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Prox1 maintains muscle structure and growth in the

developing heart

Catherine A. Risebro’, Richelle G. Searles’, Athalie A. D. Melville', Elisabeth Ehler?, Nipurna Jina3, Sonia Shah?,
Jacky Pallas*, Mike Hubank3, Miriam Dillard®, Natasha L. Harvey®, Robert J. Schwartz’, Kenneth R. Chien®?,

Guillermo Oliver® and Paul R. Riley"*

Impaired cardiac muscle growth and aberrant myocyte arrangement underlie congenital heart disease and cardiomyopathy. We
show that cardiac-specific inactivation of the murine homeobox transcription factor Prox1 results in the disruption of expression
and localisation of sarcomeric proteins, gross myofibril disarray and growth-retarded hearts. Furthermore, we demonstrate that
Prox1 is required for direct transcriptional regulation of the genes encoding the structural proteins a-actinin, N-RAP and zyxin,
which collectively function to maintain an actin—a-actinin interaction as the fundamental association of the sarcomere. Aspects of
abnormal heart development and the manifestation of a subset of muscular-based disease have previously been attributed to
mutations in key structural proteins. Our study reveals an essential requirement for direct transcriptional regulation of sarcomere
integrity, in the context of enabling foetal cardiomyocyte hypertrophy, maintenance of contractile function and progression

towards inherited or acquired myopathic disease.
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INTRODUCTION
Cardiac muscle integrity and function is dependent upon the
maintenance of a rhythmically contracting meshwork of myofibrils,
the basic structural and functional unit of which is known as the
sarcomere. Sarcomeres are multi-protein complexes comprising
interlacing myosin (thick) and actin (thin) filaments bordered by Z-
discs. Several proteins important for the stability of sarcomeric
structure are found in the Z-disc, which not only has a structural role
for cross-linking thin filaments and transmitting contractile force,
but also provides a vital interface for signal transduction and
biomechanical sensing (Frank et al., 2006; Pyle and Solaro, 2004).
There is an absolute requirement for cardiac function during
embryogenesis in mammals and as such the sarcomeric components
are expressed very early in development and are correctly localised
in the myofibrils by the time the linear heart tube begins to contract
(Ehler et al., 1999). As development progresses, the heart increases
in mass not only by cardiomyocyte hyperplasia, but also through a
recently recognised foetal phase of physiological hypertrophy
(Hirschy et al., 2006), a process that is dependent upon myofibril
disassembly, reassembly (Ahuja et al., 2004) and elongation
(Hirschy et al., 2006).
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Despite insight into the morphogenetic events that accompany
myofibrillogenesis and hypertrophic growth, very little is known
about the precise regulation of these processes during development.
Furthermore, the importance of appropriate assembly and
maintenance of the myofibrillar apparatus is underscored by the fact
that defects in the terminal differentiation and arrangement of
contractile protein filaments are associated with a number of cardiac
myopathies (Engel, 1999; Gregorio and Antin, 2000; Seidman and
Seidman, 2001).

The homeobox transcription factor Prox1 is essential for
murine lymphatic, hepatocyte, retinal and pancreatic development
(Dyer et al., 2003; Harvey et al., 2005; Sosa-Pineda et al., 2000;
Wigle and Oliver, 1999). Multiple lines of evidence suggest a role
for Prox1 during cardiac morphogenesis. Prox/ is expressed in
the developing heart (Oliver et al., 1993; Rodriguez-Niedenfuhr
et al., 2001; Tomarev et al., 1996; Wigle and Oliver, 1999) and
embryos deficient in Prox1 die at ~E14.5, a critical time point
when lethality often results from grossly reduced cardiac
performance (Dyson et al., 1995). Moreover, in a specific genetic
background, a proportion of ProxI-heterozygote mice fail to
survive and become cyanotic soon after birth (Harvey et al.,
2005), a phenotype that is consistent with impaired blood
circulation and heart defects.

Here we reveal how Prox1 functions transcriptionally upstream
of sarcomere assembly, myofibril organisation and foetal
cardiomyocyte growth. We provide evidence that Prox1 activity is
required for the normal expression and localisation of multiple
sarcomeric components and that it directly regulates the genes
encoding o-actinin, N-RAP (nebulin-related anchoring protein,
Nrap) and zyxin, which are essential structural proteins required for
stabilising actin within the thin filaments and ultimately for
establishing cardiomyocyte elongation and coordinated muscle
contraction. These results, therefore, provide important insight into
the molecular mechanisms that govern the ultrastructure and growth
of cardiac muscle during development and highlight how
transcriptional misregulation of myofibril assembly may underlie
cardiac hypotrophy and myopathic disease.
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MATERIALS AND METHODS

Mouse strains and histology

The mouse strains used have been described previously: Prox/-null (Wigle et
al., 1999), ProxI' (Harvey et al., 2005), Nkx2.5CreKI (Moses et al., 2001)
and MLC2vCreKI (Chen et al., 1998). ProxI'™™1°*" mice were crossed
with Nkx2.5CreKI;ProxI'" or MLC2vCreKI;ProxI'" to generate
Nkx2.5CreKI;Prox 1'P1xP  (Prox [N&)  or  MLC2vCreKI;Prox ]'XP/1oxP
(ProxIM™C) embryos, respectively. Embryos and hearts were dissected in PBS,
fixed in 4% paraformaldehyde (PFA), dehydrated, embedded in paraffin and
sectioned at 15 pm. Sections were stained with Haematoxylin and Eosin.

Immunohistochemistry and TUNEL assays

Embryos were treated as above and sectioned at 10 um.
Immunohistochemistry was performed using anti-Prox1 (Reliatech) and
anti-phosphohistone H3 (Upstate) antibodies, developed using a standard
streptavidin-HRP method and counterstained with Haematoxylin. Terminal
deoxynucleotidyl transferase biotin-dUTP nick end labelling (TUNEL)
assays were performed according to the manufacturer’s protocols
(Promega).

Immunofluorescence and confocal microscopy

E10.5-14.5 whole-mount hearts were dissected in PBS and fixed overnight
in 4% PFA. E18.5 hearts were dissected, embedded in paraffin and sectioned
as above. Immunofluorescence and confocal microscopy were performed as
described previously (Ehler et al., 1999). Samples were analysed on a Zeiss
LSM 510 confocal microscope equipped with argon and helium neon lasers
using a 63X/1.4 lens. Image processing was performed using Zeiss software
and Photoshop (Adobe). Cell outlines were traced on sections (blinded to
genotype), using ImageJ (http://rsb.info.nih.gov/ij) to assist in assessing cell
shape and calculating cell area as indicators of foetal hypertrophy.

Antibodies

The following antibodies were used: sarcomeric o-actinin (clone EA-53;
Sigma), B-catenin, vinculin and smooth muscle o-actin (clone 1A4; Sigma),
cardiac a-actin (Progen), titin (T12; gift of Prof. D. Fiirst, Institut fiir
Zellbiologie, Universitit Bonn, Germany), desmin (clone D33; Dako), MHC
(A4.1025; DSHB), cardiac MyBP-C (gift of Prof. T. Obinata, Department
of Biology, Chiba University, Japan), CD31 (Pecaml; BD Pharmingen),
Prox1 (Reliatech) and Gapdh (Chemicon). For western blots, rabbit anti-
sarcomeric o-actinin antibody was used (gift of Prof. D. Fiirst).

Transmission electron microscopy

E13.5/E18.5 hearts were dissected and fixed in 3% glutaraldehyde (EM
grade, Agar Scientific), 0.1 M sodium cacodylate, 5 mM CaCl, (pH 7.4).
Hearts were processed in a Lynx automated tissue processor (Australian
Biomedical) and embedded in resin. All sectioning was performed on a
Reichert Ultracut S ultramicrotome. Sections were imaged using a Philips

Table 1. Primer sequences (5’ to 3’) for PCR

CM 10 transmission electron microscope and images collected using Kodak
Megaview II and SIS Keenview digital imaging systems and SIS software.
Four ProxI™ and four control hearts were examined for each stage.

Western blotting

E13.5 heart lysates were prepared in RIPA buffer. Western blotting was
performed using standard methods. Scanning densitometry was performed
and signal quantified using Scion Image (Scion Corporation) and Imagel.

Quantitative real-time (qRT) PCR analysis

mRNA was isolated from E12.5 hearts using the Micro FastTrack 2.0 Kit
(Invitrogen) according to the manufacturer’s instructions. Reverse
transcription was performed using Superscript III reverse transcriptase
(Invitrogen) according to the manufacturer’s instructions. qRT-PCR analysis
was performed on an ABI 7000 Sequence Detector (Applied Biosystems)
using SYBR Green (Quantitect SYBR Green PCR Kit, Qiagen). Data were
normalised to Hprtl expression and analysed using DART-PCR (Peirson
et al,, 2003). P-values were obtained using Student’s #-test (n=9).
Primers for qRT-PCR (Table 1) were obtained from Primer Bank
(http://pga.mgh.harvard.edu/primerbank) or designed using Primer Express
(version 2.0, Applied Biosystems).

RNA in situ hybridisation on embryonic sections

E13.5 embryos were fixed in 4% PFA, embedded in paraffin and sectioned
at 15 um. RNA in situ hybridisation on sections was performed as previously
described (Moorman et al., 2001), using a digoxigenin-labelled antisense
riboprobe specific for Nppa (Kuo et al., 1997).

ChlP-on-chip

E12.5 hearts were dissected in PBS containing 0.3% Triton X-100 and cross-
linked for 3 hours at room temperature in 1.8% formaldehyde, homogenised
in lysis buffer and sonicated. Sixty micrograms of chromatin lysate was used
per immunoprecipitation with 10 pg anti-Prox1 antibody (Reliatech) in ChIP
dilution buffer at 4°C overnight. A no-antibody ‘immunoprecipitation’ was
performed as a control. Immune complexes were pulled down with Protein
A/G beads, washed, resuspended in TE (10 mM Tris, 5 mM EDTA, pH 8.0),
the cross-links reversed overnight at 65°C and the DNA purified. DNA (10 ng)
was blunt-ended and unidirectional adapters were ligated overnight at 16°C.
Adapter-ligated DNA was amplified by PCR. Experimental conditions, buffer
composition, adapter sequences and PCR conditions are available on request.
ChIP and no-antibody samples were checked by qRT-PCR for enrichment of
a positive control, Fgfi-3 (a previously identified in vitro target of Prox1) (Shin
et al., 2006), and against a negative control, Cyp7al (Qin et al., 2004).
Amplified DNA (7.5 ng) was fragmented and end labelled using the GeneChip
WT Double-Stranded DNA Terminal Labelling Kit, hybridised to GeneChip
Mouse Promoter 1.0R Arrays, and then stained using the GeneChip
Hybridisation, Wash and Stain Kit (all Affymetrix). ChIP data were analysed

qRT-PCR

Gene Forward Reverse Amplicon (bp)
Actn2 TGGCACCCAGATCGAGAAC GTGGAACCGCATTTTTCCCC 121
Actcl CTGGATTCTGGCGATGGTGTA CGGACAATTTCACGTTCAGCA 173

Ttn CCAGGCCCTCCAAACAACC CCATTCACCAACACTCACATCAC 141
Myh7 ACTGTCAACACTAAGAGGGTCA TTGGATGATTTGATCTTCCAGGG 114

Des GTGGATGCAGCCACTCTAGC TTAGCCGCGATGGTCTCATAC 218
Prox1 GAAGGGCTATCACCCAATCA TGAACCACTTGATGAGCTGC 142
Hprt TCAGTCAACGGGGGACATAAA GGGGCTGTACTGCTTAACCAG 142
Mybpc3 CAGGGAAGAAACCAGTGTCAG GCTGCCAAACCATACTTGTCATT 166
Nppa TTCCTCGTCTTGGCCTTTTG CCTCATCTTCTACCGGCATCTTC 136
Nrap CTCTAGGTGTGGCTATGGGGT AGTACGGCTTTTTCTGGTGAC 143

Zyx CAGGGAGAAAGTGTGCAGTATT TCGTTCTTGGTCATGTCGTCC 75

PCR to confirm ChIP

Enhancer region Forward Reverse Amplicon (bp)
Actn2 CCTCTTCTTCAACCGAACCA CCAACTCTGCTTTTTCCCAG 129
Nrap CAAGGATTGCTGAAGGGAAA CACCTCCATGTCTCCTTGGT 295

Zyx CATGCTAGGCAGGCACTGTA AGATATGAGAAGCCCCCACC 273
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using CisGenome (v1.0_beta; http://www.biostat.jhsph.edu/~hji/cisgenome/
index.htm). Three independent ChIP and no-antibody control reactions were
performed. Standard PCR to confirm ChIP of the enhancer elements was
carried out using the primers listed in Table 1.

EMSAs

Electrophoretic mobility shift assays (EMSAs) were carried out as described
previously (Angelo et al., 2000). Briefly, in vitro translated Prox1, or nuclear
extracts from mouse P19Cl6 cells (Habara-Ohkubo, 1996) transfected with
Flag-Prox1, were incubated with 3?P-labelled oligonucleotide in binding
buffer at room temperature for 30 minutes. Overlapping 60 bp
oligonucleotides, which spanned the entire Prox1-binding elements of
Actn2, Nrap and Zyx as identified by ChIP-on-chip, were used in preliminary
binding reactions to narrow down each element to within a single 60 bp
oligonucleotide (sequences highlighted in red in Fig. S9 in the
supplementary material). Unlabelled oligonucleotide (10-fold excess) was
used in the competition binding assays. Anti-Flag (M2; Sigma; 4.6 ug) was
used to supershift bound Prox1 in the transfected P19CI6 cell extracts. Each
binding reaction was run on an 8% polyacrylamide gel, which was dried and
subjected to autoradiography.

Reporter transactivation assays

PI9CL6 cells were maintained in standard P19 culture conditions
(McBurney et al., 1982). Transfections were carried out using Effectene
reagent as described previously (Hill and Riley, 2004). Briefly, duplicate
wells of P19CL6 cells were transfected with a reporter in which luciferase
was located downstream of putative Prox1-binding elements from Actn2,
Nrap or Zyx, and a chick o-cardiac actin minimal promoter (Hill and Riley,
2004), either with or without pcDNA3-Prox1 (250 ng) and a B-actin—f3-
galactosidase (B-gal) expressing plasmid to normalise luciferase activity for
transfection efficiency. Luciferase and 3-gal activity were assayed 48 hours
post-transfection as described (Hill and Riley, 2004).

RESULTS

Prox1 is expressed in the embryonic heart

In the first instance we characterised Prox1 expression during
murine embryonic heart development. Immunostaining revealed
that Prox1 is expressed throughout the entire myocardium of the
atria, ventricles and outflow tract from ~E10.5 (Fig. 1). At E12.5 and
E14.5, Prox1 expression was notable in the interventricular septum
and myocardium (Fig. 1B-E), but was excluded from the smooth
muscle of the outflow tract (not shown). Furthermore, Prox1 was
expressed in the outer endocardial layer of the atrioventricular
endocardial cushion leaflets (Fig. 1E,F) and the mitral valve leaflets
(Fig. 1F,H), but was absent from cushion mesenchyme (Fig. 1F,G).
Confocal analysis confirmed the predicted nuclear localisation of
Prox1 in atrial and ventricular myocytes (see Fig. SIA-D in the
supplementary material).

Heart development is abnormal in Prox7-null mice

Mice that are homozygous null for Prox! die between E14.5 and E15
(Wigle and Oliver, 1999). The cause of lethality in Prox/-null
embryos has not been determined. To address whether loss of cardiac
expression of Prox! is a potential contributing factor, we initially
examined surviving post-natal day 5 (P5) ProxI-heterozygous mice
and observed, at a gross anatomical level, that the hearts were reduced
in size (by an average of 30%) as compared with those of wild-type
littermate controls (see Fig. S2A in the supplementary material).
Histological analysis revealed a range of cardiac anomalies including
hypoplastic ventricular walls, loss of muscle striation, a disorganised
interventricular septum and abnormally persistent muscle surrounding
the aorta (see Fig. S2B,D in the supplementary material). Analysis of
Prox1-null embryos at E13.5 and E14.5 revealed that mutant hearts
were significantly smaller (up to 50%) than those of wild-type
littermates (see Fig. S2E,F in the supplementary material) and,

‘;’f '}"7‘;-} 1

Fig. 1. Prox1 is expressed in the myocardium of the developing
mouse heart. (A-C) Immunofluorescence on E10.5 (A) and E12.5 (B,C)
frontal sections using an antibody for Prox1. Prox1 is expressed
throughout the myocardium of the presumptive left and right ventricles
and outflow tract at E10.5 (A) and is localised to both atrial and
ventricular myocardium at E12.5 (B,C). (D-H) Immunohistochemistry on
E14.5 frontal sections illustrates continued expression of Prox1
throughout the entire myocardium (D), in the interventricular septum
(E), the endocardium of the atrioventricular canal endocardial cushions
(FG) and mitral valve leaflets (FH). Prox1 is absent from cushion
mesenchyme (F,G). Panels e-h show the no-primary-antibody controls
for the corresponding panels E-H. lv, left ventricle; rv, right ventricle; ivs,
interventricular septum; ec, endocardial cushion; en, endocardium;
mes, mesenchyme; oft; outflow tract; ra, right atrium; my, myocardium.
Scale bars: 50um in A,B,D; 25um in F; 10 um in C,E,G,H.

consistent with the phenotype in the P5 heterozygotes, we observed
myocardial disarray, including a disrupted interventricular septum (see
Fig. S2G,H in the supplementary material).

Prox1 is an essential regulator of heart
development

Conventional Prox/-null embryos have a lymphatic phenotype
arising from defects in endothelial cell budding as early as E11.5
(Wigle and Oliver, 1999), which may adversely affect
cardiovascular development. To confirm a primary role for Prox1 in
the developing heart, we generated a cardiac-specific knockout of
ProxI by crossing a conditional homozygous floxed Prox! strain
(Prox1'"*P1°Py (Harvey et al., 2005) with two cardiac-expressing
Cre strains: Nkx2.5“°KI (designated ProxIN%), which directs
expression of Cre recombinase throughout the majority of
cardiomyocytes from E7.5 (Moses et al., 2001); and MLC2v*™KI
(designated ProxIM™C), in which Cre is expressed specifically in
ventricular cardiomyocytes from E8.75 (Chen et al., 1998). The two
Cre strains were employed, therefore, to target Prox! globally
throughout the entire myocardium and in a subpopulation of
ventricular myocardium, thus acting as respective internal controls
for a cardiomyocyte-specific loss of Prox1 function.

Prox| protein levels in ProxI™N* and ProxIM-C E13.5 hearts were
analysed by western blot on whole heart lysates, followed by
densitometry. This confirmed a ~3-fold reduction in Prox1 protein
levels in the cardiac-specific knockout hearts as compared with
littermate control hearts (ProxI'* or Cre allele only) (Fig. 2A).
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Fig. 2. Cardiac-specific loss of Prox1 perturbs embryonic and heart development. (A) Western blots of E13.5 control (co), ProxN* and
Prox1™< individual isolated mouse heart lysates for Prox1 and Gapdh and (beneath) quantification of protein levels, as normalised to Gapdh, using
scanning densitometry. (B-N) Bright-field whole-mount left lateral views of E14.5 Prox1N®, Prox 1M and control (co) littermate embryos (B), and
frontal views of hearts in control (C), Prox7V (D) and Prox7™LC (E) embryos. Frontal sections through E14.5 control (FH) and Prox7V (G, ) embryos,
E13.5 isolated control (J) and Prox 7V (K) hearts, and E18.5 isolated control (L) and Prox 7N (M,N) hearts. Prox1 protein levels are reduced to
around a third of control levels in Prox7-conditional hearts (see A). Prox 7N mutants are small, with oedema and cranial haemorrhaging, and
Prox1MC mutants reveal extensive oedema (B, arrowheads). Prox 7% hearts are hypoplastic with dilation of the right atrium (white dashed lines in
C,D; G), and Prox1™C hearts are hypoplastic with reduced left ventricular expansion (E). Sections through Prox 7N hearts reveal myocardial disarray,
particularly in the interventricular septum (H,1). By E18.5, Prox7N* hearts are rounded in shape and smaller than control hearts, the ventricular wall
surface is irregular (arrowheads in M,N) with reduced compaction (black lines in L,M) and there are muscular septal defects (asterisk in N). Also note

the membranous ventricular septal defect in Prox7N% hearts (arrow, K,M). Iv, left ventricle; rv, right ventricle; ra, right atrium; ivs, interventricular
septum; ec, endocardial cushion. Scale bars: 5 mm in B; 50 um in C-G,J,K; 10 um in H,I; 1 mm in L-N.

Whole-mount and histological sections of ProxI™N* and ProxM-C
embryos were examined between E10.5 and E18.5. No phenotype
was evident between E10.5 and E12.5 (not shown), despite
expression of Prox1 in the heart at these stages. At E13.5 and E14.5,
the ProxIN%*- and ProxIM“C-conditional mutants recapitulated the
cardiac phenotype of the conventional knockout embryos described
above. ProxI™ embryos were slightly growth restricted (on
average 5% smaller) compared with control littermates, with cranial
haemorrhaging. Both Prox1™* and ProxIM™C embryos had oedema
of varying severity (Fig. 2B), indicative of inadequate cardiac
function. The hearts of both Prox-conditional mutants were up to
30% smaller than controls hearts (Fig. 2C-E). Furthermore, in
ProxIN® hearts, the right atrium was reproducibly expanded (up to
2-fold) and blood-filled, never appearing to empty appropriately,
irrespective of fixation stage during the cardiac cycle, suggesting
that there might be impaired blood flow through the heart (Fig. 2D).
Moreover, in the ProxIMC hearts, there was reduced expansion of
the left ventricle (25% reduction in chamber size) consistent with
haemodynamic obstruction (Fig. 2E). Haematoxylin and Eosin-
stained frontal sections through E13.5 and E14.5 hearts (Prox /™,
Fig. 2F-K; ProxIM'C, not shown) revealed small thin-walled
ventricles and disrupted myocardium with a highly disorganised
interventricular septum (Fig. 2H,I). Additionally, membranous
ventricular septal defects (VSDs) were observed in ProxIN™
embryos (Fig. 2J,K) that were unlikely to be due to myocardial
disruption, but possibly related to additional endocardial cushion
defects (not shown). By E18.5, the overall area of ventricular
myocardium was significantly smaller in ProxIN®* than control
hearts, in particular that of the right ventricle. Moreover, the

myocardium was disorganised and less compacted (reduced by up
to 50%) and the surface of the ventricles was irregular, although both
compact and trabecular layers did appear to form (Fig. 2L-N).
Consistent with the predominantly right-sided defects in Prox ™™
embryos, the pulmonary trunk was reduced in diameter, often being
half the size of the aorta, suggesting impaired outflow tract
remodelling. At E18.5, the membranous VSD was still evident in
Prox 1N embryos, and we also observed muscular VSDs (Fig. 2N)
that were likely to result from the reduced level of myocardial
compaction in the ventricles.

We observed variable and incomplete levels of Prox! deletion in
the developing heart (Fig. 2A), which may be attributed to the
mosaic nature of Cre expression as previously described for the
Nkx2.5°KT and MLC2v ™K1 strains (Smart et al., 2007). Analysis
of both Prox 1N and Prox /M€ mutant hearts confirmed specificity
of phenotype at the level of the myocardium, as supported by
immunostaining for markers of vascular endothelial and smooth
muscle cells (Pecam1 and smooth muscle ct-actin, respectively) that
revealed normal coronary vessel development (see Fig. S3A-D in
the supplementary material). Owing to the similarities in myocardial
phenotype observed in both models, the term Prox-conditional will
be used to describe both the Prox /™ and Prox /M€ hearts unless
specifically stated otherwise.

Sarcomeric integrity is disrupted in Prox1-
conditional hearts

At a gross level, as determined by low-resolution histological
analyses, loss of Prox1 function in the heart appeared to lead to
myocardial disarray that was manifested in disorganisation of the
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Fig. 3. All structural components of
the sarcomere are severely disrupted
in Prox1-conditional myocardium.
(A-N) Confocal sections of immunostained
E13.5 whole-mount hearts from control
(co; A-D,I-K) and Prox 7N (E-H,L-N) mouse
embryos. Actin thin filaments and myosin
thick filaments lack organisation and are
not striated in Prox7-conditional hearts, as
visualised by phalloidin staining (green;
compare E with A) and immunostaining
for sarcomeric myosin heavy chain (MHC)
(red; B,F), respectively. Immunostaining for
the thick filament component sarcomeric
and cardiac myosin binding protein C
(MyBP-C) further demonstrates thick
filament disorganisation (green; C,G). M-
band disruption is demonstrated by
immunostaining for myomesin (red; D,H).
Z-disc disruption in Prox TN hearts is
revealed by immunostaining for
sarcomeric o-actinin (red; I,L), titin N-
terminus (green; J,M) and desmin (red;
K,N). (O) Quantitative real-time PCR (qRT-
PCR) for sarcomere component genes on
E12.5 Prox71N hearts. Data are presented
as mean + s.e.m.; *P<0.05, **P<0.003,
**%P20.001, ****P<9X 107 (P) Western
blots of E13.5 control and Prox 7N
individual (half) heart lysates for Prox1
[non-specific (ns) band indicated by
arrowhead], sarcomeric o-actinin,
sarcomeric MHC and Gapdh, and
guantification of protein levels, as
normalised to Gapdh, using scanning
densitometry. Scale bar: 10 um.
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myofibrils. To investigate this in more detail, the expression and
localisation of sarcomeric markers was analysed by high-resolution
confocal microscopy following immunostaining of whole-mount
embryonic hearts. The relative distribution of the major components
of the sarcomere is illustrated in Fig. S4A (see Fig. S4A in the
supplementary material). In the first instance, colocalisation of
Prox1 and selected sarcomeric markers (actin and sarcomeric o-
actinin) was confirmed in E13.5 control hearts (see Fig. SIA-D in
the supplementary material). Prox/-conditional E13.5 and E14.5
whole-mount hearts were stained with phalloidin to visualise F-actin

Proxhi

and the arrangement of the thin filaments, and immunostained with
antibodies to sarcomeric myosin heavy chain (MHC) and cardiac
myosin binding protein C (MyBP-C) to visualise the thick filament
architecture. Additionally, hearts were immunostained with
antibodies to sarcomeric o-actinin, a crucial Z-disc protein that
cross-links sarcomeric actin and is involved in many signalling
transduction pathways, to myomesin, which localises to the M-band
where it interacts with myosin and titin providing elasticity and
stability to the sarcomere, and to -catenin, which localises to the
adherens junctions and demarcates cell-cell contacts (Fig. 3; see Fig.
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S4A and Fig. S5A-F in the supplementary material). In ProxI-
conditional hearts at E13.5, we consistently observed severe global
disruption of thin filament, thick filament, Z-disc and M-band
organisation in the ventricular myocardium as compared with
littermate controls (Fig. 3A-LL). Variation in the severity of
disruption of actin filaments and o-actinin was evident (see Fig. S6
in the supplementary material), consistent with mosaicism in the
level of Prox! knockdown (Fig. 2A; a western analysis for Prox1
expression with scanning densitometry normalised to Gapdh). We
classified overall phenotype severity based on the following three
criteria as revealed by the confocal ultrastructure analysis: (1)
cardiomyocyte cell shape (using Imagel], see Materials and
methods), (2) sarcomeric striation and (3) myofibrillar
organisation/cell alignment. Defects in one of these categories were
classed as mild, of which we recorded 14.3% of ProxI™* (n=56)
and 18.2% of ProxIMC (n=41) mutants; defects in all three criteria
were classed as severe, of which we recorded 85.7% of Prox 1™
(n=56) and 81.8% of ProxIM'C (n=41) mutants at E13.5. Despite
variation in the severity of the phenotype, the nature of the specific
defects common to both the ProxI™* and ProxIM'C mutants,
presented as anomalies in muscle ultrastructure, confirmed a
cardiomyocyte-autonomous role for Prox1. The severe phenotype
was incompatible with embryonic survival, whereas incomplete
deletion of Prox! resulting in the mild phenotype contributed to a
low incidence of survival of Prox/-conditional mutants to post-natal
stages (5/111 ProxI™** and 0/64 ProxIM-C). Additionally, we
occasionally observed thin filament and Z-disc disruption and loss
of striation in ProxIN® atrial myocardium (not shown), which is
consistent with the expression patterns of Prox/ and Nkx2.5.

To specifically evaluate Z-disc integrity in ProxI-conditional
hearts, we immunostained for the titin N-terminus and desmin. Titin
is a giant protein that spans half the width of a sarcomere, with its C-
terminus localised at the M-band and its N-terminus at the Z-disc,
where it interacts with sarcomeric o-actinin. Desmin is an
intermediate filament protein that also interacts with sarcomeric o-
actinin at Z-discs, providing a lateral connection between Z-discs of
adjacent myofibrils (see Fig. S4A in the supplementary material).
ProxI-conditional E13.5 hearts were triple stained for titin (Fig.

Fig. 4. Electron micrographs of muscle
ultrastructure defects in Prox1-
conditional myocardium.

(A-F) Transmission electron microscopy
(TEM) on E13.5 (A,B,E) and E18.5 (C,D,F)
control (co; A,C) and Prox1N% (B,D,E,F)
mouse hearts confirms the sarcomeric
disruption in Prox 1N ventricular
myocardium. Note that C and D are in the
same orientation and plane of section.
There can be a complete loss of Z-disc (2)
material and intact M-band (M) (A), an
accompanying disruption of the M-band
(B), or disruption to the thick and thin
filament alignment (dashed lines; C,D),
associated with Z-disc disorganisation,
whereas in the most severely affected
hearts TEM reveals complete myofibril
disarray (E,F). Scale bars: 500 nm.

3J,M), desmin (Fig. 3K,N) and phalloidin (not shown), which
demonstrated that loss of Prox1 results in a severe disruption of Z-
disc organisation. The full extent of sarcomeric protein
misregulation in Prox[-conditional hearts is summarised in Fig. S4B
(see Fig. S4B in the supplementary material).

Given that Prox1 is a transcription factor, we sought to determine
whether alterations in the expression levels of myofibril and Z-disc
components might underlie the ultrastructure defects. E12.5 or E13.5
Prox1-conditional and control individual hearts were examined by
quantitative real-time (QRT)-PCR or western blotting, respectively.
qRT-PCR was carried out for genes encoding the sarcomere
components that were shown to be mislocalised in Prox/-conditional
myocardium. a-cardiac actin (Actcl), sarcomeric o-actinin (4ctn2)
and B-MHC (Myh7) were significantly downregulated and MyBP-C
(Mybpc3) was significantly upregulated (Fig. 30). Titin (7tn) and
desmin (Des) were consistently downregulated, but to varying levels,
which led to the changes not being statistically significant (Fig. 30).
Nonetheless, these results confirm the extensive sarcomere dysgenesis
in the Prox1-conditional mutant hearts both in terms of appropriate
myofibril organisation and gene expression. Additionally, we analysed
sarcomere component protein levels in E13.5 individual hearts. In
accordance with the changes in gene expression, sarcomeric o-actinin
and sarcomeric MHC were downregulated in ProxI-conditional
hearts (Fig. 3P). Levels of desmin, B-catenin and vinculin were
unchanged (not shown), which, alongside confocal
immunofluorescence for B-catenin (see Fig. S5A-F in the
supplementary material), confirmed that cell-cell contacts through
adherens-type junctions were unaltered between neighbouring Prox1-
conditional cardiomyocytes.

Subsequently, we examined the relationship between the level of
Prox1 reduction and o-actinin expression further. Individual heart
samples were analysed by both western blotting and immunostaining
and we observed a direct correlation between the degree of Prox1
knockdown and the reduction in sarcomeric o-actinin levels (Fig.
30,P). This suggests that Prox1 activity might regulate the expression
of sarcomeric o-actinin and, moreover, that a modest yet significant
reduction (0.7-fold) in a-actinin is sufficient to contribute to the
myofibrillar disarray in the conditional mutant hearts (Fig. 3LL).
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Furthermore, this analysis demonstrated a definitive association
between the level of Prox1 expression and the severity of the
myocardial phenotype (Fig. 30,P; see Fig. S6 in the supplementary
material).

Sarcomere ultrastructure disruption was examined at higher
resolution by transmission electron microscopy (TEM) in E13.5 and
E18.5 ProxI™* myocardium. At both developmental stages we
observed variation in the severity of sarcomere ultrastructure defects
in the ProxIN ventricular myocardium (Fig. 4A-F). Z-disc material
was either entirely absent (Fig. 4B) or relatively dense but
inappropriately organised (Fig. 4D). There was also an associated
misalignment of the M-bands, with thick and thin filament disarray,
suggesting that reduced Proxl function impacts globally on
sarcomeric organisation (Fig. 4D; see Discussion). Further
examination of the cell-cell contacts, as a possible source of
disruption to the muscle ultrastructure, revealed both intact
adherens-type junctions (see Fig. S5G,H in the supplementary
material), consistent with the B-catenin immunofluorescence data
(see Fig. SS5A-F in the supplementary material), and intact
desmosomes (see Fig. S51,J in the supplementary material) in the
ProxI-conditional mutant hearts. Despite phenotypic variation, in
the most severely affected cases we consistently observed a total
lack of sarcomeric organisation at both E13.5 and E18.5 (Fig. 4E,F).
Therefore, in combination, the confocal and TEM studies implicate
Prox! in organising components of the sarcomere and, furthermore,
suggest that Proxl is involved in maintaining myofibril
ultrastructure throughout cardiogenesis.

Prox1 is essential for physiological foetal
hypertrophy

We next investigated whether Prox1 plays a role in either the initial
stages of myofibrillogenesis or in the maintenance of appropriate
myofibril structure throughout later stages of cardiac development. To
this end, we immunostained whole-mount Prox/-conditional hearts
at E10.5, E11.5 and E12.5 for sarcomeric o-actinin and phalloidin to
pinpoint exactly when the myocardial defects first arise. In the
ProxI™N mutants, ProxI levels were reduced from early cardiac
crescent stages (E7.5) (Moses et al., 2001) onwards, and yet at E10.5
and E11.5 there was no sarcomeric disruption and the myofibrils
appeared to have assembled correctly (Fig. SA,D), whereas by E12.5
the first signs of myofibril disorganisation were observed (see Fig.
S7A-D in the supplementary material). The fact that sarcomere
defects do not manifest until E13.5 and then persist throughout the rest
of development suggests that Prox1 is not required for the initiation
of myofibrillogenesis but for the subsequent maintenance of
appropriate sarcomeric structure and stability. In addition, we
observed that in E13.5 ProxI-conditional hearts cardiomyocyte
morphology and distribution were noticeably altered: the
cardiomyocytes were more rounded in shape, disorganised and
distributed in an apparently random pattern as compared with the
control hearts, in which the cardiomyocytes had begun to elongate and
align in parallel (Fig. 3A-N). Consistent with this, we observed a
significant increase in o-actinin expression in wild-type hearts
between E9.5 and E12.5, indicative of a requirement for sarcomeric-
dependent cell growth after the recruitment of cells and at the onset of
physiological hypertrophy (see Fig. S7E in the supplementary
material). When sections of E18.5 Prox/-conditional and control
hearts were examined by phalloidin staining and immunostaining for
sarcomeric o-actinin we observed that a large proportion of
cardiomyocytes were still rounded at E18.5, having failed to undergo
hypertrophic growth and acquire the characteristic rod shape of
mature cardiomyocytes (Fig. 5CF).
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Fig. 5. Prox1 is required for foetal cardiomyocyte hypertrophy.
(A-F) Phalloidin staining on E10.5 (A,D), E13.5 (B,E) and E18.5 (C,F)
control (co; A-C) and Prox 1N (D-F) whole-mount (A,B,D,E) and sections
through (C,F) isolated mouse hearts. At E10.5, Prox 1V cardiomyocytes
are developing normally and the appropriate ultrastructure is laid down
(A,D). From E13.5 onwards, Prox7N% cardiomyocytes remain as small
rounded cells that do not acquire the characteristic rod shape
(arrowheads; E,F). (G-J) In situ hybridisation for Nppa transcripts on
frontal sections of E13.5 control (G,I) and Prox7N (H,J) embryos. There
is greatly reduced Njppa expression in Prox7N myocardium (H,J). Iv, left
ventricle; rv, right ventricle; ra, right atrium. (K) The reduced Nppa
expression in Prox 1N myocardium is confirmed by gRT-PCR on E12.5
isolated hearts. B-MHC (Myh7) was also found to be downregulated.
(L) Morphometric analysis of cell shape (using ImageJ) confirmed a lack
of increase in cell size because of impaired elongation and hypertrophic
growth in Prox 7% cardiomyocytes during development, excluding the
possibility that the rounded cells simply reflect an alteration in cell shape.
In K,L, mean + s.e.m.; *P<0.001, **P<0.003, ***P<9x 1077 (K),
*xxPTX 1078 (L), ****P<3X107'2. (M) Foetal cardiomyocyte
hypertrophic growth throughout normal development and in the
absence of Prox1, where sarcomere striation is lost, myofibrils do not
align and cardiomyocytes do not grow by hypertrophy. Green dotted
lines, striated myofibrils; solid green lines, failed striation; blue ovals,
nuclei. Scale bars: 10pum in A-F; 50 um in G,H; 20 um in 1,J.
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Hypertrophy in adult hearts is induced by a large variety of stimuli,
but the consistent end point is re-expression of a foetal gene
programme, including Nppa (Anf), Myh7 (B-MHC) and Nppb (BNP)
(Molkentin et al., 1998). During development, Nppa, Myh7 and Nppb
are markers of myocardial differentiation and chamber expansion, but
because differentiation per se is accompanied by a concomitant
increase in cardiomyocyte cell growth, we examined the expression
levels of Nppa and Myh?7 as surrogate markers of foetal hypertrophy.
qRT-PCR on E12.5 hearts and in situ hybridisation on E13.5 embryo
sections revealed that both genes were significantly downregulated in
ProxIN hearts (Fig. 5G-K), not only indicating that was there
markedly reduced foetal hypertrophic growth in the absence of Prox1,
but also suggesting that Prox/-conditional hearts are not hypoplastic,
but hypotrophic. Morphometric measurements of cell size revealed
that cardiomyocytes in ProxI™* hearts failed to enlarge during
development, confirming a defect in hypertrophic growth as opposed
to an alteration in cell shape (Fig. 5L). Immunostaining for
phosphohistone H3, a marker of cells in mitosis, and TUNEL assays
confirmed that there was no decrease in proliferation or increase in
apoptosis between E10.5 and E13.5 (see Fig. S8 in the supplementary
material). Therefore, in the absence of Prox1, although laid down
appropriately in early heart development, the sarcomere structure is
not maintained, resulting in myofibril disruption, loss of striation and
a failure of cardiomyocyte hypertrophic growth and maturation (Fig.
SM).

Prox1 directly regulates fundamental components
of the sarcomere

To gain specific insight into the molecular mechanism(s) by which
Prox1 regulates myofibril organisation we sought to identify direct
downstream targets of Prox1 in the developing heart. Until now, no in
vivo target of Prox1 has been identified, nor has a definitive consensus
Prox1 DNA-binding site been determined. Therefore, we combined
chromatin immunoprecipitation (ChIP) against endogenous Prox1
with microarray analysis (ChIP-on-chip). ChIP-on-chip revealed
putative Prox 1-bound enhancer regions of genes encoding the Z-disc
protein o-actinin (Actn2) and the myofibrillar and adherens junction
proteins N-RAP (Nrap) and zyxin (Zyx), both of which directly
interact with o-actinin in the Z-disc (Fig. 6A). ChIP of the three
enhancer elements was confirmed by PCR (see Fig. S9A in the
supplementary material). We analysed the Actn2, Nrap and Zyx target
sequences for predicted transcription factor binding sites using
Matlnspector Professional (http://www.genomatix.de): 40-50
transcription factor binding sites were predicted per sequence but no
putative Prox1 or Prospero (the Drosophila homologue of Prox1)
binding sites were identified, although the Prox1 sites described to
date are highly degenerate and predicted based on a Prospero
consensus (Cook et al., 2003; Lengler et al., 2005; Shin et al., 2006).
The lack of a core consensus motif within the three Prox1-bound
enhancer elements identified for Actn2, Nrap and Zyx, despite the
conservation of each element across species, is consistent with results
obtained from unbiased screens of genome-wide conserved regulatory
sequence variants (Pennacchio et al., 2006).

The ChIP data were subsequently validated by EMSAs with
overlapping probes from each of the three enhancer regions and
in vitro translated Prox1 or lysates from mouse P19CI6 cells
overexpressing Prox1 (see Fig. S9B-D in the supplementary
material). Competition gel shifts with unlabelled probe (Fig. 6B)
and antibody supershifts (Fig. 6C) of the refined oligonucleotide
sequences (60 bp) confirmed specific Prox1 binding to the
enhancers within Actn2, Nrap and Zyx. Proxl-induced
transcription via all three enhancer elements was demonstrated by

cotransfection and reporter gene activation assays (4ctn2, 15-fold
activation; Nrap, 32-fold; Zyx, 9-fold) (Fig. 6D). qRT-PCR for
Nrap and Zyx (Fig. 6E) confirmed reduced expression of these
factors in a ProxI-deficient background, as was previously
determined for Actn2 (Fig. 30).

DISCUSSION

The failure of ProxI-conditional cardiomyocytes to grow and to
maintain sarcomere organisation throughout development results in
hypotrophic hearts that are insufficient to sustain life beyond birth.
We observed disruption of the sarcomere at the level of both gene
expression and protein localisation and have identified Prox1-bound
enhancer elements for key sarcomere-associated genes, indicating
that Prox1 regulates myofibrillar organisation both directly in terms
of protein expression, and indirectly via intermediate factors that
control sarcomere protein localisation and integration.

Prox1 deficiency impacts directly on sarcomeric components that
facilitate Z-disc and thin filament interaction. Reduced expression
of Nrap and Zyx in ProxI-conditional hearts, two genes that are
direct transcriptional targets of Prox1, is highly significant in terms
of maintaining Z-disc stability. N-RAP has been proposed to act as
a catalytic scaffold for the association of thin filament actin and Z-
disc o-actinin during myofibrillogenesis (Dhume et al., 2006), and
zyxin also interacts with o-actinin to facilitate actin assembly and
organisation (Crawford et al., 1992; Frank et al., 2006). During
myofibrillogenesis, N-RAP and zyxin are associated with cell-cell
contacts that make up the developing intercalated discs, which
ultimately mature during post-natal stages (Perriard et al., 2003).
Our confocal and TEM observations that cell junctions (-catenin-
positive adherens-type junctions and desmosomes) are appropriately
established and remain intact between neighbouring cardiomyocytes
in ProxI-conditional mutants, suggest that the role of Prox1 is
primarily to regulate Nrap and Zyx to facilitate cross-linking
between actin and ot-actinin in the Z-disc as one of the fundamental
associations of the sarcomere (see Fig. S4A in the supplementary
material). Actn2 is also implicated in this study as a direct target of
Prox1, and the modest, yet significant, reduction in the expression
levels of Actn2 in a Prox] mutant background, correlating with the
Z-disc disruption, underlines the crucial role of a-actinin in
maintaining sarcomere integrity. Moreover, as Zyx-null mice are
viable (Hoffman et al., 2003), although their hearts have not been
examined in detail for histological defects, the phenotype we
describe represents a cumulative effect on the actin—o-actinin
interaction: directly, via oi-actinin expression and localisation, and
through interactions with the co-factors N-RAP and zyxin.

Perturbation of the actin—ot-actinin association directly explains the
Z-disc anomalies in Prox/-null hearts. Although we cannot entirely
exclude additional effects of loss of Prox1 function, normal levels of
cardiomyocyte proliferation and apoptosis and the specificity of
phenotype at the level of sarcomeric maintenance suggest that the
latter is the primary defect in Prox/-conditional mutants. Moreover,
thin filament—Z-disc disruption will feedback directly onto the thin
and thick filament arrangement of the sarcomere, as observed at the
level of TEM, resulting in a more global disorganisation of myofibrils
(see Fig. S4B in the supplementary material). The latter might also
explain the observed M-band defects, but equally these might relate
more directly to misregulation of Nrap in the ProxI-mutant
background, as N-RAP associates with the M-bands of maturing
myofibrils where it acts as a catalytic scaffold (Lu et al., 2005).

Prox1 is not required for the initial stages of myofibrillogenesis
because the phenotypic defects do not begin to manifest until E12.5.
Sarcomere proteins are expressed immediately prior to the onset of
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Fig. 6. Prox1 directly regulates the genes encoding the structural proteins a-actinin, N-RAP and zyxin. (A) The sarcomere and sarcomere-
related protein genes Actn2 (sarcomeric a-actinin), Nrap and Zyx were identified as potential downstream targets of Prox1 by ChIP-on-chip. For
each locus, the genomic region immunoprecipitated by anti-Prox1 is indicated by a yellow box, the closest gene is labelled and the degree of
conservation shown. Conservation patterns are based on phastCons scores (http:/genome.ucsc.edu). (B) EMSAs with in vitro translated (IVT) Prox1
and 3?P-labelled oligonucleotides (60 bp) identified from each of the Actn2, Nrap and Zyx putative Prox1-bound elements (see Fig. S9 in the
supplementary material) isolated via the ChIP-on-chip shown in A. A 10-fold excess of unlabelled oligonucleotide was used in competitive assays as
evidence of specific binding (lanes C). (C) EMSAs with nuclear extracts from mouse P19CI6 cell lysates either untransfected (lanes 1-3) or transfected
with Flag-Prox1 (lanes 4-6) and 3’P-labelled elements as in B. Lanes 1 and 4 are lysate alone, lanes 2 and 5 are lysate plus an anti-Flag antibody, and
lanes 3 and 6 are anti-Flag-alone controls. Note the evidence of a supershift in lane 5 compared with lane 4 for each of the Actn2, Nrap and Zyx
elements (arrowheads), which is indicative of specific binding by Flag-Prox1. The presence of a comparatively weak band in lanes 1 and 2 in each
case represents binding by endogenous Prox1, which is expressed in P19CI6 cells (data not shown). (D) In vitro transcription assays demonstrate
Prox1 transactivation of a luciferase reporter downstream of the Actn2, Nrap and Zyx putative Prox1-binding elements and minimal reporter. Note
the significant activation by Prox1 of the Actn2, Nrap and Zyx reporters. (E) gRT-PCR for Nrap and Zyx confirms reduced expression of these factors
in a Prox1-deficient background, as was previously determined for Actn2 (see Fig. 30). In D,E, data are presented as mean + s.e.m.; *P<0.05,
**P<0.001, ***P<0.003, ****P<9x 107,
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beating and, once integrated into mature myofibrils, they tend to have
a relatively long half-life that varies between 3 and 10 days (Martin,
1981). Moreover, between E8.25 and E10.5, the developing heart
increases in mass primarily through the addition of cells from the
second cardiac lineage (Zaffran et al., 2004). Therefore, there may be
little requirement for newly synthesised structural proteins during
these early stages of heart development. The initial activation of the
genes encoding sarcomeric proteins is clearly carried out by alternate,
as yet unidentified, transcriptional regulation pathways, with the role
of Prox1 confined to regulating sarcomere maintenance and stability
from E10.5 onwards, when all populations of cardiac cells have been
acquired and the developing heart continues to grow by a combination
of both cardiomyocyte hyperplasia and hypertrophy. The fact that we
observed significantly impaired hypertrophic growth following loss
of Prox1 is secondary to the primary defect of disrupted assembly of
sarcomere proteins. Developing cardiomyocytes elongate in a
unidirectional manner by addition of sarcomeres to the existing
myofibrils, the timing of which corresponds precisely with the onset
of myocardial disruption and failure of the cells to elongate in Prox1-
conditional myocardium (see the model in Fig. SM).

In conclusion, Proxl is essential for the maintenance and
maturation of the sarcomere in developing cardiomyocytes, which
in turn are crucial for hypertrophic growth and maturation of the
embryonic myocardium. The identification of the genes encoding
the structural proteins o-actinin, N-RAP and zyxin, as direct targets
of Proxl suggests that misregulation of essential sarcomere
components and their interacting protein partners is the primary
cause of myofibril disruption in Prox/-conditional myocardium. A
number of other studies have described roles for transcription factors
in initiating or maintaining cardiac muscle ultrastructure during
development and disease, most notably serum response factor (Srf)
(Balza and Misra, 2006; Nelson et al., 2005), Gata4, Nkx2.5 and
Mef2 (Akazawa and Komuro, 2003) and calcineurin (Ppp3ca)/Nfat
(Bourajjaj et al., 2008; Heineke and Molkentin, 2006). However, to
the best of our knowledge, no study to date has demonstrated direct
transcriptional regulation of structural protein genes in vivo.

Aberrant terminal differentiation and improper assembly of
contractile protein filaments are associated with a number of cardiac
myopathies (Engel, 1999; Gregorio and Antin, 2000; Seidman and
Seidman, 2001). Many of these disorders are caused by mutations in
components of the myofibrillar apparatus itself, including f-MHC,
troponins T and [, titin and o-tropomyosin (Alcalai et al., 2008; Chang
and Potter, 2005), or perturbations in the associated calcium-
dependent signalling pathways (Frey et al., 2004; Molkentin et al.,
1998). However, a large proportion of cardiomyopathies remain
unexplained, with no mutations found in sarcomere or sarcomere-
related proteins. Our study not only provides novel insight into the
transcriptional regulation of cardiomyocyte ultrastructure and
hypertrophy during development, but also implicates Prox! as a
crucial regulatory factor that might underlie the pathology of both
inherited and acquired myopathic disease.
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