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INTRODUCTION
Topographic maps, which maintain the spatial organization of
neurons in the order of their axonal connections, are found
throughout the nervous system (Udin and Fawcett, 1988). A
notable model of topographic map formation is found in the visual
system, in which a relay of visual information is arranged in a
spatially ordered manner from the retina to the visual center in the
brain. This topographic map is termed a retinotopic map. The
Drosophila visual system has also provided insights into
retinotopic mapping and has been a useful model for studying the
mechanisms underlying the communication between pre- and
postsynaptic neurons (Ting and Lee, 2007). During the
development of the Drosophila visual center, presynaptic
photoreceptors extend retinal (R) axons to the first optic ganglion,
the lamina layer. Postsynaptic lamina precursor cells (LPC) start to
differentiate in response to Hedgehog (Hh), which is delivered
through newly arriving R axons and become post-mitotic lamina
precursor cells (pLPCs) expressing Dachshund (Dac). pLPCs then
form stereotyped ensembles known as lamina columns in a
posterior-to-anterior direction in a stepwise manner (Huang and
Kunes, 1996; Meinertzhagen and Hanson, 1993) and a subset of
pLPCs becomes specified as the lamina neurons (LNs) L1-L5
(Huang and Kunes, 1998; Huang et al., 1998). Formation of these

columns is fundamental to the subsequent establishment of intricate
synaptic connections (Clandinin and Zipursky, 2002;
Meinertzhagen and Hanson, 1993). During the differentiation of
pLPCs, Hh induces Single-minded (Sim) expression in pLPCs.
Sim, a bHLH transcription factor, is required for pLPCs to establish
an association with the corresponding R axons (Umetsu et al.,
2006). This process is unique in that presynaptic neurons regulate
the development of postsynaptic partners in the target area, and the
presynaptic and postsynaptic neurons make stereotypic ensembles
in an early stage of development before synapse formation. This
step-by-step mechanism seems to be an efficient way to make a
precise topographic map along the anterior/posterior axis.
However, the molecular basis underlying cell-cell interactions
between R axons and pLPCs is largely unknown.

Multiple classes of cell-surface molecules are involved in cell-
cell recognition in the Drosophila visual system (Ting and Lee,
2007). We identified a cell surface molecule called Hibris (Hbs),
which is expressed in pLPCs and is required for lamina column
assembly. Hbs belongs to the nephrin protein family. Nephrin and
NEPH1 proteins are members of the immunoglobulin superfamily,
which includes transmembrane proteins that mediate Ca2+-
independent cell-cell adhesion (Barclay and Robertson, 2003;
Hynes and Lander, 1992). In Drosophila, two nephrin homologs,
Hbs and Sticks-and-stones (Sns), and two NEPH1 homologs,
irreC/Roughest (Rst) and Kin of irre (Kirre, also called
Dumbfounded), have been identified (Artero et al., 2001; Bour et
al., 2000; Dworak et al., 2001; Ramos et al., 1993; Strunkelnberg
et al., 2001). These proteins are known as the irre cell recognition
module (IRM) proteins (Fischbach et al., 2009) and are suggested
to function through direct homophilic or heterophilic binding with
other nephrin/NEPH1 homologs during processes such as the
formation of the nephrocytes (Zhuang et al., 2009), myoblast
fusion (Galletta et al., 2004; Shelton et al., 2009), cell sorting in
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SUMMARY
Topographic maps, which maintain the spatial order of neurons in the order of their axonal connections, are found in many parts
of the nervous system. Here, we focus on the communication between retinal axons and their postsynaptic partners, lamina
neurons, in the first ganglion of the Drosophila visual system, as a model for the formation of topographic maps. Post-mitotic
lamina precursor cells differentiate upon receiving Hedgehog signals delivered through newly arriving retinal axons and, before
maturing to extend neurites, extend short processes toward retinal axons to create the lamina column. The lamina column
provides the cellular basis for establishing stereotypic synapses between retinal axons and lamina neurons. In this study, we
identified two cell-adhesion molecules: Hibris, which is expressed in post-mitotic lamina precursor cells; and Roughest, which is
expressed on retinal axons. Both proteins belong to the nephrin/NEPH1 family. We provide evidence that recognition between
post-mitotic lamina precursor cells and retinal axons is mediated by interactions between Hibris and Roughest. These findings
revealed mechanisms by which axons of presynaptic neurons deliver signals to induce the development of postsynaptic partners
at the target area. Postsynaptic partners then recognize the presynaptic axons to make ensembles, thus establishing a
topographic map along the anterior/posterior axis.
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eye morphogenesis (Bao and Cagan, 2005) and axonal pathfinding
in the visual system (Fischbach et al., 2009; Ramos et al., 1993;
Schneider et al., 1995). Bao and Cagan identified Hbs in primary
pigment cells and showed that its preferential adhesion to Rst is
required for cell sorting to occur (Bao and Cagan, 2005). Proteins
of the nephrin and NEPH subfamilies are also expressed in
neighboring cell types in the nervous system of vertebrates
(Beltcheva et al., 2003; Gerke et al., 2006; Morikawa et al., 2007;
Tamura et al., 2005). The homophilic interaction of Kirrel3, a
member of the NEPH subfamily, has been shown to be involved in
the axonal fasciculation of olfactory sensory neurons (Serizawa et
al., 2006).

We examined the roles of Hbs and its partner Rst during the first
step of lamina column assembly. Hbs-Rst interaction is required for
lamina column assembly at this early stage, and this provides the
basis for further steps in lamina development, eventually leading
to topographically correct synapse formation.

MATERIALS AND METHODS
Genetics
yw flies were used as wild-type controls. The following mutant strains were
used in this study: sim2 and simry75 (Pielage et al., 2002), hbs459 (Artero et
al., 2001), Df(2R)14 (Denholm et al., 2003), irreC1R34 and rstCT (Schneider
et al., 1995), Df(1)rst-vt (Ruiz-Gomez et al., 2000) and Df(1)dufsps-1

(Weavers et al., 2009). The following transgenic strains were used in this
study: UAS-GFPnls and UAS-mCD8GFP (Lee and Luo, 1999), UAS-sim
(Chang et al., 2003), UAS-hbs FL (Dworak et al., 2001), UAS-hbs-ECD
and UAS-hbs-ICD (Artero et al., 2001), UAS-hbs-HA (Shelton et al., 2009),
UAS-rst FL, known as UAS-HB3 (Schneider et al., 1995), UAS-rst-DD1
(Vishnu et al., 2006), NP6099-Gal4 (Hayashi et al., 2002; Yoshida et al.,
2005), GMR-Gal4 (Hay et al., 1997), hs-flp122; AyGal4 (Ito et al., 1997)
and ey3.5-FLP (Bazigou et al., 2007). UAS-dsRNA lines (hbs; 40898, sns;
877, rst; 27225, kirre; 3111) and UAS-dicer2 lines (60008, 60009) were
obtained from the VDRC stock center.

Labeling a subset of post-mitotic lamina precursor cells with GFP
hsflp122; AyGal4, UAS-GFP/UAS-CD8GFP was used for labeling a
random subset of pLPCs. For labeling a subset of pLPCs in sim2/simry75

mutants, males with the genotype of hsflp122; AyGal4, UAS-GFP; simry75

were mated with UAS-CD8GFP; sim2 females. The progeny at 72-96 hours
after egg laying (AEL) were heat shocked (37°C for 40 minutes).
Dissections were carried out at the late third instar larval stage.

Quantification of the number of pLPCs extending processes to R
axons
To assess the interaction between pLPCs and R axons, the number of
pLPCs extending processes to R axons in control flies and sim mutants was
counted in confocal images of the optic lobe. Each process was defined as
an extended protrusion of more than 2 mm. The interaction between pLPCs
and R axons was defined by contact between the tip of the processes and
R axons.

Clonal analysis
sim2 clones were induced using FRT82B, sim2 and hsflp;; FRT82B, ubi-
GFP, M(3)w124 (Ferrus, 1975). After these strains were mated, the progeny
at 24-48 hours AEL were heat shocked (37°C for 1 hour). Dissections were
carried out at the late third instar larval stage.

Histology
Immunohistochemistry was performed as previously described (Huang and
Kunes, 1996; Takei et al., 2004). The following antibodies were used in
this study: mouse anti-Dac (mAbdac2-3, 1:1000, DSHB), mouse anti-Dlg
(4F3, 1:20, DSHB), mouse anti-Chaoptin (mAb24B10, 1:10, DSHB),
mouse anti-HA (1:500, Covance), mouse anti-Rst [MAb24A5.1, 1:50,
(Schneider et al., 1995)], rat anti-Elav (7E8A10, 1:50, DSHB), rat anti-Shg
(DCAD2, 1:20, DSHB), rabbit anti-Kirre [A126i, 1:400, (Kreiskother et
al., 2006)], rabbit anti-Sns [1:400, (Kesper et al., 2007)], rabbit anti-GFP

(1:500, Medical and Biological Laboratories CO., LTD.), goat Cy3 anti-
HRP and goat FITC anti-HRP (1:800, Accurate Chemical and Scientific).
The anti-Hbs antibody (1:500) was generated by Operon Biotechnologies
(Tokyo) against the mixed peptides NH2- C+RPLDNSTYKTTSSSD -
COOH, NH2- C+LPNPKRHSQRNSATG -COOH and NH2-
C+FNMSDKYMSYPPVTY -COOH in rats. Secondary antibodies
(Jackson) were used at the following dilutions: anti-mouse Cy3, 1:200;
anti-mouse Cy5, 1:200; anti-rat Cy3, 1:200; anti-rat Cy5, 1:200; anti-rabbit
Cy5, 1:200; anti-rabbit Alexa 660, 1:200; and anti-rabbit FITC, 1:200
(Molecular Probes). Specimens were mounted with Vectashield mounting
medium (Vector) and viewed on a Zeiss LSM710 confocal microscope.

Quantification of lamina column assembly
The ratio of the number of Dac-positive cells of the assembling domain to
that of the entire lamina domain was calculated to compare lamina column
assembly in control flies, hbs mutants and rst mutants. To optically dissect
the assembling domain from the pre-assembling domain of the lamina in
the late 3rd instar larval stage, projections of the confocal images were
subjected to Amira (Visage Imaging GmbH) and ImageJ software
(National Institutes of Health, Bethesda, MD, USA). The datasets were
then subjected to a developmental version of Eve software (Kamikouchi et
al., 2006) (T. Shimada, K. Kato, H. Otsuna and K. Ito, unpublished) to
count the cells labeled with the anti-Dac antibody. There was no statistical
difference between the cell numbers counted with Eve software and those
counted manually.

Microarray analysis
The lamina was isolated from late third larval brains to compare the
comprehensive gene expression profiles of yw/NP6099;UAS-
CD8GFP/+;sim2/simry75 (n3; 412, 496 and 500 laminas) with those of
yw/NP6099;UAS-CD8GFP/+ (n3; 423, 452 and 448 laminas). Total RNA
was prepared from dissected lamina cells by Bio Matrix Research (Chiba).
Biotinylated cRNA was then prepared and hybridized to an Affymetrix
Drosophila Genome 2.0 array by Bio Matrix Research (Chiba). To identify
candidate genes whose expression levels were altered in the sim mutant,
the data were analyzed using GeneSpring GX software (Agilent).

RESULTS
pLPCs extend processes toward R axons in the
first step of lamina column assembly
During development of the Drosophila visual center, presynaptic
photoreceptors extend their axons to the first optic ganglion lamina
layer (Fig. 1A-F). Retinal (R) axons establish stereotypic connections
with developing lamina neurons (LNs) and form ensembles known
as lamina columns in a posterior to anterior order (Fig. 1E,F;
Meinertzhagen and Hanson, 1993). Here, we refer to the region that
is not innervated by R axons as the pre-assembling domain and the
region that is innervated as the assembling domain (Fig. 1B,C,E,F,
arrowed lines). In the pre-assembling domain, post-mitotic lamina
precursor cells (pLPCs) express the differentiation marker
Dachshund (Dac). We also detected Dac in the inner proliferation
center (Fig. 1C, white arrowhead). Most IPC cells give rise to the cell
body layer of the lobula plate. In addition to Dac expression, LNs
begin expressing the neuronal marker for embryonic lethal abnormal
vision (Elav) in the assembling domain as they differentiate into
mature LNs in later developmental stages (Huang and Kunes, 1996;
Huang et al., 1998; Umetsu et al., 2006). Differentiation of lamina
precursor cells (LPCs) is induced by Hedgehog (Hh) secreted from
newly arriving R axons (Huang and Kunes, 1996). At the same time,
Hh induces the expression of the transcription factor single-minded
(sim) gene in pLPCs. pLPCs in the pre-assembling domain were
shown to require Sim for at least the first step of lamina column
assembly (Umetsu et al., 2006). Because the cellular mechanisms
underlying this process have not been elucidated, we looked closely
at the cell shape of the pLPCs that were about to integrate into the
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lamina column. In order to visualize cell shape, we randomly marked
pLPCs with GFP. The pLPCs often extended cellular processes (Fig.
1G�, arrows) and contacted newly arriving R axons (Fig. 1G�, yellow
arrowheads). In a heteroallelic combination of the sim mutants,
pLPCs still formed processes, but smaller number of cells contacted
R axons compared with control flies (Fig. 1H�, arrows). We
calculated the ratio of pLPCs with processes that were in contact
with R axons to all pLPCs with processes and found that this ratio
was significantly smaller in sim mutants (Fig. 1I, 0.29: 69/240
pLPCs) than in the control (Fig. 1I, 0.66: 149/226 pLPCs). We

reasoned that Sim is required for pLPCs to establish and/or maintain
a direct interaction with R axons, probably through regulating the
expression of cell surface molecules that are required for R axon
association.

The cell-adhesion molecule Hibris is expressed in
pLPCs under the control of Sim
To identify molecules that play roles in intercellular communication
at the cell surface of pLPCs, we searched for the downstream
effectors of Sim using microarray analysis (see materials and

3305RESEARCH ARTICLEHibris/Roughest in retinotopic mapping

Fig. 1. The onset of lamina column assembly depends on the activity of Single-minded. (A,D)Schematic drawings of the Drosophila central
nervous system in the late third instar larval stage from lateral (A) and horizontal (D) perspectives. Unless otherwise noted, all images are of the late
third instar larval stage. A, anterior; P, posterior; D, dorsal; V, ventral. (B,E)Schematic drawings of lamina from lateral (B) and horizontal (E) perspectives.
During the development of the lamina, photoreceptor cells in the eye disc extend their R axons (magenta) to the first optic ganglion: the lamina layer
(green). Soon after LPCs start to differentiate into pLPCs, they form close associations with newly arriving R axons and make stereotyped ensembles,
known as lamina columns (blue rectangle), in a posterior-to-anterior direction and step-wise manner. The lamina is divided into two domains: the pre-
assembling domain, which is not innervated by R axons, and the assembling domain, which is innervated (black arrowed lines). pLPCs primarily exist in
the pre-assembling domain. Subsets of LNs exist in the assembling domain. (C,F)Confocal images of the optic lobe immunostained for Dac (pLPCs and
LNs, green) and HRP (R axons, magenta) from lateral (C) and horizontal (F) views. The inner proliferation center are shown (white arrowhead). Arrows
and rectangles as in B,E. (C�,F�) HRP in C and F. (G-H�) Subsets of pLPCs were clonally labeled by GFP (green) in yw (G) or sim2/simry75 (H). (G�,G�,H�,H�)
Magnified images of the area outlined in G and H. (G�)Higher magnification of the area outlined in G�. The areas stained by anti-HRP are outlined. The
tips of the pLPCs that contact R axons are indicated by yellow arrowheads. pLPCs and LNs in the optic lobe are visualized by anti-Dac (blue). pLPCs
(G�,G�, white circles) extend their processes to R axons in the control animal samples (G�, arrows). However, pLPCs in sim mutants (H�,H�, white circles)
occasionally failed to direct to R axons (H�, arrows). (I)Quantification of the ratio of the number of cells extending protrusions to R axons in yw (0.66:
149/226) and sim2/simry75 mutants (0.29: 69/240). The protrusions were defined as extended processes greater than 2mm in length. The extended
protrusions to R axons were defined by contact between the tip of the pLPCs and R axons.
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methods). As a result, we identified hibris (hbs) as a target of Sim.
Hbs is a single-pass transmembrane protein belonging to the
immunoglobulin superfamily and has a similarity to the human
kidney protein nephrin (Artero et al., 2001; Dworak et al., 2001;
Fischbach et al., 2009). To investigate the localization of the Hbs
protein in the optic lobe at the late third instar larval stage, we
examined its expression by antibody staining. Hbs was localized on
the membrane of the pLPCs (Fig. 2A-B�). Note that Hbs seems to
accumulate at the contact surface between pLPCs and R axons (Fig.
2B�,D�, arrows, Fig. 2G). Hbs expression in pre-assembling domain
was high in the region close to the optic stalk, but lower in cells
closer to the lamina plexus (Fig. 2F�, white circle, Fig. 2G).
Moreover, Hbs expression in the assembling domain was rather
restricted (Fig. 2F�, broken white circle, Fig. 2G). In fact, knockdown
of Hbs by RNAi using NP6099-Gal4, which specifically expresses
Gal4 in pLPCs and LNs (Yoshida et al., 2005), caused
downregulation of Hbs in pre-assembling domain and assembling
domain (see Fig. S1C-D� in the supplementary material, 100%: n8).
Hbs was also found to be expressed in R axons (Fig. 2D-D�, arrows)
because RNAi knockdown of hbs specifically in photoreceptor cells
using ey3.5-FLP; AyG (Bazigou et al., 2007) caused downregulation

of Hbs in the R axons (see Fig. S1G-G� in the supplementary
material, 100%: n9), lamina plexus (see Fig. S1H-H�, arrows, in the
supplementary material, 100%: n4) and eye disc (see Fig. S1J� in
the supplementary material, 100%: n5). Strong staining of Hbs was
also observed in the medulla neuropil (Fig. 2E, asterisk) and lobula
neuropil (Fig. 2E, double asterisk).

To examine whether sim is required for Hbs expression in
pLPCs, we analyzed the expression of Hbs in sim2 mutant clones.
Hbs was significantly reduced in sim2 mutant clones in a cell-
autonomous manner (Fig. 2H-I�, 100%: n11). Consistent with this
finding, Hbs was upregulated by forced expression of Sim in
pLPCs (Fig. 2J-K�, 100%: n18). These results indicate that the
expression of Hbs is regulated by Sim in pLPCs. In addition, hbs
expression in the mesectoderm was absent in the sim mutant
embryo (Dworak et al., 2001).

The extracellular domain of Hbs is essential for
the association of pLPCs with R axons
To examine the function of Hbs in pLPCs, we observed the third
instar larval brains of hbs loss-of-function mutants. pLPCs start
to be associated with R axons and assemble into lamina columns
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Fig. 2. The expression of Hbs is dependent on Sim.
(A-F�) Confocal images of the Drosophila optic lobe
immunostained for Hbs protein (magenta) in yw. Hbs is
localized on the membrane of pLPCs (A-B�). Plasma
membranes are visualized by anti-Dlg (A-B�, green). Hbs is
strongly expressed in the most anterior R axons (D-D�, arrows)
and seems to accumulate at the contact surface between
pLPCs and R axons (B-B�,D-D�, arrows). R axons are visualized
by anti-HRP (D-F�, green). Staining of Hbs is also seen in the
medulla neuropil (E, asterisk) and lobula neuropil (E, double
asterisk). Hbs expression is high in the region close to the optic
stalk in the pre-assembling domain (E-F�, white outline) and is
restricted in the assembling domain (E-F�, broken white
outline). Lateral (A,C) and horizontal (E) sections of the optic
lobe are shown. (B-B�,D-D�,F-F�) Magnified images of the areas
outlined in A,C,E. (G)Schematic drawings of Hbs staining. The
stained region (+) is shown in magenta. (H-I�) Confocal image
of the optic lobe immunostained for Hbs in sim2 clones, which
are indicated by the absence of GFP (green). pLPCs and LNs are
visualized using anti-Dac (blue). (I-I�) Higher magnification of
the area outlined in H. The boundaries of clones are indicated
by broken yellow lines (I�). The most anterior R axon bundles
are indicated by arrows (I�). The expression of Hbs (magenta)
was markedly decreased in sim2 clones (n11). (J-K�) Confocal
image of the optic lobe immunostained for Hbs in cells
overexpressing Sim, which are visualized by GFP (green). pLPCs
and LNs are visualized by anti-Dac (blue). (K-K�) Higher
magnification of the area outlined in J. The boundaries of cells
overexpressing Sim are indicated by broken yellow lines (K�).
The most anterior R axon bundles are indicated by arrows (K�).
The expression of Hbs (magenta) was increased by forced
expression of Sim (n18).
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after the developmental stage when ommatidial differentiation
has proceeded to 11-12 rows in the eye disc (Umetsu et al.,
2006). We therefore examined the phenotype of the lamina
column assembly well after this stage of development: at the
stage of 16 to 17 rows of ommatidial differentiation or later in
the third larval instar (120 hours AEL). As in the sim mutant,

many pLPCs remained in the pre-assembling domain in the hbs
mutants (Fig. 3B). The number of Dac-positive cells of the
assembling domain within the total Dac-positive lamina cell
population was measured to quantify the expressivity of the
phenotype. The typical value was 0.59 (n25) for the yw control
(see Fig. S2A,B,J in the supplementary material) and 0.17
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Fig. 3. The expression of Hbs in pLPCs is required and sufficient for the association of pLPCs with R axons. (A-B�) The phenotype of the
Drosophila hbs mutant is shown. pLPCs were incorporated into the assembling domain in yw (A, 0.59: n25), but not hbs459/Df(2R)14 mutants (B,
0.17: n32). (C-D�) The phenotype of hbs RNAi in pLPCs of NP6099-Gal4, UAS-GFPnls (C, 0.63: n5) and NP6099-Gal4, UAS-GFPnls; UAS-hbs IR;
UAS-dicer2 (D, 0.20: n10). Cells expressing gal4 are marked by the expression of GFP (green). (E-F�) The phenotype of hbs RNAi in photoreceptor
cells of ey3.5-FLP;AyG, UAS-GFP (E, 0.56: n5) and ey3.5-FLP;AyG, UAS-GFP/UAS-hbs IR (F, 0.60: n5). R axons are visualized by ey3.5-FLP; AyG, UAS-
GFP (E,F, magenta; E�,F�, white). (G-I�) Rescue of the hbs mutation by different hbs constructs driven by NP6099-Gal4. NP6099-Gal4, UAS-GFPnls;
hbs459/Df(2R)14, UAS-hbs FL (G), NP6099-Gal4, UAS-GFPnls / UAS-hbs ECD; hbs459/Df(2R)14 (H) and NP6099-Gal4, UAS-GFPnls; hbs459/ Df(2R)14,
UAS-hbs ICD (I). Cells expressing hbs (FL, ECD or ICD) are marked by the expression of GFP (G�-I�, blue). pLPCs and LNs are visualized by anti-Dac
(A,B,E-I, green). R axons are visualized by anti-HRP (A-I, magenta; A�-I�, white). (J)Quantification of lamina column defects in animals carrying the
construct, as described. The ratio of the number of Dac-positive cells of the assembling domain to that of the lamina was calculated. Expression of
exogenous hbs FL and ECD fragments in pLPCs significantly rescued the hbs mutation. yw (0.59: n25), hbs459/Df(2R)14 (0.17: n32), NP6099-
Gal4,UAS-GFPnls;hbs459/Df(2R)14 (0.22: n14), hbs459/Df(2R)14,UAS-hbs FL (0.15: n23), NP6099-Gal4,UAS-GFPnls;hbs459/Df(2R)14,UAS-hbs FL
(0.51: n15), UAS-hbs ECD;hbs459/Df(2R)14 (0.18: n25), NP6099-Gal4,UAS-GFPnls/UAS-hbs ECD;hbs459/Df(2R)14 (0.37: n27),
hbs459/Df(2R)14,UAS-hbs ICD (0.22: n15), NP6099-Gal4,UAS-GFPnls;hbs459/Df(2R)14,UAS-hbs ICD (0.16: n16). These samples were compared
and analyzed using Student’s t-test. Statistical significance (*P<0.001) is indicated. Error bars represent the standard error of the mean (s.e.m.).
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(n32) for the hbs459/Df(2R)14 mutants (see Fig. S2C,D,J in the
supplementary material). Similar results were obtained at the
white pupal stage (see Fig. S2G-H�,J in the supplementary
material), suggesting that the phenotype of the hbs mutants is not
due to a delay in development. Knockdown of Hbs by RNAi
using NP6099-Gal4 also caused an accumulation of pLPCs in
the pre-assembling domain that resembled the phenotype
observed in the hbs459/Df(2R)14 mutants (Fig. 3D, 0.20: n10),
suggesting that Hbs in pLPCs is required for the lamina column
assembly. We then asked whether Hbs expression in pLPCs is
sufficient for the association of pLPCs with R axons. We
expressed exogenous hbs in hbs459/Df(2R)14 mutants using
NP6099-Gal4. We found that lamina column assembly was
significantly rescued (Fig. 3G-G�,J, 0.51: n15), providing
strong evidence that hbs is autonomously required in pLPCs for
lamina column assembly. Although Hbs was also expressed in R
axons, knockdown of Hbs function in photoreceptor cells did not
show defects in lamina column assembly (Fig. 3F, 0.60: n5).
Exogenously supplied hbs in the photoreceptor cells in the
background of the hbs459/Df(2R)14 mutant did not rescue the
defects (Fig. 5G-G�,H, 0.16: n20). Hbs overexpressed in the
photoreceptor cells caused no morphological defect in the lamina
(see Fig. S3C-D� in the supplementary material, 0.54: n9).
These results indicate that hbs expressed in the photoreceptor
cells does not play an essential role in lamina column assembly.

R axon projections into the medulla layer in hbs459/Df(2R)14
were indistinguishable from those of yw (see Fig. S4A-D� in the
supplementary material), indicating that the phenotype was caused
by a failure in the interaction between pLPCs and R axons, but not
by a global pathfinding defect of R axons.

To identify functional domains of Hbs, we performed a series of
rescue experiments with different Hbs fragments encoded in UAS-
hbs ECD (transmembrane and extracellular domain) and UAS-hbs
ICD (transmembrane and intracellular domain) (Artero et al.,
2001). These constructs were expressed using the NP6099-Gal4
driver. We found that the expression of the ECD of Hbs could
rescue lamina column assembly in hbs459/Df(2R)14, albeit with
lower efficiency than full-length Hbs (Fig. 3H-H�,J, 0.37: n27).
The expression of ICD, however, did not rescue the phenotype
(Fig. 3I-I�,J, 0.16: n16). These results suggest that the
extracellular domain of Hbs is essential for the association of
pLPCs with R axons.

nephrin/NEPH1 homologs are expressed in the
optic lobe and photoreceptors
We next searched for other nephrin and NEPH1 homologs that play
a role in R axons as a partner of Hbs. These homologs are
suggested to function through direct interactions between Hbs and
IrreC/Roughest (Rst) (Bao and Cagan, 2005), Sticks-and-stones
(Sns) and Kin of irre (Kirre, also called Dumbfounded) (Galletta et
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Fig. 4. The expression pattern of
Drosophila nephrin/NEPH1
homologs. (A-L�) Confocal images of
the Drosophila optic lobe
immunostained for Sns (A-D�, magenta),
Rst (E-H�, magenta) and Kirre (I-L�,
magenta) in yw. Sns is localized in the
contact surface between pLPCs and R
axons (B�, broken white lines; D�, white
arrowhead). Rst and Kirre are localized
in R axons (F,F�,H,H�,J,J�,L,L�). Rst
expression is also observed in the
posterior region of the developing
lamina (H�, yellow arrowheads). The
medulla neuropil (asterisk) and lobula
neuropil (double asterisk) are also
stained by Sns (C), Rst (G) and Kirre (K).
Lateral sections (A,E,I) and horizontal
sections (C,G,K) of the optic lobe are
shown. (B-B�,D-D�,F-F�,H-H�,J-J�,L-L�)
Magnified images of the areas outlined
in A,C,E,G,I,K. R axons are visualized by
anti-HRP (green). (M)Schematic
drawings of Sns, Rst and Kirre staining.
The stained region (+) is shown in
magenta.
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al., 2004) and Hbs and Sns (Shelton et al., 2009). We therefore
examined the localization patterns of the nephrin homolog Sns. We
found that Sns was localized in the region in which pLPCs and R
axons come into contact with each other (Fig. 4A-D�,M). To
elucidate the tissue in which Sns is expressed, we examined the
effect of Sns knockdown by RNAi in pLPCs or photoreceptor cells.
Knockdown of Sns by RNAi using NP6099-Gal4 decreased the
Sns level in the region in which pLPCs and R axons come into
contact with each other (see Fig. S5C-D� in the supplementary
material, 100%: n7). However, RNAi against sns using ey3.5-FLP;
AyG did not cause downregulation of Sns (see Fig. S5G-H� in the
supplementary material, 100%: n7). Moreover, we did not detect
Sns expression in the eye disc (see Fig. S5I-J� in the supplementary
material). These results indicate that Sns is expressed in pLPCs.
Knockdown of Sns by RNAi in pLPCs did not result in defects in

lamina column assembly (see Fig. S5C-D� in the supplementary
material, 0.62: n5), suggesting that Sns expressed in pLPCs is
dispensable for this process.

Two NEPH1 homologs Rst and Kirre were apparently localized
in R axons (Fig. 4E-M). To confirm this finding, we reduced the
expression of these proteins by RNAi in pLPCs or photoreceptor
cells. Knockdown of Rst or Kirre by RNAi using NP6099-Gal4 did
not reduce the signal of Rst (see Fig. S6C-D� in the supplementary
material, 100%: n9) or Kirre (see Fig. S6G-H� in the
supplementary material, 100%: n5) in the region in which pLPCs
and R axons come into contact with each other. By contrast, RNAi
against rst and kirre using ey3.5-FLP; AyG caused a substantial
reduction in the expression of Rst (see Fig. S6K-L� in the
supplementary material, 100%: n7) and Kirre (see Fig. S6O-P� in
the supplementary material, 100%: n10), indicating that Rst and
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Fig. 5. Rst is required for the incorporation of pLPCs into the assembling domain. (A-C�) The phenotype of Drosophila rst and kirre mutants.
pLPCs were incorporated into the assembling domain in Df(1)dufsps1(C, 0.60: n11), but not in irreC1R34 (A, 0.25: n24) or Df(1)rst-vt mutants
(B, 0.27: n6). (D,D�) The phenotype of rst RNAi using ey3.5-FLP;AyG, UAS-GFP. Knockdown of Rst function in the R axons resulted in a phenotype
similar to, but less severe than, that of the rst mutants (0.31: n27). R axons are visualized by ey3.5-FLP; AyG, UAS-GFP (D, magenta; D�, white).
(E,F�) The phenotype of the rst mutant. pLPCs were incorporated into the assembling domain in the rstCT mutants (0.61: n3). (F-G�) The expression
of eye-specific GMR-Gal4 used for rescue experiments in rst or hbs mutants. irreC1R34;UAS-rst FL/GMR-Gal4 (F-F�) and hbs459/Df(2R)14;GMR-Gal4
(G-G�). pLPCs and LNs are visualized using anti-Dac (green) and R axons are visualized using anti-HRP (A-C,E-G, magenta; A�-C�,E�-G�, white).
(H)Quantification of lamina column defects in animals carrying constructs, as described. The ratio of the number of Dac-positive cells of the
assembling domain to that of the total pLPCs and LNs was calculated. Expression of exogenous rst in photoreceptor cell occasionally rescued lamina
column assembly. yw (0.59: n25), irreC1R34 (0.25: n24), irreC1R34;GMR-Gal4,UAS-CD8GFP (0.21: n34), irreC1R34;UAS-rst FL (0.20: n22),
irreC1R34;UAS-rst FL/GMR-Gal4,UAS-CD8GFP (0.44: n19), irreC1R34;UAS-rst-DD1/GMR-Gal4,UAS-CD8GFP (0.17: n13) and hbs459/Df(2R)14,UAS-
hbs FL;GMR (0.16: n20). These samples were compared and analyzed using Student’s t-test. Statistical significance (*P<0.001) is indicated. Error
bars represent the standard error of the mean (s.e.m.).
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Kirre are expressed in photoreceptor cells. We also detected
punctate expression of Rst in the assembling domain (Fig. 4H�,
yellow arrowheads). This expression was derived from LNs
because knockdown of Rst by RNAi using NP6099-Gal4 caused a
loss of the punctate expression of Rst in the assembling domain
(see Fig. S6D-D� in the supplementary material, 100%: n9), but
knockdown of Rst by RNAi using ey3.5-FLP; AyG did not (see Fig.
S6L-L� in the supplementary material, yellow arrowheads, 100%:
n7). Knockdown of Rst by RNAi in LNs did not result in defects
in lamina column assembly (see Fig. S6C-C� in the supplementary
material, 0.61: n3), suggesting that Rst expressed in LNs is
dispensable for lamina column assembly. Three nephrin/NEPH1
homologs were also detected in the medulla neuropil (Fig. 4C,G,K,
asterisk) and lobula neuropil (Fig. 4C,G,K, double asterisks). The
above results suggest that Rst and Kirre are candidate partners of
Hbs in R axons.

Rst is a partner of Hbs in R axons
We tested whether the heterophilic interaction between Hbs in
pLPCs and Rst and/or Kirre on R axons plays a role in lamina
column assembly. In the brain of irreC1R34, a null rst mutant, R
axons were not associated with pLPCs (Fig. 5A, 0.25: n24), as in
hbs459/Df(2R)14 mutants. A similar phenotype was observed in
Df(1)rst-vt, a mutant that is deficient for kirre and rst (Fig. 5B,
0.27: n6). However, Df(1)duf[sps1], which lacks only kirre
function, did not show this phenotype (Fig. 5C, 0.60: n11). In
addition, we confirmed that RNAi specifically targeting rst in
photoreceptor cells using ey3.5-FLP; AyG phenocopied the mutant
phenotype (Fig. 5D, 0.31: n27). These results indicate that Rst in
R axons is required for lamina column assembly. As in the case of
hbs, the rst phenotype was not due to a delay in the development
of the visual system (see Fig. S2E,F,I,J in the supplementary
material) or to a global pathfinding defect of R axons (see Fig. S4E
in the supplementary material).

To further confirm the role of Rst, we performed a rescue
experiment in which a transgene of rst was expressed in
photoreceptor cells in the mutant background. The ratio of lamina
column assembly was measured as described previously. The
expression of rst in photoreceptor cells rescued the defect in lamina
column assembly in irreC1R34 mutant brains (Fig. 5F-F�,H, 0.44:
n19), indicating that rst expressed in photoreceptor cells plays an
essential role in lamina column assembly.

The mutant allele rstCT, which lacks the intracellular domain
and thus cannot transduce the signal, but is capable of mediating
cell-cell adhesion (Schneider et al., 1995), had no effects on
lamina column assembly (Fig. 5E, 0.61: n3). This result
suggests that adhesion, rather than intracellular signaling of Rst,
plays an important role in lamina column assembly. In addition,

the lamina column defect was not rescued with UAS-rst-DD1,
which lacks the first Ig domain of Rst (Vishnu et al., 2006) (Fig.
5H, 0.17: n13), again confirming the importance of Rst as an
adhesion molecule.

Hbs interacts with Rst at the interface between
pLPCs and R axons
Hbs in pLPCs was not only localized on the plasma membrane,
but presumably also accumulated at the contact surface between
pLPCs and R axons (Fig. 6A-B�,C-D�, arrows). Rst was localized
in R axons (Fig. 6B�,D�, arrows), suggesting these proteins can
associate directly each other. As shown by immunoprecipitation
assay, Hbs directly interacts with Rst (Bao and Cagan, 2005).
This finding prompted us to ask whether Hbs localization is
dependent on Rst in R axons. To confirm Hbs-Rst association,
we analyzed the localization of Hbs in rst mutants. An RNAi-
induced reduction in Rst levels (Fig. 7C-D�, 100%: n13) or the
irreC1R34 mutation (Fig. 7E-F�, 100%: n18) led to consistent
and significant changes in Hbs localization; the pronounced Hbs
signal at the interface between pLPCs and R axons became less
clear, and the membranous signal encircling the entire cell
surface became more evident. To confirm the changes in Hbs
localization specifically in pLPCs, we used an HA-tagged
version of Hbs (Shelton et al., 2009) as Hbs is also expressed in
R axons. Hbs-HA was expressed by the NP6099-Gal4 driver and
detected with an anti-HA antibody. The Hbs-HA signal was more
punctate than the endogenous Hbs signal, as revealed by
antibody staining, but was localized at the interface between
pLPCs and R axons as seen for endogenous Hbs (Fig. 7G-I,
arrows; n19). The Hbs-HA localization at the interface between
pLPCs and R axons became less clear and more evident in the
plasma membrane in rst mutants (Fig. 7J-L, 100%: n20),
similar to endogenous Hbs (Fig. 7E-F�). These results suggest
that Hbs in pLPCs directly associates with Rst in R axons.

To further address the interaction between Hbs and Rst, we
examined Hbs localization in pLPCs when Rst was ectopically
expressed with the NP6099-Gal4 driver. Ectopic Rst expression in
pLPCs resulted in phenotypes that were almost identical to those
observed with the rst mutation; failure in assembling the lamina
column and changes in the localization of endogenous Hbs (see
Fig. S7 in the supplementary material, 100%: n14) and Hbs-HA
(Fig. 7M-R, 100%: n20) from the contact site to the entire plasma
membrane were observed, suggesting that ectopically expressed
Rst interferes with the interaction between Hbs in pLPCs and Rst
in R axons. Although we cannot rule out the possibility of an
existing third molecule, our data strongly suggest that the cell-cell
association between pLPCs and R axons is mediated by an
interaction between Hbs and Rst.
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Fig. 6. The expression patterns of Hbs and Rst. 
(A-D�) Confocal images of the Drosophila optic lobe
immunostained for Hbs (green) and Rst (magenta) in yw. Hbs
and Rst are localized in R axons and at the contact surface
between pLPCs and R axons (arrows). Lateral section (A) and
horizontal section (C) of the optic lobe. (B-B�,D-D�) Magnified
images of the areas outlined in A and C.
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DISCUSSION
In this study, we show that cell recognition between pre- and
postsynaptic neurons via the Hbs-Rst interaction is required for the
establishment of precise retinotopic mapping. During the
development of the Drosophila visual center, presynaptic
photoreceptors extend their axons to the lamina layer. Postsynaptic
pLPCs start to differentiate in response to Hh delivered through
newly arriving R axons. They then express Hbs, which interacts
with Rst on R axons. This Hbs-Rst interaction is required for
lamina column assembly (Fig. 8), which underlies the topographic
connections of the synapses along the anteroposterior axis.

Cell recognition by Hbs-Rst interaction
The process of lamina column assembly is unique in that
presynaptic neurons regulate the development of postsynaptic
partners in the target area, and the somata of postsynaptic

neurons recognize the presynaptic axons at the developing stage
well before neurite formation. This mechanism appears to be an
efficient and accurate way to make a topographic map along the
anterior/posterior axis. In addition, unlike the well-known axon
guidance process, in which growth cones search for their targets
(Dickson, 2002; Guan and Rao, 2003; Tessier-Lavigne and
Goodman, 1996; Yu and Bargmann, 2001), postsynaptic cells
actively contribute to the pre- and postsynaptic interactions via
direct communication. The changes in the Hbs localization that
are associated with rst mutation were not only observed in
pLPCs adjacent to R axons, but also in pLPCs far from R axons
(Fig. 7D-D�,F-F�,K-K�). This finding could be ascribed to the
fact that pLPCs that are distant from R axons can contact R
axons through their protrusions, as shown in Fig. 1G. Hbs might
be preferentially localized at the protrusions of pLPCs that
interact with R axons. The behavior of pLPCs is analogous to
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Fig. 7. The localization of Hbs is
dependent on Rst. (A-F�) The
localization patterns of the Hbs
protein (green) in the lateral view of
the lamina in ey3.5-FLP;AyG,UAS-GFP
(A-B�), ey3.5-FLP;AyG,UAS-GFP/UAS-rst
IR (C-D�) and irreC1R34 (E-F�). The Hbs
membranous signal encircling the
entire cell surface became more
evident in an RNAi against Rst (C-D�)
or the irreC1R34 mutation (E-F�).
(B-B�,D-D�,F-F�) Magnified images of
the areas outlined in A,C,E,
respectively. R axons are visualized by
GFP (A-D, magenta) and anti-HRP
(E,F, magenta). Plasma membranes are
visualized by anti-Dlg (blue). (G-R)The
localization patterns of UAS-hbs-HA
(green) by crossing with the NP6099-
Gal4 driver. NP6099-Gal4;UAS-hbs-
HA (G-I), irreC1R34,NP6099-Gal4;UAS-
hbs-HA (J-L) and NP6099-Gal4;UAS-
hbs-HA/UAS-rst FL (M-R). Arrows (H�,I)
indicate that Hbs-HA was localized
along the most anterior part of the R
axons. The Hbs-HA localization
becomes evident in the plasma
membrane in rst mutants (J-L).
Ectopic Rst expression in pLPCs
results in lamina column defects and
changes in the localization of Hbs-HA
from the contact site to the entire
plasma membrane (M-R).
(H-H�,K-K�,N,N�,Q,Q�) Magnified
images of the areas outlined in
G,J,M,P. R axons are visualized by anti-
HRP (magenta). Plasma membranes
are visualized by anti-Shg (blue).
(I,L,O,R) 2.5D images of Hbs-HA
expression. Intensity of the Hbs-HA
signals in H�,K�,N�,Q� is visualized by
the height of the peaks.
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that of developing muscle cells, which extend filopodia to the
axonal targeting of innervating motoneurons (Kohsaka and Nose,
2009; Ritzenthaler et al., 2000).

We tested whether the cell-adhesion mechanism mediated by
Hbs and Rst was sufficient to rescue the sim phenotypes. Induction
of exogenous hbs in pLPCs did not rescue sim loss-of-function
mutants (data not shown). Consistent with this finding,
overexpression of sim using the NP6099-Gal4 driver caused the
premature incorporation of pLPCs into the assembling domain
(Umetsu et al., 2006), but overexpression of hbs did not (see Fig.
S3A-B� in the supplementary material, 0.62: n3). These results
suggest that other molecules under the control of sim must be
required for lamina column assembly.

We demonstrated that hbs expressed in photoreceptor cells does
not play an essential role in lamina column assembly (Fig. 3F,G-
G�). The reason that Hbs originating in R axons does not interfere
with the Hbs-Rst association remains unknown. The intracellular
interaction of the two proteins might be blocked in R axons as a
result of alternative subcellular localization and/or steric hindrance,
or additional intermediates might be required for Hbs function in
pLPCs, but not in R axons.

Possible conserved roles of the restricted domains
of nephrin/NEPH1 homologs
Nephrin and NEPH1 homolog proteins tend to be located on
opposing cell membranes so that they are brought into close
apposition. This arrangement underlies the amazingly similar
patterns of immunoreactivity in the eye disc, wing disc and somatic
muscle as well as in the pupal optic lobe (Bao and Cagan, 2005;
Dworak and Sink, 2002; Fischbach et al., 2009). We also found that
these proteins are located in opposing cell membranes in the
lamina. Consistent with previous studies, Hbs and Sns proteins
were expressed in pLPCs (Fig. 2A-B�,G; Fig. 4A-D�,M), whereas
Rst and Kirre were expressed in R axons (Fig. 4E-H�,I-L�,M);
however, Hbs was also expressed in R axons (Fig. 2C-F�). Recent
studies have demonstrated that proteins of the nephrin and NEPH
subfamilies are also expressed in neighboring cell types in
vertebrate nervous systems (Beltcheva et al., 2003; Gerke et al.,

2006; Morikawa et al., 2007; Serizawa et al., 2006; Tamura et al.,
2005). These observations reveal the conservation of
nephrin/NEPH1 expression patterns across tissues and species.

Previously, Shen and colleagues identified SYG-1, a homolog of
Rst, Kirre and NEPH1, as well as SYG-2, a homolog of Hbs, Sns
and nephrin, which are necessary for synaptic specificity in
Caenorhabditis elegans (Shen et al., 2004). These authors found
that the first Ig domain of SYG-1 and the first five Ig domains of
SYG-2 are necessary and sufficient for binding and synapse
formation in vivo (Chao and Shen, 2008). Similarly, we found that
the extracellular domain of Hbs and the first Ig domain of Rst are
important for the association of pLPCs with R axons (Fig. 3J; Fig.
5H). These observations show remarkable functional conservation
of the restricted domains of Drosophila and C. elegans
nephrin/NEPH1 homologs.

Further study of the preferential cell adhesion between
nephrin/NEPH1 homolog proteins may reveal a common
mechanism underlying the interaction between pre- and
postsynaptic neurons in both Drosophila and vertebrate brains.
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