenitor
nephron progenitor cells and cortical interstitial cells (collectively  cells and the B-catenin-interacting transcription factor LEF1
the NZCs) are then cultured in serum-free conditions on  marking the more differentiated pretubular aggregate cells (Fig.
fibronectin-coated plates in the presence or absence of candidate ~ 1B) (McMahon et al., 2008; Mugford et al., 2009). Analysis of
growth factors. CITEDI protein expression in growth factor-treated NZC cultures
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Fig. 1. FGF/EGF signaling maintains an early nephron progenitor phenotype in vitro. (A) Proliferation assay of nephrogenic zone cells (NZCs)
treated with recombinant proteins or retinoic acid. Shown is the number of pHH3-positive mitotic events per 50,000 cells. Inset shows NZC morphology
after 24 hours in culture medium with or without FGF2. (B) Subcompartments in the nephrogenic zone. Arrows indicate direction of increasing
differentiation. (C) Summary of the ability of growth factors to promote CITED1 expression in NZCs (24 hours). (D) Immunofluorescence showing that
the RTK ligands FGF2, TGFo and EGF promote the greatest increase in CITED1 (red, 10X image) of all growth factors tested. FGF2 also promotes
increased expression of SIX2 (red, 20X image). (E) FGF2 treatment dramatically increases Cited transcription after 24 hours. Error bars indicate s.d.

(F) Increased CITED1 expression by FGF2 occurs within the PAX2* nephron progenitor population. PAX2* progenitors (green) from Cited 1-CreER™? mice
that drive a GFP reporter co-express GFP (red) when treated with FGF2, but not when cultured in medium alone. PAX2/GFP double-positive nuclei are
yellow in the image overlays. Insets show representative positive and negative cells. (G) FGF2 treatment maintains Cited1 transcription up to 48 hours
after harvest.
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revealed that the proliferative effects of FGF2, TGFo and EGF,
which are known ligands of the RTK signaling family, correlated
with increased numbers of these early progenitors; this was in
contrast to the proliferative effects associated with the RTK-
independent ligand BMP7 (Fig. 1C,D; supplementary material Fig.
S1). To ensure that CITED1" cells promoted by FGF2 treatment
retained the capacity to differentiate to the LEFI-expressing
pretubular aggregate, we subjected FGF2-treated cultures to
treatment with the canonical Wnt signaling activator BIO 18 hours
after FGF2 addition. BIO-treated cultures showed a significant
increase in LEF1 expression, indicating that they indeed retain the
potential to differentiate (supplementary material Fig. S2).

The combination of TGFB2, LIF, FGF2 and TGFa. has a strong
regulatory effect on nephron progenitor cells in the rat (Plisov et
al., 2001), and we therefore tested whether these factors might
regulate CITED1. We find no evidence of a synergistic effect (data
not shown), possibly owing to species differences in response to
these factors. Other ligands from our panel known to activate RTK
signaling during kidney development, including FGFS, IL6, PLGF
(PGF — Mouse Genome Informatics), PDGF, VEGFA and INS
(insulin, data not shown), showed no significant increase in
CITED1 protein expression (supplementary material Fig. S1).
Thus, in the mouse, CITEDI1 expression might be controlled by a
specific group of RTK ligands that activate FGF/EGF receptors.

Having ascertained that FGF2, TGFa and EGF promote
proliferation of NZCs and the expansion of a CITEDI1" early
nephron progenitor cell population, we analyzed a more extensive
panel of molecular markers characteristic of distinct compartments
within the nephrogenic zone. Expression of compartment-specific
signature genes in FGF2-treated cultures was assayed, as this growth
factor showed the greatest effect of the three on CITED]1 protein
expression (Fig. 1C,D). As anticipated, Cited! showed the greatest
increase in expression versus the medium control at 24 hours,
indicating expansion or maintenance of the earliest progenitor
compartment (Fig. 1E). MeoxI, which marks a newly identified
subpopulation within the Cited] compartment, was highly elevated,
as were the more generalized cap mesenchyme markers Six2, Eyal,
Salll and Pea3 (Etv4 — Mouse Genome Informatics), which are also
known to be expressed within the CITED1" progenitor compartment
in vivo (Mugford et al., 2009). Based on analysis of this functionally
essential gene set, we conclude that FGF signaling promotes the
early nephron progenitor cell state in NZC cultures.

Immunofluorescent staining clearly showed that increased
CITEDI and SIX2 protein expression correlated with the
transcriptional activation caused by FGF2 (Fig. 1D,E). Previous
results from our laboratory have revealed that although the NZC
culture is composed of greater than 50% PAX2" nephron
progenitors derived from the cap mesenchyme, nearly 40% of the
cells in these cultures represent cortical interstitium. To verify that
CITEDI expression is increased in PAX2" nephron progenitors, but
not in cortical interstitial cells, following FGF2 treatment, NZCs
derived from the Citedl-CreER™? transgenic strain, which
expresses GFP under the control of Cited!, were fixed and co-
stained with anti-PAX2 (green) and anti-GFP (red) antibodies.
FGF?2 treatment resulted in robust GFP expression only in cells that
express PAX2, whereas the majority of PAX2" progenitors lack
GFP expression when cultured in medium alone. CITEDI
expression in response to FGF2 thus occurs in nephron progenitor
cells derived from the cap mesenchyme rather than the cortical
interstitium (Fig. 1F).

To understand whether FGF2 treatment increases the abundance
of early nephron progenitor cells in NZC cultures, or prevents their
decline from the time of harvest, we compared Cited] expression
in FGF2-treated and control NZCs over time and normalized the
results to those from freshly isolated cells. In medium alone, NZCs
progressively lose Citedl expression over the course of 48 hours,
whereas FGF2 treatment causes persistence of Cited] expression
throughout the time course at a level similar to that seen in freshly
isolated NZCs (Fig. 1G). Taken together, these results suggest that
FGF acts on nephron progenitors to promote a highly proliferative
state and a transcriptional profile that is consistent with the earliest
progenitor compartment.

Select FGFs that display cap mesenchyme-specific
expression maintain early nephron progenitor
cells

Results presented thus far suggest that FGF2 or an FGF2-like
protein regulates the renewal program of the primitive
CITEDI1" progenitor compartment within the cap mesenchyme
in vivo. To identify potential FGF candidate genes we
reviewed the transcriptome data provided in the GenitoUrinary
Molecular ~ Anatomy  Project (GUDMAP) database
(http://www.gudmap.org). FGF genes expressed within specific
subcompartments of the nephrogenic zone include Fgfi, 7, 8, 9,
10, 12 and 20 (Fig. 2). Multiple candidates are strongly
expressed in the cap mesenchyme and several, including Fgf7,
7,9, 10 and 20, show decreasing expression associated with the
cessation of nephrogenesis at postnatal day 3, coincident with the
loss of primitive cap markers such as Citedl, Six2, MeoxI and
Dpf3 (Mugford et al., 2009).

To determine which of the FGFs expressed in the nephrogenic
zone maintain the early nephron progenitor compartment, NZCs
were stimulated with the corresponding recombinant FGFs and
maintenance of CITED1 protein expression was measured at 24
hours (Fig. 3A). Ligand concentrations well exceeded the effective
dose (EDsp) range as determined in proliferation assays for each
individual lot of recombinant FGF (Table 1). FGF1, 9 and 20
maintained CITEDI1 protein expression similarly to FGF2, and
induced transcription of the primitive cap markers CitedlI, Pea3,
Meox1 and Six2, whereas FGF7, 8, 10 and 12 showed minimal or no
effect (Fig. 3A.B). Interestingly, the three FGFs capable of
substituting for FGF2 in promoting progenitor cell identity are
strongly expressed in the cap mesenchyme (Fig. 2). FGF8, also
expressed in the later cap mesenchyme and renal vesicle, showed
only a modest effect on early cap marker transcription, even though
the specific activity was comparable to, or greater than, that
calculated for FGF1, 2, 9 and 20 (Table 1). The maintenance of early
progenitors could however be achieved by treatment with extremely
high concentrations of FGF8 (1600 and 3200 ng/ml; supplementary
material Fig. S3A).

FGFs can be functionally grouped according to the receptors that
they activate (Eswarakumar et al., 2005). Through alternate
splicing, two isoforms of FGF receptors 1 and 2 (the b and ¢
isoforms) are generated. These isoforms are predominantly
expressed in either epithelial (b) or mesenchymal (c) tissues and
display distinct ligand-binding specificities. FGF receptors 1c¢ and
2¢ are known for their high binding affinity to FGF1, 2, 9 and 20,
and we therefore examined whether these particular receptor
isoforms are expressed in NZCs (Eswarakumar et al., 2005; Lavine
et al., 2005; Ohmachi et al., 2003). qPCR analysis after reaction
efficiency corrections for each FGF receptor isoform demonstrates
that Fgfi-lc and Fgfi2c are highly enriched in mesenchyme derived
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from the nephrogenic zone compared with Fgfi1b and Fgfr2b (Fig.
3C; supplementary material Fig. S3B). This suggests that CITED1*
progenitors are restricted to responding to specific FGFs owing to
their predominant expression of FGF receptors 1c and 2c.

Paradoxically, although Fgfl, 9 and 20 are expressed in the cap
mesenchyme, the addition of exogenous FGF to cultures of these
cells is required to maintain nephron progenitor cells. Predicting that
expression of these FGFs might be lost during the culture period, we
wished to determine whether reduced Cited! expression correlated
with reduced expression of Fgfl, 9 and 20. Analysis of NZCs
cultured in medium alone for 24 hours demonstrates that
transcription of Fgfl, 9 and 20 decreases significantly over the
culture period, as compared with expression levels in freshly isolated
NZCs (Fig. 3D). Attenuated expression of these FGFs might
contribute to the reduction of higher-order cap markers that is seen
following culture in medium alone. Since Fgf1, 9 and 20 are strongly
expressed in the cap mesenchyme compared with other tissues, it is
possible that nephron progenitor cells contribute to the maintenance
of their own renewal through FGF signaling.

FGF/EGF maintenance of early nephron
progenitors requires RAS- and PI3K-mediated
signaling

The EGF receptor ligands EGF and TGFo maintain the nephron
progenitor population in a similar manner to FGF (Fig. 4A; Fig.
1D). We therefore hypothesized that EGF receptor signaling might
promote progenitor maintenance by increasing the expression of
Fgfl, 9 and 20. Indeed, EGF receptor ligands do promote the
expression of Fgfl and Fgf9, as does FGF2 treatment (Fig. 4A,
inset).

To functionally test the possibility that EGF receptor ligands
promote the progenitor cell state indirectly by activating FGF
signaling, we treated NZCs with either EGF or TGFa in the
presence or absence of the small molecule PD173074, a specific
ATP-binding inhibitor of FGFRI1, 2 and 3 (Bansal et al., 2003;
Pardo et al., 2009). As expected, treatment of NZCs with
PD173074 abolished the CITED1 expression promoted by FGF2;
however, EGF and TGFo were still able to maintain the CITEDI1

population in the presence of the FGF receptor inhibitor (Fig. 4B).
Thus, endogenously produced FGFs do not appear to be
responsible for the effects of EGF and TGFo. on CITEDI1®
progenitor maintenance, at least in vitro.

FGF and EGF receptors frequently utilize overlapping
intracellular signal transduction mediators, in particular RAS
(Schlessinger, 2004). To test the possibility that both EGF and FGF
receptors promote the progenitor cell state through RAS, we
repeated the inhibition experiment using a small-molecule RAS
inhibitor. In contrast to the results with the FGF inhibitor, CITED1
expression was extremely sensitive to the RAS inhibitor FPT III at
one-quarter of the established IC50 dose, which significantly
lowered CITED1 expression in response to FGF and EGF receptor
ligands (Fig. 4B).

FGF and EGF signaling pathways can be further separated into
ERK and PI3K branches. Immunofluorescent analysis in the
presence of ERK and PI3K inhibitors demonstrates that CITED1
expression is controlled by the PI3K pathway (Fig. 4B). An
interesting feature of this experiment is that ERK inhibition appears
to have a slight stimulatory effect on CITEDI expression.
Although this was not statistically significant, we wanted to
determine whether ERK inhibition might promote Cited]
expression by inhibiting Spry! transcription. gPCR reveals that this
is not the case (supplementary material Fig. S4).

Overall, we conclude that FGFs, EGF and TGFo maintain
CITED1" progenitors through activation of a common RAS/PI3K-
dependent RTK signaling program.

RTK-mediated RAS signaling is required to
maintain the expression of primitive nephron
progenitor markers in vivo

The NZC culture system propagates a mixture of cell types
representative of the nephrogenic zone. To ascertain whether RTK
signaling might be acting directly on nephron progenitors, rather than
secondarily through other cells in the culture, we designed an in vivo
experiment to specifically abrogate the response of CITEDI"
nephron progenitor cells to RTK signaling. Sprouty (Spry) proteins
inhibit RTK-mediated RAS activation, affecting both the FGF and
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EGF signaling pathways (Mason et al., 2006). The Spryl gene is
normally expressed in the collecting duct of the kidney and acts as
an essential modulator of RTK signaling through the c-Ret receptor,
negatively regulating ureteric bud branching (Basson et al., 2005).
To develop an in vivo system with which to study the effects of
FGFR/EGFR-RAS signaling in the CITEDI" progenitor
compartment, we used a Spry! Cre-inducible mouse strain, in which
expression of the mouse Spry! ¢cDNA is driven by a ubiquitous
CMV enhancer and B-actin promoter (Yang et al., 2008).

We first tested the ability of Spryl overexpression to block
CITEDI expression in NZCs derived from embryos of Spryl
transgenic (Spryl-Tg) mice. Transduction of NZCs with Cre-
expressing adenovirus demonstrated that a ~3-fold increase in
Spryl transcription results in a significant reduction in CITED1
protein expression, as compared with controls treated with
adenovirus containing a GFP cassette (Fig. SA). To obtain the
necessary spatial and temporal specificity of Spry! expression in
vivo, we bred the Spryl-Tg transgene onto the Citedl-CreER™

transgenic strain that expresses the Cre:estrogen receptor fusion
protein (CreER™?) under the control of Cited! regulatory elements
(Fig. 5B) (Boyle et al., 2008). Previous studies have demonstrated
that recombination can be induced specifically in nephron
progenitors of Citedl-CreER™ transgenic mice by tamoxifen
treatment of the dam at a variety of stages throughout kidney
development. To gain insight into the degree of recombination
expected following a 24-hour tamoxifen induction, Citedl-CreER™
transgenics were bred to R26R"“Z mice, which constitutively
express P-galactosidase (B-gal) under the control of the Rosa26
promoter after Cre excision of loxP-flanked stop sequences
(Soriano, 1999). Pregnant dams were injected with tamoxifen
intraperitoneally at E16.5 and embryonic kidneys were harvested
after 24 hours from R26R'*“ mice that were either positive or
negative for the Citedl-CreER™ driver. As shown by X-gal
staining of frozen kidney sections from Cited-CreER'*;R26R"*?
transgenics, some variability is seen within the same kidney, with
recombination varying from 50% to 90% of cells in individual cap
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mesenchymes (Fig. 5C; supplementary material Fig. S5). Because
[B-gal expression is heritable, cells contributing to nascent nephron
structures, such as renal vesicles, can be detected. Within the 24-
hour period following the tamoxifen pulse, many progenitors of the
CITED1" compartment had progressed to the induced
mesenchymal compartment, whereas a more limited number were
found in renal vesicles.

From our primary cell analyses, we predicted that FGFR/EGFR
signaling through RAS would be necessary to maintain the
progenitor cell state within the cap mesenchyme, and we therefore
compared the expression of WT1, PAX2, SIX2 and CITEDI1 by
immunostaining in wild-type (Spryl-Tg) and mutant (CitedI-
CreER™;Spryl-Tg) kidneys at E17.5. The expression of the general
cap mesenchyme markers WT1 and PAX2 is very similar in wild-
type and mutant kidneys, and, together with Hematoxylin and
Eosin staining, demonstrates that cap mesenchyme is still present
in the mutant (Fig. 6A,B; supplementary material Figs S6, S7).

However, as predicted from the in vitro overexpression of Spry!l in
NZCs (Fig. 5A), the majority of CITED]1 protein expression is lost
from the nephrogenic zone of mutant kidneys as compared with the
wild type (Fig. 6A-C; supplementary material Fig. S8). Also, a
marked decrease in SIX2 protein expression was observed (Fig.
6B,C; supplementary material Fig. S8). Transcriptional analysis of
freshly isolated NZCs from mutant and wild-type kidneys verified
decreases in early nephron progenitor markers including Cited],
Meox1, Pea3 and Six2, whereas markers of the cortical interstitium
(Foxdl, SfrpI) remained largely unchanged (Fig. 6D). Considering
that CITED1" progenitors represent only 50% of the mixed NZC
isolate, a 1.5-fold increase in Spryl expression may translate to a
3-fold increase specifically within the CITED1" compartment, as
was observed in Spryl-Tg NZCs infected with Cre™ adenovirus
(Fig. 6D; Fig. 5A). From this analysis we conclude that progenitors
in the CITEDI" compartment require RTK-mediated RAS
signaling to maintain their cellular identity in vivo.



5106 RESEARCH ARTICLE

Development 138 (23)

A CITED1 protein expression in NZCs derived from Spry1-Tg mice
FGF2: Adeno-GFP FGF2: Adeno-CRE

B o>
~190kb | CreER-T2 | IRES-eGFP | ~30kb |
BAC Cited1 locus Cre driver

Ioi<P Iole

[ cmv [ bactin [ aFp | sTop [ mspryt
mSpry1 conditional transgenic

1
Tamoxifen

| CMV | b-actin I mSpry1 |

/:item

Spry1 gPCR CITED1
& 3 }120 protein
{g § 100 expression
§2 £ 50 P<0.0001
o
< @
° g 60
29 B 40
o £ 20
2
0 0
Adeno-  Adeno- Adeno-  Adeno-
GFP CRE GFP CRE
C
Cited1-CreERT2/R26R-3°Z E17 5 kidney
20X
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supplementary material Fig. S5. IM, induced mesenchyme; RV, renal vesicle.

To ascertain whether RTK signaling through RAS is required for
nephron progenitor maintenance at developmental stages earlier
than E16.5, we repeated our transgenic experiment with tamoxifen
injection at E12.5 and harvest at E13.5. Although a tendency can
be seen toward reduction of CITED1 and SIX2 expression in the
nephrogenic zone of CitedI-CreER™’;Spryl-Tg kidneys, both
markers remain expressed, indicating that the effect of SPRY1
expression on nephron progenitors is less pronounced in the early
kidney (supplementary material Fig. S9).

Spry1 perturbs the developmental fate of early
nephron progenitors

To determine the functional consequences of Spryl overexpression
in CITED1" nephron progenitors, we intercrossed Citedl-
CreER™;R26R"*?  double heterozygotes with  Spryl-Tg
heterozygotes in order to lineage trace Spryl-overexpressing

CITED1" progenitors by X-gal staining. We observed a clear
reduction in the number of B-gal® progenitors from Citedl-
CreERT 2;RZ(SRI‘”Z;SpryI -Tg mice after 24 hours compared with
Cited1-CreER™;R26R"? controls lacking Spryl overexpression
(Fig. 7A). In addition, those cells that could be found in Spry!-
overexpressing mice were largely restricted to the cap mesenchyme
and did not contribute significantly to the pretubular aggregate
compartment in comparison with Citedl-CreER";R26R"*
controls (Fig. 7A). In agreement with this finding, transgenic Spry!
overexpression was also associated with a ~50% loss of the
pretubular aggregate marker LEF1 (Fig. 7B,C; supplementary
material Fig. S10). Comparison of glomerular counts in Citedl-
CreER™;Spryl-Tg kidneys versus Citedl-CreER™ or Spryl-Tg
wild-type controls injected with tamoxifen at E14.5 and harvested
at E17.5 revealed a 5-10% decrease in glomerular numbers in
mutant versus wild-type kidneys. This trend failed to reach P<0.05,
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and the overall effect on nephrogenesis must be considered very
mild, raising the possibility that a 50% reduction in LEF1 might
have only a marginal impact on the number of nephrons formed.

As we have shown in both primary cell studies and the Spry!
transgenic model that early nephron progenitor cells lose their
marker identity in the absence of FGF/EGF-mediated RAS signaling,
we tested the possibility that CITED1" progenitors overexpressing
Spryl are prematurely removed from the progenitor pool. Indeed, we
observed a ~5-fold increase in TUNEL labeling in mesenchyme cells
surrounding ureteric bud tips, supporting the conclusion that cells
overexpressing Spryl are more susceptible to cell death (Fig. 7A,B).
This finding was confirmed in kidneys harvested 12 hours after
tamoxifen injection by immunostaining for cleaved caspase 3, an
earlier marker of cell death (Fig. 8C). Because little or no
morphological change other than an accumulation of pyknotic nuclei
is apparent in the nephrogenic zone of mutant kidneys, we tested the
hypothesis that increased proliferation of cap mesenchyme cells
might compensate for the loss of cells in the mutant. Indeed, we find
a ~2-fold increase in the number of cells positive for the mitosis
marker pHH3 within the cap mesenchyme of mutant kidneys (Fig.
8D,E). Furthermore, analysis of [-gal-positive and -negative
progenitors from Cited!-CreER"*;R26R"**;Spry1-Tg mice reveals
that those progenitors that have not undergone recombination display
a very significant proliferative advantage over those that have
recombined (Fig. 8F,G). Although we do find significant increases
in both cell death and proliferation within the cap progenitor
compartment of Cited!-CreER™;Spryl-Tg kidneys, these effects
might not entirely explain the profound dilution of transgenic cap
mesenchyme cells shown in the lineage-tracing experiments. Rather,
we hypothesize that transgenic cap cells are diluted out due to a
combined effect of cell cycle slowing/exit, cell death and
compensatory expansion of wild-type progenitors.

Fgfl and Fgf9 are expressed by the cap mesenchyme and maintain
primitive nephron progenitor marker expression in vitro (Fig. 2; Fig.
3A,B). Furthermore, we demonstrated in vitro that transcription of
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Fgfl and Fgf9 was induced by FGF/EGF ligands that promote early
progenitor markers in a RAS-dependent manner (Fig. 4A). A
transcriptional survey of NZCs derived from Cited1-CreER;Spryl-Tg
transgenic mice revealed that Fgfl and Fgf9 expression was
decreased by ~70% and ~40%, respectively, suggesting that these
ligands are indeed regulated by RTK-mediated RAS signaling in vivo
(Fig. 9A). A global reduction in the expression of FGFs that normally
act in an autocrine manner to maintain early progenitor markers might
help to explain why remaining [3-gal-negative progenitors in the cap
of Cited1-CreER"™;R26R"*;Spry1-Tg mice display decreased levels
of early progenitor markers (Fig. 7A; Fig. 6).

Recently, canonical Wnt signaling has been identified as a
requirement for maintenance of the CitedI-expressing progenitor
population of the E11.5 kidney (Karner et al., 2011). To establish
whether FGF could be maintaining the CITED1" population by
modulating Wnt signaling, we treated our NZC cultures with the
canonical Wnt activator BIO. Wnt activation does not affect the
capacity of FGF to maintain CITED1" progenitors (Fig. 9B;
supplementary material Fig. S2). However, a subset of the genes that
have been identified as Wnt targets in the early kidney are activated
by FGF in the presence or absence of the Wnt inhibitor IWR1,
showing that FGF activates these targets in a Wnt-independent
manner (Fig. 9C). Furthermore, the expression of these genes is
reduced in NZCs from CreER'*;R26R"““%;Spryl1-Tg kidneys (Fig.
9D). These data suggest that the maintenance of nephron progenitors
might have a differential requirement for Wnt and FGF signaling
during early (E11.5) versus later (E17.5) nephrogenesis.

DISCUSSION

High-resolution gene expression studies have revealed that nephron
progenitor cells are located in a series of compartments within the
nephrogenic zone (Mugford et al., 2009). The signals that regulate
the distribution of nephron progenitor cells in distinct
compartments are poorly understood, and their elucidation will
provide essential insights into normal nephrogenesis and

Fig. 7. The fate of nephron progenitors is disrupted in
Spry1-overexpressing mice. (A) Representative X-gal
staining from Gited7-CreER™?;R26R"*Z:Spry1-Tg E17.5
frozen kidney sections 24 hours after tamoxifen treatment
demonstrates a loss of B-gal* progenitors and a reduced
contribution to more differentiated nephron structures
compared with Cited1-CreER™;R26R"% controls.

(B) Representative immunofluorescent images from E17.5
kidney sections of Cited7-CreER™?;Spry1-Tg mice
demonstrate a loss of the induced mesenchymal and renal
vesicle marker LEF1 as compared with control Spry1-Tg
mice. (C) Quantitation of LEF1 expression from the full
panel of immunofluorescence images shown in
supplementary material Fig. S10. Error bars represent the
s.e.m. from four mice analyzed in each group.
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developmental kidney malformations. The earliest compartment,
which expresses CITEDI, is predicted to possess the greatest
capacity for self-renewal and differentiation (Boyle et al., 2008).
Although CITEDI is an important molecular marker for the earliest
nephron progenitor cell compartment, the transcription factor itself
is not essential for kidney development (Boyle et al., 2007).
However, redundancy with CITED2 remains a possibility, and the
early lethality of the Cited2 null mouse has precluded this analysis
at the later developmental time points that we focused on in our
study. We found that RTK activation by FGF and EGF receptor
ligands maintains the early CITED1" nephron progenitor
phenotype in a RAS-dependent manner. A number of FGF and
EGF receptor ligands are expressed within the nephrogenic zone,
suggesting extensive redundancy in vivo. Blockade of RTK
signaling by transgenic Spry! overexpression resulted in the loss
of early progenitor cell markers and in increased apoptosis in the
cap mesenchyme. Moreover, lineage tracing demonstrated that
remaining labeled progenitors overexpressing Spryl were unable
to contribute to the pretubular aggregate and renal vesicle
compartments. We conclude that redundant FGF/EGF-mediated
RAS signaling regulates the maintenance and developmental
potential of the early nephron progenitor cell population.

mm R26-
=31 R26+

P<0.00001

Several reports suggest that EGF receptor ligands might regulate
the survival of nephron progenitor cells. Neutralizing antibody
treatments of kidney organ culture show that TGFa. is required for
kidney development in vitro (Rogers et al., 1992). Furthermore, in
combination with FGF2 or conditioned medium from ureteric bud
cells, TGFa promotes the survival of isolated E13 rat metanephric
mesenchyme, indicating that it has a survival-promoting effect on
early nephron progenitor cells (Barasch, 1999; Karavanova et al.,
1996). However, unlike FGF2, TGF o, treatment is not sufficient to
rescue isolated metanephric mesenchyme from death in culture,
indicating that its role is limited to augmenting survival
(Karavanova et al., 1996). The EGFR ligand amphiregulin is under
the transcriptional control of the transcription factor WT1, which
is expressed in nephron progenitor cells. Amphiregulin protein is
abundant in the nephrogenic zone, and it promotes the growth of
cultured kidneys suggesting that it might act as a proliferative
factor for nephron progenitor cells (Lee et al., 1999). One caveat
to the interpretation of organ culture treatment experiments is the
fact that many studies have been conducted using rat kidneys,
which respond differently to growth factor treatment than mouse
kidneys. Compound genetic inactivation of EGF, TGFo and
amphiregulin in the mouse does not perturb kidney development,
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alters FGF ligand and Wnt target gene expression in the
nephrogenic zone. (A) NZCs derived from Cited1-CreER™?;Spry1-Tg
mice show decreased expression of Fgf1 and Fgf9 compared with
control mice, as assessed by qPCR. (B) BIO does not increase the
expression of CITED1 in NZC cultures. (C) NZC cultures treated with
FGF2 display increased transcription of several genes (including Uncx4. 1
and Pla2g7) that have recently been shown to be direct targets of Wnt
signaling in the E11.5 kidney; this is not reversed by the Wnt inhibitor
IWR1 (10 uM). (D) Freshly isolated NZCs derived from Cited1-
CreER'?;Spry1-Tg mice show decreased expression of Uncx4.1 and
Pla2g7. The numbers of mice and statistical analyses performed are as
described in Fig. 6D. Error bars in A and D indicate s.e. as shown in

Fig. 6D.

demonstrating that they are not required for the maintenance of
nephron progenitors in vivo (Luetteke et al., 1999), perhaps owing
to their functional redundancy with FGFs.

Genetic and organ culture experiments indicate roles for FGF
signaling in nephron progenitor cell maintenance. FGF2 supports
proliferation and inhibits apoptosis of isolated metanephric
mesenchymes (Barasch et al., 1997; Dudley et al., 1999; Perantoni
et al., 1995), promoting expression of the anti-apoptosis gene Wt/
(Perantoni et al., 1995). Similar to the findings of our study, this
effect cannot be reproduced with FGF7 but can be reproduced with
FGF1 (Barasch et al., 1997). Compound conditional inactivation of
FGF receptors 1 and 2 in the mesenchyme of the developing
kidney results in arrest of nephrogenesis at ~E11.5, demonstrating
an essential role for FGF signaling in the development of the
metanephric mesenchyme (Poladia et al., 2006). Several FGF
ligands are expressed within the developing kidney, and genetic
inactivation studies have revealed phenotypes for Figf7, Fgf8 and
Fgf10 mutants. Inactivation of Fgf7 and Fgf10, known ligands for
FGF receptor b isoforms, result in defects in collecting duct
branching (Michos et al., 2010; Ohuchi et al., 2000; Qiao et al.,
1999). In this study, we found evidence that early nephron
progenitors residing within the cap mesenchyme express a class of
FGFs (Fgf1, 9 and 20) that normally bind FGF receptor ¢ isoforms
and are capable of promoting renewal of early CITEDI"
progenitors. In accordance, our gene expression analyses indicate
that NZCs display predominant expression of Fgfi-/c and Fgfi-2c.
Recent genetic studies in mice further support this notion and
demonstrate that, in the absence of Fgfil, there is a specific
requirement for the ¢ isoform of Fgfi'2 in the development of the
metanephric mesenchyme, including the maintenance of the Six2
and Pax2 progenitor compartments. Taken together, these data
suggest that early nephron progenitors might rely, in part, on FGF
receptor/ligand signaling that acts in an autocrine manner for their
maintenance (Sims-Lucas et al., 2011).

Genetic inactivation studies have shown a requirement for Fgf8
in the survival of CITEDI1" nephron progenitors within the
nephrogenic zone (Grieshammer et al., 2005; Perantoni et al.,
2005). However, in contrast to FGF1, 2, 9 and 20, we find that
FGF8 has a very weak effect on the CITEDI" progenitor
phenotype. This is surprising considering that all of these FGFs are
predicted to signal through the ¢ isoforms of the FGF receptors.
Although a technical explanation for this effect cannot be entirely
ruled out, we have titrated independent lots of FGF8 with defined
EDs values over an extensive concentration range, finding a high
concordance of results. Our finding that nephron progenitor cells
are insensitive to FGF8 might be explained by the fact that the
decoy receptor Fgfril is expressed specifically in the cells of the
cap mesenchyme (GUDMAP). In direct binding studies, FGFRL1
has high affinity for FGF8, but shows little or no binding with
FGF1, 9 and 20, and intermediate binding with FGF2 (Steinberg et
al., 2010). Thus, FGFRL1 might modulate the sensitivity of
CITEDI" cells to stimulation by FGFs, suppressing the response
to FGF8. Although the Fgfi/l null mouse displays a strong
developmental phenotype in the kidney, inferences regarding
interactions with FGF8 cannot be made from the mutant analysis
because Fgf8 is not expressed due to the blockage of nephron
differentiation (Gerber et al., 2009).

Wnt signaling is required for maintenance of the nephron
progenitor cell compartment in the E11.5 kidney (Karner et al.,
2011), and we therefore speculated that Wnt signaling might lie
downstream of FGF/EGF in the cap mesenchyme. Our experiments
using both an activator and an inhibitor of canonical Wnt signaling
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demonstrate that this is not the case. However, a subset of gene
targets activated by canonical Wnt signaling are also activated by
FGF. This partial overlap in gene activation might indicate that
FGF/EGF lies downstream of Wnt, as has previously been
described in development of the forebrain (Paek et al., 2011).
Alternatively, it might indicate that Wnt and FGF/EGF are two
independent circuits that activate a common program required for
nephron progenitor maintenance. The finding that Sprouty
antagonism of RTK signaling impacts CITED1 and SIX2
progenitor maintenance more severely at E17.5 than at E12.5
supports the notion that these two pathways are required at
different times during nephrogenesis.

Our results might have important implications regarding the
pathophysiology of neoplasms such as in Wilms’ tumor, which
resemble renal progenitors in a state of arrested differentiation.
Failure in FGF/EGF feedback control by genes such as Sprouty
might contribute to the undifferentiated metanephric blastema
found in Wilms’ tumor, where the advanced stage of the disease is
known to be correlated with persistent expression of early
blastemal markers such as Cited] and MeoxI (Williams et al.,
2004; Li et al., 2005; Lovvorn et al., 2007a; Lovvorn et al., 2007b).
The FGF/EGF signaling pathway components that are disrupted by
Spryl, or genes that alter Spryl activity, might represent novel
therapeutic targets to combat Wilms’ tumor and other cancers that
arise from parent stem cells that normally display a requirement for
FGF signaling during self-renewal.
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