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Summary
Planar polarity describes the coordinated polarisation of cells
or structures in the plane of a tissue. The patterning
mechanisms that underlie planar polarity are well characterised
in Drosophila, where many events are regulated by two
pathways: the ‘core’ planar polarity complex and the
Fat/Dachsous system. Components of both pathways also
function in vertebrates and are implicated in diverse
morphogenetic processes, some of which self-evidently involve
planar polarisation and some of which do not. Here, we review
the molecular mechanisms and cellular consequences of planar
polarisation in diverse contexts, seeking to identify the
common principles across the animal kingdom.
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Introduction
‘Planar polarity’ refers to any manifestation of polarity within a
two-dimensional surface. Nübler-Jung (Nübler-Jung, 1987)
introduced this term to describe the spatial organisation of polarised
structures such as bristles on the insect cuticle. Planar polarity is a
common property of animal tissues (Fig. 1) that is most obvious
when cells are organised in epithelial sheets, where it is defined as
polarity in a plane other than the apicobasal axis, but can also be
seen in non-epithelial tissues. [For definitions of planar polarity, see
Adler and others (Adler, 2002; Lewis and Davies, 2002; Lawrence
et al., 2007; Wang and Nathans, 2007).]

Planar polarity is most frequently studied at the level of
individual cells, for example in the Drosophila wing, or in the
organisation of multicellular structures, such as ommatidia in the
fly eye or hair follicles in mammalian skin (Fig. 1A,B,F). This level
of organisation is often referred to as ‘planar cell polarity’ (PCP).
However, planar polarity also exists at the subcellular level, for
example in the common orientation of cilia on a multiciliated cell
(Fig. 1C), as well as in whole tissues, as in the common distal
polarisation of fly wing hairs and mouse limb hairs (Fig. 1A,F). For
these reasons, we prefer the more general term ‘planar polarity’.

This review aims to summarise our current knowledge of how
planar polarity is established, emphasising the common
mechanisms at work across the animal kingdom. We discuss how
planar polarity arises in a range of contexts, in each case requiring
polarised cell-cell interactions that align cells with their immediate
neighbours and long-range patterning events that orient this
polarisation with the axes of the tissue. For reasons of space, the
only invertebrate considered is the well-studied dipteran Drosophila
melanogaster. However, planar polarity has been studied in diverse

insects (for a review, see Strutt, 2009), as well as in ascidians (e.g.
Jiang et al., 2005), planarians (Almuedo-Castillo et al., 2011) and
worms (for reviews, see Walston and Hardin, 2006; Segalen and
Bellaïche, 2009). Using the example of the Drosophila wing, we
define a framework for how planar polarity is established in
epithelial tissues. To facilitate comparisons across species, we
provide an operational definition for the term ‘planar polarity’, and
in this light review a range of planar polarity processes identified
in vertebrates. Finally, we consider the intriguing and recently
discovered relationship between planar polarity and cilia function
in vertebrates. As most planar polarised cells in Drosophila are
non-ciliated, we discuss how these studies in vertebrates provide
unique insights into planar polarity establishment.

The basics of planar polarity specification
Planar polarity studies began in the insect cuticle in the 1940s, and
were followed by extensive genetic analysis in Drosophila (e.g.
Gubb and García-Bellido), with the wing being particularly well
characterised. A key advantage of the wing is its simplicity, with
each cell in a monolayer epithelium adopting a polarity that is
easily discerned by the presence of a single distally pointing
trichome (a small hair, see Fig. 1A, Fig. 2B). To provide a
framework for understanding planar polarity establishment, we first
describe what has been learnt about this from the Drosophila wing,
given the strong evidence that the principles seen in the wing are
conserved across tissues and species.

Two main cellular systems govern the cell-cell interactions
that underlie the local alignment of cell polarity in the wing: the
so-called ‘core’ planar polarity pathway (often just referred to as
the ‘planar polarity pathway’ or ‘PCP pathway’) and the
Fat/Dachsous (Ft/Ds) system. Both act to generate asymmetric
cell-cell contacts through heterophilic interactions between cell-
surface proteins, which exhibit asymmetric subcellular activities
and/or distributions.

The core pathway
Six proteins have been placed in the core pathway in flies, owing
to their similar activities and colocalisation to the adherens junction
(AJ) region of cells, where they form a putative intercellular
complex (Fig. 2A). From early in wing development, the core
proteins exhibit asymmetric subcellular localisations that are
particularly prominent when trichomes form. At this stage, the
seven-pass transmembrane protein Frizzled (Fz) is confined to
distal cell junctions along with the cytosolic proteins Dishevelled
(Dsh) and Diego (Dgo), whereas the four-pass transmembrane
protein Strabismus (Stbm, also known as Van Gogh; Vang –
FlyBase) and the cytosolic protein Prickle (Pk) are localised
proximally; the seven-pass transmembrane cadherin Flamingo
(Fmi, also known as Starry Night; Stan – FlyBase) is present both
distally and proximally (Fig. 2A,B) (for a review, see Strutt and
Strutt, 2009). Complete loss of activity of any of the core proteins
leads to a loss of planar polarity, with trichomes initiating in the
cell centre (Fig. 2B) (Wong and Adler, 1993).
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The core protein asymmetric localisations are thought to result
from intracellular feedback interactions between proximally and
distally localising components (Tree et al., 2002), whereas the
cell-cell coordination of this asymmetry involves the formation
of asymmetric intercellular contacts (Chen et al., 2008; Strutt
and Strutt, 2008; Wu and Mlodzik, 2008). At the local level, the
emergence of coordinated core protein asymmetry is likely to be
self-organising, as the activation of core protein expression
shortly before trichome formation (when morphogen-based cues
are most probably absent) leads to the short-range coordination
of polarity (Strutt and Strutt, 2002; Strutt and Strutt, 2007).
Evidence that the core pathway plays an instructive role in
polarity establishment comes from its directional non-
autonomous effects on hair polarity (Gubb and García-Bellido,
1982; Vinson and Adler, 1987; Taylor et al., 1998) (Fig. 2C,D).
Groups of cells that lack Fz induce neighbouring cells to point
their hairs towards the mutant cells, whereas loss of Stbm causes
neighbouring cells to point their hairs away. In both cases, the
phenotype suggests that mutant cells and their normal
neighbours can only assemble asymmetric junctional complexes
of a particular polarity, and this polarity is then propagated to
neighbouring cells, an interpretation supported by several
theoretical models (e.g. Amonlirdviman et al., 2005; Klein and
Mlodzik, 2005; Le Garrec et al., 2006).

How polarised core protein localisation becomes aligned with
the axes of the wing is poorly understood. Positional fates on the
dorsoventral (DV) and anteroposterior (AP) axes of the wing are
largely specified by gradients of the morphogens Wingless (Wg, a
member of the Wnt family) and Decapentaplegic (Dpp),
respectively (for a review, see Strigini and Cohen, 1999). As Fz
also acts as a Wnt receptor, an early suggestion was that a Wnt
gradient might provide a polarising cue (e.g. Adler et al., 1997).
However, the absence of planar polarity phenotypes upon loss of
activity of multiple Wnts (e.g. Lawrence et al., 2002; Chen et al.,
2008) caused this idea to fall out of favour. Nevertheless, it is
intriguing to note that early in wing development, Fz distribution
in cells is oriented towards the source of Wg (Aigouy et al., 2010).
An alternative suggestion that core protein localisation is aligned
with the axes of the wing by Ft/Ds activity (Ma et al., 2003) is not
consistent with the findings that in some genetic conditions in
which Ft activity is absent or unlikely to be polarised, core protein-
dependent polarisation is largely normal (Matakatsu and Blair,
2006; Feng and Irvine, 2007). However, Ft/Ds can influence core
protein polarisation in some contexts, for example by affecting the
axis of cell division, cell dynamics and cell packing (Ma et al.,
2008; Aigouy et al., 2010), and by influencing the polarisation of
microtubules that are involved in vesicle-based transport of Fz
distally (Shimada et al., 2006; Harumoto et al., 2010).
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Fig. 1. Examples of planar polarity in flies and mice. (A)Adult Drosophila wing surface. Planar polarity is evident in the organization of
trichomes on the proximodistal (PD) axis (black arrow). (B)Sub-apical section through an adult Drosophila eye at the dorsoventral (DV) midline. Each
eye facet comprises a group of ~20 cells (an ommatidium). In this section plane, the pigmented rhabdomeres (dark blue) of seven photoreceptors
are in the centre of each ommatidium. Ommatidia are hexagonally tesselated and show mirror-image symmetry around the DV midline (broken red
line), revealing axes of planar polarity on the anteroposterior (AP, white arrow) and DV (yellow arrows) axes. (C)Confocal image of mouse brain
ependymal cells, with cell membranes stained for -catenin (green) and cilia basal bodies for -tubulin (red). In each cell, basal bodies are displaced
towards one side (white arrow), creating ‘translational’ polarity. (D)Scanning electron micrograph of an adult mouse organ of Corti. Planar polarity
is seen on the mediolateral axis (white arrow), in the arrangement of the hair cell stereocilia (black arrowheads). Support cells between the hair cells
(white arrowheads) show no overt morphological polarisation. (E)Tarsal joints of an adult Drosophila leg. Planar polarity is evident on the PD axis
(black arrow) through the polarisation of bristles and the joints (black arrowheads). (F)Distal end of an adult mouse leg, showing the PD polarised
arrangement of the fur. Images courtesy of Dr Henry Ho (C), Dr XuDong Wu (D) and Dr Cindy Lu (F), unpublished. (A,B,E) D.S., unpublished.
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The Ft/Ds pathway
Although once considered an ‘upstream’ pathway that provides long-
range patterning information to the core pathway (Yang et al., 2002;
Ma et al., 2003), current data suggest that the Ft/Ds pathway is a

parallel system for locally aligning cell polarity. Ft and Ds both
encode cadherins that preferentially bind to each other at the cell
surface (Strutt and Strutt, 2002; Ma et al., 2003; Matakatsu and Blair,
2004), and this interaction is modulated by phosphorylation of both
extracellular domains by the Golgi protein Four-jointed (Fj) (Strutt
et al., 2004; Brittle et al., 2010; Simon et al., 2010) (Fig. 3A,B). As
with the core proteins Fz and Stbm, groups of cells that lack Ft, Ds
or Fj activity show directional non-autonomous effects on the
polarity of neighbouring cells (Adler et al., 1998; Zeidler et al., 2000;
Strutt et al., 2002; Ma et al., 2003) (Fig. 2C). As Ft and Ds interact
heterophilically, such effects are best explained by models in which
Ft/Ds mediate polarised cell-cell interactions (Casal et al., 2006) (for
reviews, see Lawrence et al., 2008; Strutt, 2009).

Although the Ft/Ds system, like the core pathway, coordinates
cell polarity through heterophilic interactions, neither Ft nor Ds
exhibits strong asymmetric subcellular localisation (Strutt and
Strutt, 2002; Ma et al., 2003). However, Ft and Ds activity does
lead to the polarised subcellular distribution of Dachs (Fig. 4A), a
downstream-acting atypical myosin (Mao et al., 2006; Rogulja et
al., 2008). Hence, the uniform distribution of Ft and Ds may be
accompanied by strongly polarised subcellular activity, perhaps
mediated by the phosphorylation of the Ft intracellular domain
induced by Ds binding (Feng and Irvine, 2009; Sopko et al., 2009).
Alternatively, Ft/Ds asymmetries may be amplified by an unknown
downstream mechanism.

The Ft/Ds pathway is aligned with the body axes via its coupling
to the upstream morphogens that control the transcription of ds and
fj. For example, in the Drosophila eye, a peripheral source of Wg
activates ds and represses fj expression, creating opposing gradients
of the two proteins (Zeidler et al., 1999; Yang et al., 2002; Simon,
2004) (Fig. 4B) and hence a gradient of Ft/Ds binding interactions
across the tissue (Brittle et al., 2010; Simon et al., 2010) (Fig. 4C).
In the wing, fj is expressed in a distal to proximal gradient (Zeidler
et al., 2000; Strutt et al., 2004), most probably under the positive
regulation of Wg and Dpp, whereas ds is largely confined to the
wing hinge, with at best only locally graded expression (Strutt and
Strutt, 2002; Ma et al., 2003; Matakatsu and Blair, 2004) (Fig. 4B).
However, these gradients apparently play only a minor role in
planar polarity patterning (Matakatsu and Blair, 2004; Simon,
2004), and a more potent cue is likely to be the boundaries between
high and low ds and fj expression that occur between the wing
pouch and the wing hinge, boundaries that also appear to be crucial
for Ft/Ds-mediated control of growth (Zecca and Struhl, 2010).

Effectors and morphogenetic outputs of the core and Ft/Ds
pathways
Factors that act downstream of the core and Ft/Ds pathways to
mediate their effects on cell shape and behaviour are termed
‘effectors’. In general, effectors do not influence the asymmetric
localisation or activity of the core proteins or of Ft and Ds, and they
are often tissue- or cell-type specific, reflecting the diversity of
potential readouts. The identification of effectors can be
confounded if they have other cellular roles (such as being
cytoskeletal modulators), and consequently their removal does not
only affect planar polarity.

In the wing, the primary morphogenetic outcome of core
pathway activity is the growth of the polarised trichome from the
distal cell edge. This is mediated by a small group of proteins that
apparently act exclusively as planar polarity effectors, influencing
the polarity of both trichomes and bristles. These are Fuzzy (Fy),
Inturned (In) and Fritz (Frtz) (Gubb and García-Bellido, 1982;
Wong and Adler, 1993; Park et al., 1996; Collier and Gubb, 1997;

A Core protein localisation B Core protein and trichome localisation

C Non-autonomous effects on polarity of clones of mutant cells

D Non-autonomous effect of clones of cells mutant for frizzled 
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Fig. 2. Properties of the core planar polarity proteins in
Drosophila wing development. (A)Core protein arrangement at the
adherens junction zone of epithelial cells in the Drosophila wing. An
intercellular asymmetric junctional complex forms, with the
transmembrane proteins Fz (green) and Fmi (red), and the cytosolic
proteins Dsh (dark blue) and Dgo (purple) in one cell, associating with
the transmembrane proteins Stbm (orange) and Fmi, and the cytosolic
protein Pk (pale blue) in the adjacent cell. (B)Subcellular distribution of
the core proteins and effectors in the pupal wing. From ~28 hours of
pupal life, the core proteins show strong asymmetric subcellular
distributions, with Fz, Dsh, Dgo and Fmi (green) being localised at distal
cell edges (right), and Stbm, Pk and Fmi (orange) at proximal cell edges
(left). The effectors Inturned, Fuzzy, Fritz and Multiple Wing Hairs are
recruited proximally (pink), and locally inhibit trichome formation, such
that trichomes (black) only emerge distally. Cells that lack or have
uniform core protein activity show unpolarised effector protein
localisation (pink) and trichome production in the cell centre. (C)Non-
autonomous effects on trichome polarity (normal polarity shown in
blue) in the wing caused by clones of cells lacking planar polarity gene
function. Groups of cells lacking stbm, ft or fj activity (grey, left) cause
trichomes proximal to the clone to invert their polarity (red arrows),
whereas groups of cells lacking fz or ds function (grey, right) cause
trichomes distal to the clone to invert their polarity. (D)Model of how a
fz clone might alter trichome polarity in neighbouring wild-type cells.
Cells lacking Fz (grey) can only form complexes containing Stbm
(orange) inside the clone, interacting with Fz (green) in the
neighbouring wild-type cells. The abnormal polarity of these junctional
complexes around the edge of the clone then propagates to
neighbouring cells. Dgo, Diego; ds, dachsous; Dsh, Dishevelled; fj, four-
jointed; Fmi, Flamingo; ft, fat; Fz, Frizzled; Pk, Prickle; Stbm, Strabismus.
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Collier et al., 2005). In the pupal wing, they colocalise with Fmi,
Stbm and Pk at the proximal cell edge (Fig. 2B) (Adler et al., 2004;
Strutt and Warrington, 2008) and regulate the subcellular
localisation of another effector, Multiple Wing Hairs (Mwh), that
antagonises actin polymerisation and helps limit trichome
formation to the distal cell edge (Strutt and Warrington, 2008; Yan
et al., 2008).

Other proteins often regarded as core pathway effectors in
Drosophila are the p21 GTPase RhoA (Rho1 – FlyBase) and its
effector Drok (Rok – FlyBase) (Strutt et al., 1997; Winter et al.,
2001), both of which regulate actin dynamics. In the wing, such a
role has proved hard to substantiate, as loss of RhoA blocks cell
division, which itself can lead to hair polarity defects (Adler et al.,
2000), and loss of Drok causes twinned hairs with no polarity
defect (Winter et al., 2001), and indeed loss of RhoA activity can
also affect core protein localisation, suggesting a possible upstream
function (Yan et al., 2009). In the eye, neither RhoA nor Drok
affects ommatidial DV polarity, but both are required for regulation
of ommatidial rotation (Winter et al., 2001; Strutt et al., 2002),
which is an additional function of the core pathway in eye
patterning.

Defining effectors of the Ft/Ds system is challenging, as this
pathway mediates intertwined effects on both planar polarity and
tissue growth (for reviews, see Lawrence et al., 2008; Reddy and
Irvine, 2008). In the wing, the Ft/Ds pathway alters hair polarity by
influencing core protein localisation (Strutt and Strutt, 2002; Ma et
al., 2003), showing that the core pathway can serve as an effector
of the Ft/Ds pathway. However, in the abdomen and larval cuticle,
the Ft/Ds pathway may instead couple directly to effectors such as
In, Fy and Frtz, as it can influence hair, bristle and denticle polarity
independently of the core pathway (Casal et al., 2006; Repiso et al.,
2010). Ft/Ds signalling also regulates the orientation of cell
divisions along the proximal-distal axis of the wing (Baena-López
et al., 2005), and in this case, seems to act via asymmetric
localisation of a different effector, the atypical myosin Dachs (Mao
et al., 2011b). Notably, loss of Dachs has negligible effects on hair
polarity (Mao et al., 2006), and the core proteins do not affect the
orientation of cell division (Baena-López et al., 2005), indicating
that these act as parallel pathways below Ft/Ds. Furthermore, Ft/Ds
regulation of planar polarity apparently depends on recruitment of
the transcriptional repressor atrophin (Fanto et al., 2003), although
its relationship to Dachs and/or to growth control remains unclear
(for a review, see Sopko and McNeill, 2009).

The simplest way of viewing the relationship between the core
pathway and the Ft/Ds pathway is to regard them as parallel but
overlapping local alignment systems, both of which can
independently respond to upstream patterning cues, but in
particular contexts can also influence each other and share common
downstream outputs (Fig. 5).

Other planar polarity systems in Drosophila
There are manifestations of planar polarity in Drosophila that are
not mediated by either the core or Ft/Ds pathways, indicating that
other planar polarity systems also exist. The best-studied is
polarised cell rearrangement during the embryonic gastrulation
process of germband extension, which is controlled by the pattern
of transcription factor expression present in embryonic segments
and also relies on local cell-cell interactions (for reviews, see
Zallen, 2007; Bertet and Lecuit, 2009). Another example is the
initial AP polarisation of ommatidial clusters in the eye disc as they
are born from the morphogenetic furrow (Heberlein et al., 1993).
An additional local cell alignment system dependent on the
activities of the septate junction proteins Gliotactin and Coracle has
also been proposed to act in parallel to the core and Ft/Ds systems
in the wing (Venema et al., 2004).

Another intriguing alternative pathway for establishing planar
polarity is seen in the egg chamber, where each follicle cell has basal
actin filaments that are oriented on the DV axis (Gutzeit, 1990). This
planar polarity depends on the activity of a ft homologue, fat2 (also
known as fat-like and kugelei; kug – FlyBase) (Viktorinová et al.,
2009), and of the receptor tyrosine phosphatase Dlar (Lar – FlyBase)
(Bateman et al., 2001; Frydman and Spradling, 2001), and on
components of the dystroglycan complex (Deng et al., 2003;
Mirouse et al., 2009). These factors act non-autonomously, with
clones that disrupt actin filament polarity also disrupting the polarity
of neighbouring cells, suggesting roles in cell-cell communication.
Furthermore, Dlar and Fat2 distributions are planar polarised, with
Dlar found at both DV edges of each cell (Bateman et al., 2001) and
Fat2 at only one end (Viktorinová et al., 2009). The involvement of
novel factors, and the observation that this polarisation does not
require the activity of the Ft/Ds or core pathways (Viktorinová et al.,
2009), indicates that Fat homologues can coordinate planar polarity
through novel mechanisms.

An operational definition for planar polarity
As we have seen, planar polarity is a well-defined phenomenon
in Drosophila, which has permitted the characterisation of the
underlying signalling events. However, as studies of these same
pathways have expanded to tissues that do not show obvious
planar organisation, ‘planar polarity’ events have become harder
to recognise. Hence, processes are often labelled as involving
planar polarity (or PCP) simply because one or more planar
polarity proteins is reportedly involved. A particular source of
confusion is that the core pathway was originally identified as a
‘non-canonical’ Wnt pathway, involving Frizzled family receptors
and Dishevelled homologues in a -catenin-independent
signalling cascade (for reviews, see Strutt, 2003; Veeman et al.,
2003a). Subsequently a plethora of non-canonical signalling
processes have been designated as being ‘Wnt/PCP signalling’,
even in the absence of evidence that they exhibit planar polarity
at the cellular level. A related issue is that planar polarity may be
indirectly affected by other defects in morphogenesis that are in
fact due to signalling through the canonical Wnt pathway or some
other uncharacterised pathway that involves known polarity
proteins.

REVIEW Development 138 (10)

A Ft and Ds interact heterophilically B Four-jointed modulates Ft/Ds binding

Ft Ds
FjFj

FtDs

Fig. 3. Fat and Dachsous interactions in the Drosophila wing.
(A,B)Schematics of the interactions between Fat (Ft) and Dachsous (Ds)
at adherens junctions of epithelial cells in the Drosophila imaginal discs.
(A)Ft (cyan) and Ds (magenta) are large atypical cadherin molecules
that interact heterophilically. (B)Ft/Ds heterophilic interactions are
modulated by Four-jointed (Fj, yellow) activity in the Golgi, which
phosphorylates the extracellular cadherin repeats in Ft and Ds as they
traffic to the cell surface. Fj-mediated phosphorylation of Ft increases its
binding affinity for Ds, whereas phosphorylation of Ds decreases its
affinity for Ft.
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We suggest that when considering cellular organisation, a planar
polarity process is defined as one in which cell-cell communication
causes two or more cells to adopt coordinated polarity. Moreover,
such a process should only be referred to as evidence of ‘PCP
signalling’ or requiring the ‘planar polarity pathway’ when shown
to be dependent upon planar polarity proteins that mediate these
polarised cell-cell interactions. For some processes that involve the
planar polarity proteins, further research will be required to
establish whether they are true examples of planar polarity.

Planar polarity in diverse contexts
Although planar polarity is most obvious in two-dimensional epithelia
such as the fly wing, it is prevalent throughout the animal kingdom,
occurring in diverse contexts with many morphological outcomes.
Multiple vertebrate orthologues of the major pathway components
identified in flies have been found (see Table 1), and function via the
same basic mechanisms, albeit with some modifications to
accommodate the unique demands of each system. Here, we describe
some of the best understood vertebrate planar polarised systems.

Arrays of polarised cells
The simplest manifestation of planar polarity is the alignment of a
field of identical cells, as in the fly wing. A comparable vertebrate
example is the node, where each epithelial cell extends a single
primary cilium towards the posterior of the embryo (Fig. 6A). When
all of the cells of the node are properly oriented, the cilia beat together
and direct fluid flow to the left, thereby establishing the left-right (LR)

axis of the embryo. Failure to uniformly align the cilia disrupts flow,
and the embryos develop LR patterning defects (Antic et al., 2010;
Borovina et al., 2010; Hashimoto et al., 2010; Song et al., 2010).

The emergence of planar polarity in the node involves both
asymmetric positioning of the cilium within each cell and
coordinated alignment of the polarised cells. Consistent with the
parallels to the fly wing, this depends on expression of orthologues
of the core pathway proteins Stbm, Pk and Dsh, which are
asymmetrically distributed in the node prior to the posterior
localisation of the basal body of the primary cilium (Fig. 6Aa).
Moreover, as predicted from flies, Vang-like1 (Vangl1), Vang-
like2 (Vangl2) and Prickle2 (Pk2) appear to be restricted to one
side of the cell (Antic et al., 2010; Song et al., 2010), while
Dishevelled2 (Dvl2) and Dishevelled3 (Dvl3) are on the other
(Hashimoto et al., 2010). This localisation is probably instructive,
as LR asymmetry defects occur when either Vangl or Dvl activity
is severely reduced in multiple species, including mouse, frog and
zebrafish (Zhang and Levin, 2009; Antic et al., 2010; Borovina et
al., 2010; Hashimoto et al., 2010; May-Simera et al., 2010; Song
et al., 2010). Moreover, in mouse, many cilia remain in the cell
centre (Fig. 6Aa) (Antic et al., 2010; Hashimoto et al., 2010; Song
et al., 2010), indicating that intrinsic planar polarity is lost,
echoing the central position of hairs in mutant fly wing cells (Fig.
2B).

A related situation occurs in the ventricular lining of the brain,
where multiciliated ependymal cells extend cilia that beat in a
coordinated fashion to propel cerebrospinal fluid (Fig. 1C, Fig.
6Ab). These cells exhibit two forms of polarity (Mirzadeh et al.,

A Ft, Ds and Dachs localisation B Ds and Fj gradients in eye and wing

C Ds and Fj expression gradients result in differences in Ft-Ds binding between neighbouring cells 

PD (wing)/Polar-Eq (eye)

Ft on cell surface

Ds on cell surface

Fj in Golgi

Dachs
Relative differences in 
Fj, Ds, Ft activity
between neighbouring
cells

Eye disc Wing disc Pupal wing

PDHinge

Pouch

AP

DV

Eq

Key

Fig. 4. Properties of the Fat and Dachsous system in Drosophila. (A)A schematic of the apical surface of epithelial cells in the Drosophila
wing. Fat (Ft, blue) and Dachsous (Ds, magenta) are uniformly distributed, but promote planar polarised asymmetry of Dachs (red). (B)Ds and Four-
jointed (Fj) gradients. In the eye disc (left), the secreted morphogen Wg (green) is highly expressed at the dorsal and ventral poles, and activates Ds
(magenta) expression while suppressing Fj (yellow) expression. The dotted line indicates dorsoventral (DV) midline, also known as the equator (Eq).
In the third instar wing disc (middle) and early pupal wing (right), high levels of Ds are present outside the wing pouch, including the hinge. Fj
shows graded expression (large grey arrows) within the wing pouch that is highest distally, probably owing to morphogen signalling from the DV
and anteroposterior (AP) midlines (green). The sharp boundary between high Ds hinge expression and low Fj pouch expression might serve as a
polarising cue (small grey arrows). (C)Model of how opposing gradients of Ds and Fj expression could lead to different levels of Ft/Ds binding
activity across cells on the proximodistal (PD) axis of the wing disc or the polar-equatorial (Polar-Eq) axis of the eye disc. Ds levels decline left to right,
Fj levels decline right to left and Ft levels are uniform. Triangles at the bottom indicate relative differences between Ds, Ft and Fj activity between
pairs of cells. Fj cell-autonomously inhibits Ds activity and simultaneously enhances Ft activity. Thus, considering any cell, its left neighbour has
higher Ds expression and activity and lower Ft activity than its right neighbour, promoting formation of more and stronger heterophilic Ft-Ds
interactions on the left-right axis and fewer and weaker interactions on the right-left axis. The resulting difference in the strengths of Ft-Ds
interactions on opposing cell edges leads to asymmetric distribution of Dachs (red).
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2010). First, the basal bodies and hence cilia are aligned relative to
each other within the cell (rotational polarity). Second, the entire
patch of cilia is displaced to the anterior side of each cell
(translational polarity, Fig. 6Ab). Both forms of polarity emerge
together and correlate with the onset of coordinated beating in a
uniform direction (Hirota et al., 2010).

During establishment of translational polarity, the patch of cilia
migrates to a peripheral position and the cells align uniformly
according to this asymmetry. The polarisation event actually
depends on the prior asymmetric positioning of the primary cilium
in the radial glia precursors of the ependymal cells. When the
primary cilium is not present – as occurs in the absence of the
ciliogenic protein Kinesin family member 3a (Kif3a) – the patches
remain central (Fig. 6Ab) (Mirzadeh et al., 2010). The mechanism
is poorly characterised, but Vangl2 and Fz3 are localised to
ependymal cell boundaries under the influence of the Fmi
orthologues Celsr2 (Cadherin, EGF-like, LAG-like and seven-pass
receptor 2) and Celsr3, consistent with the intracellular signalling
functions of the core pathway (Tissir et al., 2010). Furthermore,
Vangl2 distribution is asymmetric (Fig. 6Ab), suggesting that
polarised cell-cell interactions occur (Guirao et al., 2010).
Surprisingly, inhibition of Dvl2 does not affect the positioning of
this cilia patch (Hirota et al., 2010); however, this could be due to
redundancy or to the insufficient reduction of activity in the radial
glial precursors.

Rotational polarity involves alignment not of cells but of
organelles (Fig. 6Ab), raising the issue of how the core proteins
might function in this context. The correct intracellular alignment
of the cilia requires multiple core pathway proteins (Guirao et al.,
2010; Hirota et al., 2010; Tissir et al., 2010) and both Dvl2 and
Vangl2 localise to basal bodies (Fig. 6Ab) (Hirota et al., 2010; Park
et al., 2008; Ross et al., 2005). Strikingly, basal bodies also fail to
reach the apical surface of a number of ciliated cell types upon
reduction of Vangl, Dvl or Celsr activity (Park et al., 2008; Mitchell
et al., 2009; May-Simera et al., 2010; Tissir et al., 2010) (Fig. 6Bb).
This suggests a model in which core proteins might polarise
intracellular trafficking events that move basal bodies within the
cell, influencing both basal body delivery to the apical surface and
their alignment on the planar axis.

Mixed arrays of polarised and unpolarised cells
Polarised cells often reside in epithelia that house a diverse array
of cell types, such as in the vertebrate inner ear, where
morphologically asymmetric hair cells interdigitate with support
cells (Fig. 1D, Fig. 6Ba). Each hair cell is topped by a bundle of
actin-rich stereocilia linked to one true cilium, the kinocilium. The
entire bundle is positioned along one edge, placing the kinocilium
on the perimeter of the cell, and fields of polarised hair cells are
further organized according to the axes of each sensory epithelium.
For example, in the cochlea, all hair cells point their bundles
laterally.

Abundant evidence shows that planar polarity in the inner ear is
achieved by a conserved core protein pathway. Mutations in
orthologues of Fmi (Celsr1), Stbm (Vangl1, Vangl2), Fz (Fz2, Fz3,
Fz6) and Dsh (Dvl1, Dvl2, Dvl3) (see Table 1) all cause hair cell
misorientation (Fig. 6Ba) (Curtin et al., 2003; Montcouquiol et al.,
2003; Wang et al., 2005; Wang, J. et al., 2006; Wang, Y. et al.,
2006b; Deans et al., 2007; Etheridge et al., 2008; Torban et al.,
2008; Song et al., 2010; Yu et al., 2010), and core proteins are
asymmetrically localised (Fig. 6Ba) (Wang et al., 2005;
Montcouquiol et al., 2006; Wang, J. et al., 2006; Wang, Y. et al.,
2006b; Deans et al., 2007; Qian et al., 2007; Etheridge et al., 2008;
Jones et al., 2008; Song et al., 2010). Most exciting is the
observation that core proteins are also polarised in the support cells,
which may be active participants in the planar polarisation process
(Wang, Y. et al., 2006b; Deans et al., 2007; Song et al., 2010;
Warchol and Montcouquiol, 2010), despite the fact they do not
themselves have any asymmetrically positioned appendages.

Whether the predicted relationships are also conserved is harder
to demonstrate as it is difficult to distinguish whether a protein is
localised on the medial side of the hair cell or on the lateral side of
the closely apposed support cell. A further complexity is that the
cells of the organ of Corti are moving as the cochlea extends,
thereby obscuring when and where the relevant cell-cell
interactions occur (Chen et al., 2002; Yamamoto et al., 2009a).
However, mosaic studies conclusively demonstrated that Fz6 and
Pk2 do indeed mark opposite sides of cells (Wang, Y. et al., 2006b;
Deans et al., 2007), just as Fz and Pk do in flies. Moreover, Vangl2
is required for proper localisation of other core components (Wang
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et al., 2005; Montcouquiol et al., 2006; Wang, J. et al., 2006; Wang,
Y. et al., 2006b; Deans et al., 2007; Etheridge et al., 2008),
indicating that the characteristic signalling events mediated by the
core protein complex take place in this tissue. Indeed, ablation
experiments in chick indicate that polarised Vangl2 in support cells
may provide polarity information for newly regenerated hair cells,
which consistently appear with the correct orientation (Warchol and
Montcouquiol, 2010). The Ft/Ds pathway is also strongly
implicated in inner ear patterning, as hair cell orientation is
disrupted in mice with mutations in Fat4 and Dcsh1 mutations,
which are the most conserved orthologues of Drosophila ft and ds,
respectively (Saburi et al., 2008; Mao et al., 2011a). Although the
effects on core protein distribution are unknown, Fat4 interacts
genetically with both Vangl2 and Fjx1 (Saburi et al., 2008), the sole
mammalian Fj orthologue, indicating that a conserved relationship
exists between the core and a putative vertebrate Ft/Ds pathway.

Additional evidence that polarity can be propagated by
morphologically unpolarised cells comes from studies of the frog
skin, where multiciliated epidermal cells are aligned along the
AP axis of the animal (Fig. 6Bb). These ciliated cells are born in
the inner epithelial layer and then migrate up to intercalate with
unciliated cells in the outer layer (Drysdale and Elinson, 1992).
Explant and transplant studies suggest that the outer epithelium
is polarised first and passes this information to the ciliated cells

as they arrive (Konig and Hausen, 1993; Mitchell et al., 2009).
Planar polarity proteins seem to mediate this process: inhibition
of a dsh orthologue or of Vangl2 prevents alignment of both the
basal bodies within the cell and of the cell relative to its
neighbours (Fig. 6Bb) (Park et al., 2008; Mitchell et al., 2009).
Similar effects occur upon overexpression of Vangl2 or Fz3
(Mitchell et al., 2009). Of particular interest is that wild-type
ciliated cells become misoriented when they are forced to
intercalate into an outer layer where core pathway signalling has
been disrupted. Furthermore, at the boundaries of transplants,
cells orient their cilia towards low levels of Vangl2 and high
levels of Fz3 (Fig. 7) (Mitchell et al., 2009), an effect also seen
upon overexpression of Vangl2 in the chick inner ear
(Sienknecht et al., 2011). Thus, as in flies, Vangl and Fz provide
directional information that allows cells to achieve a uniform
polarisation, providing some of the best evidence for non-
autonomous signalling in vertebrates, and highlighting the ability
of multiple cell types to participate in polarised cell-cell
interactions.

Polarisation of multicellular structures
Planar polarity mechanisms also align asymmetrically organised
groups of cells. For example, in the Drosophila eye, planar
polarity is manifest through the orientation of the ommatidia –

Table 1. Vertebrate homologues of planar polarity genes identified in Drosophila
Identified homologues known Asymmetric 

Drosophila gene to function in planar polarity localisation observed? Key references

fz Fz1, Fz2, Fz3, Fz6 (mouse) Fz3 (ependymal, inner ear); Wang, Y. et al., 2006b; Deans et al., 2007; 
Fz6 (inner ear, hair follicles) Devenport and Fuchs, 2008; Jones et al., 2008; 

Tissir et al., 2010; Yu et al., 2010

stbm/Vang Vangl1, Vangl2 (mouse) Vangl1, Vangl2 (mouse node, ear, Montcouquiol et al., 2006; Qian et al., 2007; 
stbm/vangl2 (zebrafish, hair follicles); Vangl2 (ependymal); Devenport and Fuchs, 2008; Jones et al., 2008; 

Xenopus) Vangl2 (chick node) Zhang and Levin, 2009; Antic et al., 2010; Guirao 
et al., 2010; Song et al., 2010; Tissir et al., 2010; 
Warchol and Montcouquiol, 2010

fmi/stan Celsr1, Celsr2, Celsr3 (mouse) Celsr1 (hair follicles); Davies et al., 2005; Wada et al., 2006; 
fmi/celsr (zebrafish) C-fmi-1 (chick ear) Devenport and Fuchs, 2008; 

C-fmi-1 (chick) Carreira-Barbosa et al., 2009

dsh Dvl1, Dvl2, Dvl3 (mouse) Dvl2, Dvl3 (mouse Heisenberg et al., 2000; Wallingford 
dsh (zebrafish, Xenopus) node, ear) et al., 2000; Wang et al., 2005; Etheridge et al., 

2008; Hashimoto et al., 2010

pk Pk1, Pk2 (mouse) Pk2 (mouse ear, node); Carreira-Barbosa et al., 2003; Takeuchi 
pk1 (zebrafish) Pk (mesoderm, neural et al., 2003; Veeman et al., 2003b; 
Pk (Xenopus) tube)* Ciruna et al., 2006; Deans et al., 2007; Antic et al., 

2010; Yin et al., 2008

dgo Inversin (Invs), Unknown Watanabe et al., 2003
diversin (Ankrd6) (mouse)

ft Fat4 (mouse) Unknown Saburi et al., 2008

ds Dchs1 (mouse) Unknown Mao et al., 2011a

fj Fjx1 (mouse) Unknown Saburi et al., 2008

dachs None? Unknown

in Intu (mouse) Unknown Park et al., 2006; Zeng et al., 2010
Int (Xenopus)

fy Fuz (mouse) Unknown Gray et al., 2009; Heydeck et al., 2009
Fy (Xenopus)

frtz Fritz (Xenopus) Unknown Kim et al., 2010

*Note that the asymmetric localisation of Pk observed in zebrafish and Xenopus (Ciruna et al., 2006; Yin et al., 2008) was seen using expression of a fusion of Drosophila Pk
to GFP, not using native zebrafish and Xenopus proteins.
Celsr, Cadherin, EGF-like, LAG-like and seven-pass receptor; ds, dachsous; dgo, diego; dsh, dishevelled; Dvl, dishevelled; fj, four-jointed; Fjx1, four jointed box 1; fmi/stan
flamingo/starry night; frtz, fritz; ft, fat; Fuz, fuzzy homologue; fy, fuzzy; fz, frizzled; in, inturned; Int, inturned; Intu, inturned; pk, prickle; stbm/Vang, Van Gogh; Vangl, Van
Gogh like.
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groups of about 20 cells that give rise to the facets of the adult
eye (for a review, see Wolff and Ready, 1993) (Fig. 1B, Fig. 8A).
Ommatidia initially have AP polarity that is independent of the
core or Ft/Ds pathways, which subsequently specify mirror-
image planar polarity on the DV axis. Notably, the DV polarity
of each ommatidium is determined by core pathway activity in
just two cells, the R3/R4 photoreceptor pair, and is read out
through a Notch/Delta-dependent feedback loop that causes one
cell to take on R4 fate and the other R3 fate (Zheng et al., 1995;
Cooper and Bray, 1999; Fanto and Mlodzik, 1999; Tomlinson
and Struhl, 1999). Mosaic analysis established that R3/R4 fate
determination requires higher Fz activity in the presumptive R3
cell and higher Stbm activity in the presumptive R4 cell (Zheng
et al., 1995; Wolff and Rubin, 1998; Tomlinson and Struhl,
1999). Consistent with this, Fz is localised to the R3 side of the
R3/R4 cell boundary and Stbm to the R4 side (Strutt et al.,
2002). As Fz and Stbm expression levels do not seem to vary
along the DV axis (Zheng et al., 1995; Rawls and Wolff, 2003),

a plausible (but unproven) model is that the subcellular
localisation of the core proteins is the key factor in modulating
Notch/Delta activity and hence in defining cell fates (Strutt et al.,
2002).

An absence of fz activity prior to photoreceptor differentiation
leads to randomised DV polarity of ommatidia (Strutt and Strutt,
2002), indicating that long-range polarity coordination across the
eye epithelium requires core protein activity in cells other than
R3/R4. One hypothesis is that weak DV subcellular polarisation
of the core proteins occurs throughout the epithelium, but only
cells that take on the R3/R4 fate are primed to respond; the
subcellular distribution of Fz/Stbm in cells other than the R3/R4
pair is unknown. Alternatively, asymmetry might only evolve in
the R3/R4 pair. The Ft/Ds pathway also acts upstream of the core
pathway in determining DV polarity of ommatidia (Zeidler et al.,
1999; Rawls et al., 2002; Strutt and Strutt, 2002; Yang et al., 2002;
Fanto et al., 2003), but how these pathways and long-range cues
are integrated remains contentious (Fanto and McNeill, 2004).
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such as (a) the mouse inner ear and (b) Xenopus
epidermis, polarised cells interdigitate with cells that show
no outward polarisation. In the inner ear, core proteins
are asymmetrically distributed in both hair cells (dark grey)
and support cells (light grey); protein distributions are
represented in lighter shades in support cells. In polarity
mutants, hair cells are not uniformly oriented. In the
epidermis, ciliated cells are born in the inner epithelium
and then intercalate with unciliated cells in the outer
epithelium (shown in cross-section), creating a mosaic of
polarised and unpolarised cells in the mature epithelium
(shown in surface view). Dvl and Vangl proteins may
localise to basal bodies, which normally all point in the
same direction. In planar polarity mutants, ciliary
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reported, as illustrated for one cell shown in cross-section
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Hair-follicle organisation in the mammalian skin is conceptually
similar to that of ommatidia (Fig. 8B). Rodent skin is polarised, with
body hairs directed towards the tail and limb hairs pointing distally
(Fig. 1F). The polarised unit is the hair follicle, which consists of
cells organised into an asymmetric structure, as revealed by
differences in gene expression and morphology (Devenport and
Fuchs, 2008). When the follicle is properly polarised, the hair
emerges from the skin at an angle. Mutations in Celsr1, Vangl2 and
Fz6 disrupt this orientation and create whorls and ridges in the fur
(Guo et al., 2004; Devenport and Fuchs, 2008; Ravni et al., 2009).
Moreover, these three proteins are asymmetrically distributed (Fig.
8B), and this distribution depends on cell-cell interactions mediated
by them. Intercellular signalling events appear to propagate this
polarity across the epithelium, as wild-type hair follicles can become
misaligned when surrounded by mutant cells (Wang, Y. et al., 2006a;
Devenport and Fuchs, 2008). How this uniform cell-to-cell planar
polarity is translated into polarity of individual follicles is unknown.

An alternative process by which multicellular structures
become polarised is seen in the notum and abdomen of
Drosophila, where multicellular bristles become aligned on the
same axis as surrounding trichome-bearing cells (Gubb and
García-Bellido, 1982; Adler, 1992; Theisen et al., 1994).
Trichome polarisation is probably analogous to wing planar
polarisation, depending upon AP asymmetric localisation of core
proteins. By contrast, bristle polarisation involves a different
mechanism that acts through core pathway-dependent orientation
of an initial asymmetric cell division (Gho and Schweisguth,
1998; Lu et al., 1999; Bellaïche et al., 2004). Consistent with the
orientation of the trichomes in surrounding cells, the bristle
cluster founder cell (the SOP) exhibits localisation of Fz
posteriorly and Stbm anteriorly (Bellaïche et al., 2004), leading

to the asymmetric distribution of factors that orient the spindle
and specify different daughter cell fates (for a review, see
Segalen and Bellaïche, 2009) (Fig. 8D).

Planar polarity-mediated changes in tissue shape
Planar polarity processes also shape three-dimensional tissues that
do not exhibit obvious signs of planar polarity. In these cases, the
orientation of cells reveals transient planar polarisation, as they
move in a specific direction or divide with a specific orientation.
When cell polarity is not coordinated along a specific axis, severe
morphogenetic defects can arise, including failure of neural tube
closure and polycystic kidney disease.

An important example of such a mechanism is convergent
extension, during which cells within a tissue intercalate with each
other to narrow and extend the tissue. For example, during
neurulation of vertebrate embryos, cells in the neural plate migrate
towards the midline and mediolaterally intercalate (Fig. 8C),
permitting the neural plate to curl up and form the neural tube.
When convergent extension fails, the neural plate remains short and
broad, preventing the edges from meeting and closing. Convergent
extension is also crucial for elongation of the body axis during
gastrulation and of the cochlea during inner ear morphogenesis (for
reviews, see Keller et al., 2000; Wallingford et al., 2002; Rida and
Chen, 2009).

Convergent extension offers a prime example of a true planar
polarity process that was revealed due to its dependence on planar
polarity gene function. The manipulation of multiple core protein
orthologues has resulted in the failure of body axis extension
during gastrulation in both zebrafish and frogs (Heisenberg et al.,
2000; Tada and Smith, 2000; Wallingford et al., 2000; Goto and
Keller, 2002; Jessen et al., 2002; Park and Moon, 2002; Takeuchi
et al., 2003; Veeman et al., 2003b). Mutation of these genes in
mice results in craniorachischisis, where the neural tube remains
open from hindbrain to tail (Kibar et al., 2001; Murdoch et al.,
2001; Curtin et al., 2003; Wang, J. et al., 2006; Wang, Y. et al.,
2006b).

Although there is ample evidence that planar polarity proteins
are required for convergent extension, their effects at the cellular
level remain unclear due to the wide variety of cell behaviours that
contribute to this process. Imaging studies during zebrafish and
frog gastrulation have revealed that core protein function is
required for cells to elongate, align, directionally migrate and
intercalate on the mediolateral and radial axes (Wallingford et al.,
2000; Goto and Keller, 2002; Jessen et al., 2002; Veeman et al.,
2003b; Goto et al., 2005; Ybot-Gonzalez et al., 2007; Yin et al.,
2008). Importantly, these cell morphology changes probably
involve direct cell-cell interactions, as transplantation experiments
in zebrafish have shown that loss of core protein activity can non-
autonomously affect neighbouring wild-type cells (Jessen et al.,
2002; Veeman et al., 2003b).

Although intercalating cells behave as if they are planar
polarised on the mediolateral axis, there are few reports that this
polarity is accompanied by asymmetric distribution of planar
polarity proteins. The use of fluorescently tagged proteins in
some studies in zebrafish and frogs has failed to reveal such
asymmetry (Wallingford et al., 2000; Carreira-Barbosa et al.,
2003; Veeman et al., 2003b), possibly owing to non-
physiological expression levels, whereas other studies have
shown clear asymmetric localization of Pk and Dsh that is
dependent on core pathway function (Ciruna et al., 2006; Yin et
al., 2008) (Fig. 8C). However, during mouse neurulation, no
asymmetry has been observed, even using a Dvl2-EGFP

Vangl2 overexpression Fz3 overexpression
Vangl2 loss of function

Mutant cell Unciliated cell Ciliated cell
(normal polarity)

Ciliated cell
(mispolarised)

Non-autonomous effects of clones of mutant cells in Xenopus skin 

Key

Fig. 7. Non-autonomous planar polarity phenotypes in the
Xenopus epidermis. Grafting experiments in the Xenopus epidermis
reveal that core proteins mediate non-autonomous cell-cell interactions
that control the polarity of neighbouring tissue. Grafts of cells with
altered core protein expression are indicated in dark grey. Surrounding
cells are either multiciliated (yellow) or non-ciliated (light grey).
Multiciliated cells are normally polarised to direct fluid flow posteriorly
and ventrally (bottom left of the diagram, basal bodies shown in blue).
However, in wild-type cells on the anterior edge of grafts that
overexpress Vang-like2 (Vangl2), or on the posterior edge of grafts that
overexpress Frizzled3 (Fz3) or that have reduced Vangl2 activity, cells
produce cilia with inverted polarity (basal bodies shown in red). Anterior
is towards the left.
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transgene that reveals Dvl2 asymmetry in the cochlea (Wang et
al., 2005; Wang, J. et al., 2006). One explanation may be that
convergent extension differs from other polarisation processes
because the relevant cells are actively moving and shifting their
cell-cell contacts. Thus, it may be difficult to capture transient
asymmetric localisation of proteins. In support of this, Dsh
protein localisation is variable in zebrafish mesodermal cells
undergoing various cell shape changes (Yin et al., 2008).

Another important mechanism for altering tissue shape in a
polarised manner is oriented cell division (for a review, see Lecuit
and Le Goff, 2007). As already noted, in Drosophila the core
proteins regulate bristle polarity by orienting an asymmetric
division of the SOP cell (Fig. 8D). However, the oriented cell
divisions that underlie changes in tissue shape are not mediated by
core proteins in Drosophila (Baena-López et al., 2005). Instead,
loss of either Ft or Ds results in truncated adult limbs, apparently
owing to a failure to polarise Dachs distribution within the cell
(Mao et al., 2011b), which causes a loss of oriented divisions in the
growing tissue (Baena-López et al., 2005).

Vertebrate core proteins can also affect the orientation of cell
divisions (Gong et al., 2004; Lake and Sokol, 2009; Segalen et
al., 2010), and in contrast to Drosophila, this has been suggested
to be a driving force in tissue elongation during gastrulation
(Gong et al., 2004). However, recent results argue against this
idea because blocking oriented cell division independently of core
protein activity does not affect embryo length (Quesada-
Hernández et al., 2010). In addition, a putative Ft/Ds pathway has

been implicated in orienting cell divisions in the tubules of the
mammalian kidney (Saburi et al., 2008), with mutations in Fat4
causing misoriented mitoses and dilated tubules. Interestingly,
this is enhanced by reduction in Vangl2 dose, suggesting that in
vertebrates the core and Ft/Ds systems might cooperate to orient
cell divisions.

Other possible examples of planar polarity
The loss of core protein activity results in additional morphogenetic
defects, possibly reflecting other requirements for planar polarity.
However, it is often unclear which defects are primary and which
are secondary to other planar polarity-dependent events. For
example, abnormal heart looping is a read-out of earlier LR
patterning abnormalities (e.g. Song et al., 2010), whereas outflow
tract defects more likely reflect a direct failure in polarised cell
migration (Phillips et al., 2005). In addition, a subset of core planar
polarity proteins may have been co-opted to mediate polarised
changes in cell morphology that do not depend on heterophilic cell-
cell interactions. This might include Fz- and Celsr-dependent axon
guidance, as well as neuronal migration (for a review, see Wada
and Okamoto, 2009), although it is also possible that planar
polarity proteins mediate axon-axon or neuron-neuron interactions
that have not yet been described. These issues highlight the need
for caution in labelling an event as ‘planar polarity’ simply because
a known planar polarity gene is involved: many of these genes
participate in multiple, independent pathways that are not all used
for planar polarity per se.
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Novel features of planar polarity in vertebrates
So far we have emphasised the evidence that strongly supports
conservation of planar polarity processes. However, some notable
differences between flies and vertebrates also exist, reflecting novel
ways that vertebrates mobilise and modulate an underlying
polarising mechanism.

Upstream signals
One of the least understood aspects of planar polarity is how cells
align along a specific tissue axis. At the local level, direct cell-cell
interactions are involved, as illustrated by the presence of non-
autonomous effects in flies and vertebrates. Where flies and
vertebrates may diverge is at the level of global regulation, i.e. in
the long-distance cues that ensure that wing trichomes point
distally or that ear hair cells point laterally. The Ft/Ds system partly
serves such a function in flies, where gradients of morphogens
align cells with the body axis by inducing gradients of ds and fj
expression. To date, little is known about the roles of Ft and Ds
vertebrate orthologues. However, the presence of planar polarity
phenotypes in Fat4 and Dchs1 mutant mice suggests that at least
some functions are conserved (Saburi et al., 2008; Mao et al.,
2011a).

Aside from the Ft/Ds system, cell orientations may be
determined by an as yet unidentified secreted factor (sometimes
referred to as ‘Factor X’), which can bias the initial distributions or
activity of core proteins. Given that Wnt family ligands bind to Fz
family receptors, Wnts are obvious candidates for such factors.
Although experimental data do not support such a role for Wnts in
Drosophila (Lawrence et al., 2002; Chen et al., 2008), Wnts are
strongly implicated in several planar polarity processes in
vertebrates, including convergent extension and hair cell orientation
(Heisenberg et al., 2000; Tada and Smith, 2000; Dabdoub et al.,
2003; Qian et al., 2007).

Whether or not Wnts actually serve as orienting cues is
unresolved. For example, the mild hair cell orientation defects in
Wnt5a mutant mice (Qian et al., 2007) could instead reflect an
effect on the expression of Fat4, Dchs1 or Fjx1, similar to the
relationship between Wg and the Ft/Ds system in flies. Moreover,
many studies that support a role for Wnts in planar polarity
coordination rely on overexpression assays, in which a Wnt might
inappropriately stimulate a Fz receptor. Nevertheless, it is widely
thought that Wnts directly orient planar polarity in vertebrates,
where the increased number of cells and greater distances may
necessitate additional long-range cues.

Novel pathway components
Several molecules are required for planar polarity in vertebrates but
not in flies, raising the issue of whether additional vertebrate-
specific mechanisms exist. The best studied example is Protein
Tyrosine Kinase 7 (Ptk7), the homologue of Off-track, which
mediates axon guidance but not planar polarity in flies (Winberg et
al., 2001). Ptk7 mutant mice suffer typical planar polarity defects
such as craniorachischisis and misoriented hair cells (Lu et al.,
2004; Yen et al., 2009; Paudyal et al., 2010). Whereas Ptk7
function remains unclear, two other proteins implicated in the
activation of vertebrate planar polarity signalling – Collagen Triple
Helix Repeat Containing 1 (Cthrc1) and Receptor Tyrosine Kinase-
like Orphan Receptor 2 (Ror2) (Hikasa et al., 2002; Yamamoto et
al., 2008) – are proposed to promote Wnt signalling through effects
on Fz receptor activity (Shnitsar and Borchers, 2008; Yamamoto et
al., 2008). Hence, the introduction of new planar polarity genes
may reflect an expanded role for Wnt signalling in vertebrates.

Typical planar polarity phenotypes also arise in mice and
zebrafish that lack Scribble (Montcouquiol et al., 2003; Murdoch
et al., 2003; Wada et al., 2005). The Drosophila scribble gene is
primarily required for apicobasal polarity (Bilder and Perrimon,
2000), possibly indicating that vertebrate cells rely more heavily
on proper apicolateral localisation of the core proteins. However,
in zebrafish Scribble is required for convergent extension of
mesenchymal cells (Wada et al., 2005) that lack apicobasal polarity,
suggesting additional functions for Scribble in planar polarity
patterning.

Downstream effectors
Planar polarity signalling can lead to diverse cellular
consequences, from directed migration of intracellular organelles
to dynamic actin cytoskeleton changes. Hence, it is not surprising
that downstream effectors vary between organisms and tissues.
By analogy to the original observations in Drosophila (Strutt et
al., 1997), the molecules most often assigned this role in
vertebrates are small Rho family GTPases. Consistent with this,
RhoA (Wünnenberg-Stapleton et al., 1999; Tahinci and Symes,
2003), Rac1 (Sugihara et al., 1998; Tahinci and Symes, 2003;
Habas et al., 2003), Cdc42 (Djiane et al., 2000; Choi and Han,
2002), the RhoA effector Rok (Wei et al., 2001; Marlow et al.,
2002; Ybot-Gonzalez et al., 2007) and the Rok target Myosin II
(Skoglund et al., 2008) have all been described as being planar
polarity effectors during gastrulation. Moreover, Rac1 contributes
to the polarisation and morphogenesis of hair cells in the mouse
inner ear (Grimsley-Myers et al., 2009), whereas Myosin II is
implicated in convergent extension of the cochlea (Yamamoto et
al., 2009b).

A direct connection between the core proteins and RhoA
activation has been established in frogs through the identification
of the formin Daam1, which binds to both Dsh and RhoA (Habas
et al., 2001), leading to RhoA activation by a Daam1-interacting
GEF (Tanegashima et al., 2008). However, as in Drosophila, it
should be noted that Rho family proteins are central regulators of
actin dynamics, and so the disruption of a particular planar polarity
pathway-dependent process does not necessarily imply that Rho
GTPases are acting directly as planar polarity effectors.
Interestingly, although there is a Daam1 homologue in flies, it does
not play a role in planar polarity (Matusek et al., 2006). These
caveats should be considered before concluding that a
morphogenetic process is controlled by ‘planar polarity’ or
‘Wnt/PCP’ signalling based on the involvement of Wnt/Frizzled,
RhoA, Rac1 or Daam1 activity.

There is also no clear picture regarding the functions of the
vertebrate homologues of the Drosophila effectors In, Fy and Frtz
(see Table 1). Loss of their activity in frog and in mouse has only
mild effects on gastrulation, but disrupts ciliogenesis, additionally
causing defects in Hh signalling due to cilia loss (Park et al., 2006;
Gray et al., 2009; Heydeck et al., 2009; Kim et al., 2010; Zeng et
al., 2010). Furthermore, during frog gastrulation, Frtz loss affects
the ability of cells to elongate but not their polarity (Kim et al.,
2010). Interestingly, in some contexts proper ciliogenesis may be
required for the morphogenetic response to the core proteins (see
below). If so, the weak gastrulation defects seen upon loss of
activity of In, Fy and Frtz homologues may be an indirect effect of
their requirement for cilia formation. Thus, just as it has been
difficult to dissociate the contributions of Wnt pathway
components to polarity versus non-polarity events, defining the
specific contributions even of conserved effectors is complicated
by their activities in multiple pathways. D
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Cilia: upstream or downstream?
One of the key differences in planar polarity signalling between
flies and vertebrates is the unique involvement of cilia: in contrast
to fly cells, primary cilia are present on most vertebrate cells,
where they serve several functions (for reviews, see Gerdes et al.,
2009; Goetz and Anderson, 2010). The realisation that cilia
participate in planar polarity-dependent morphogenesis came from
studies of the Bardet Biedl Syndrome (BBS) proteins, which are
required for cilia formation due to their roles in intraflagellar
transport (for a review, see Blacque and Leroux, 2006). Mice and
zebrafish that lack BBS gene activity have both ciliogenesis
defects and mild planar polarity defects, which are enhanced by
loss of core protein activity (Ross et al., 2005; Gerdes et al., 2007;
May-Simera et al., 2010).

Although the link between cilia and planar polarity is
indisputable, the nature of this relationship is still unclear (for
reviews, see Fischer and Pontoglio, 2009; Wallingford, 2010). In
some contexts, cilia may serve as downstream effectors of planar
polarity, as two mutations that cause cilia loss [intraflagellar
transport protein 88 (Ift88) and Kif3a] cause polarity defects in the
mouse ear and brain without affecting core protein distribution
(Jones et al., 2008; Guirao et al., 2010). This mimics the loss of
Drosophila effector proteins, and connects to the roles of vertebrate
In, Fy and Frtz in ciliogenesis. However, such a role may be tissue
or organism specific as Ift88 mutant zebrafish that lack cilia show
normal convergent extension (Huang and Schier, 2009), as do mice
that lack cilia (for a review, see Eggenschwiler and Anderson,
2007). One alternative interpretation is that cilia participate in an
as yet unidentified parallel polarising pathway. Cilia have also been
implicated in upstream signalling mechanisms, because their
mechanical deflection in a specific direction can refine the
alignment of cells in the frog skin and mouse ependyma (Mitchell
et al., 2007; Guirao et al., 2010). Again, this is unlikely to be a
universal role, given the normal polarisation of cells in the inner
ear and node when cilia are absent or immotile (Nonaka et al.,
2005; Jones et al., 2008). How planar polarity proteins function in
the cilia is also a puzzle, with conflicting reports regarding which
proteins are present in basal bodies and whether they are required
for ciliogenesis (Ross et al., 2005; Park et al., 2008; Borovina et
al., 2010; May-Simera et al., 2010; Song et al., 2010; Tissir et al.,
2010), in addition to their well-documented functions in cilia
orientation, asymmetric positioning of the cilium and the alignment
of ciliated cells (Mitchell et al., 2009; Antic et al., 2010; Borovina
et al., 2010; Hirota et al., 2010; Hashimoto et al., 2010; Song et al.,
2010). More work is needed to determine whether a single
conserved planar polarity pathway mediates all of these effects or
whether a subset of polarity proteins promote cilia formation
independent of their more traditional roles in planar polarity.

Conclusion
Planar polarity is a fundamental property of cells in many – if
not most – tissues, and is absolutely required for proper
morphogenesis of structures ranging in size from tiny hairs to
whole organisms. Consequently, understanding the underlying
mechanisms of planar polarity establishment is of intense
interest. However, a lack of clarity in the field about what
constitutes a planar polarity-dependent process presents a barrier
to progress. With regard to this, we have put forward a practical
definition of planar polarity as referring to processes in which
heterophilic cell-cell interactions lead to mutually coordinated
planar polarisation, which fits well with the known molecular
mechanisms.

One of the best understood manifestations of planar polarity is
when cells in a sheet adopt coordinated polarities, which provides
the basis for almost all the morphogenetic processes reviewed here.
A major challenge is to elucidate planar polarity processes that
occur outside cell sheets, and which perhaps occur only transiently
and only between a few cells – for example, during the exquisitely
complex wiring of the mammalian nervous system. Other
important issues include understanding the relationship between the
core and Ft/Ds systems, and the roles of Ft/Ds-related proteins in
vertebrates, a largely unexplored issue that is further complicated
by the multiple functions of the Ft/Ds system in flies.

The remarkable conservation of the basic mechanisms that
establish planar polarity tends to obscure the dearth of knowledge
regarding how these pathways are deployed in a range of contexts.
In both flies and vertebrates there is only a limited knowledge of
the upstream patterning cues, which makes it difficult to identify
conserved principles. Similarly, it will be important to identify bona
fide downstream effectors and understand how they permit a vast
array of morphological outcomes. As we have seen for cilia, which
seem to act both up- and downstream of planar polarity proteins,
many features of planar polarity specification are highly context
specific, with upstream signals and downstream effectors varying
from tissue to tissue. Although Drosophila is likely to continue to
be a powerful organism for investigating the molecular activities
of the core and Ft/Ds systems, most of the questions relating to
upstream signals and effectors will be vertebrate specific. As such
genes are likely to participate in many different developmental
events, their discovery will require a major research endeavour.
Based on our experience to date, such efforts will probably lead us
to new and surprising examples of how planar polarisation
influences animal development.
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