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INTRODUCTION
The RPE originates from the optic neuroepithelium of the ventral
forebrain, which undergoes morphogenetic movements leading to
formation of the optic cup. The resulting inner layer of the optic cup
develops into the neural retina and the outer layer differentiates into
RPE. Both retina and RPE are specified early, prior to optic cup
formation. Subsequent to RPE specification, a period of differentiation
and maturation follows, resulting in dramatic morphological,
structural and functional changes (Rizzolo, 2007; Strauss, 2005).
Interestingly, the RPE fate is reversible for several days following the
initial activation of differentiation, as evidenced by a propensity to
downregulate RPE-specific genes, to hyperproliferate and to
differentiate into retina, a process considered to be transdifferentiation
(Stroeva, 1960; Zhao et al., 1995). Thus, it is crucial that mechanisms
exist to maintain RPE differentiation in the optic cup.

RPE specification and differentiation are regulated by two key
regulatory transcription factors, Mitf and Otx2. Disruption of either
gene, similar to genetic ablation of the RPE, results in microphthalmia
and coloboma during murine eye development (Martinez-Morales et
al., 2001; Raymond and Jackson, 1995; Scholtz and Chan, 1987). Mitf
isoforms and Otx2 transactivate essential genes for terminal pigment
differentiation in the RPE and neural crest (e.g. tyrosinase-related
protein 1; Tyrp1) and for RPE-specific functions (Bharti et al., 2006;
Martinez-Morales et al., 2004). Initiation and maintenance of Mitf and
Otx2 expression is controlled by interaction with surrounding

extraocular tissues, including the extraocular mesenchyme (Fuhrmann
et al., 2000; Gage et al., 1999; West-Mays et al., 1999). A few
candidate regulators have been identified (Fuhrmann et al., 2000;
Muller et al., 2007; Perron et al., 2003; Zhang and Yang, 2001);
however, the exact mechanisms controlling the expression of
Mitf and Otx2 are not known. The Wnt/β-catenin pathway
(http://www.stanford.edu/~rnusse/wntwindow.html) is an excellent
candidate because it is active in the developing RPE; activation results
in cytoplasmic stabilization of β-catenin, which then translocates into
the nucleus and associates with TCF/LEF transcription factors.
Interestingly, Wnt/β-catenin signaling promotes differentiation of
neural crest-derived pigmented cells by direct transactivation of the
Mitf-M promoter (Schmidt and Patel, 2005). Although melanocytes
and RPE cells originate from different tissues, some aspects of the
mechanisms regulating pigment cell differentiation in different
lineages could be similar.

MATERIALS AND METHODS
Mouse lines
Tyrp1-Cre mice were provided by P. Chambon and M. Mark (IGBMC,
France) (Mori et al., 2002). B6.129-Ctnnb1tm2Kem/KnwJ (β-cateninFL) and
Gt(ROSA)26Sor (ROSA26R) mice are available at Jackson Laboratories
(Brault et al., 2001; Soriano, 1999). BATgal and β-cateninfloxdel/+ mice were
generated as previously described (Brault et al., 2001; Maretto et al., 2003).
Tyrp1-Cre;β-cateninfloxdel/+ mice were mated with β-cateninFL/FL animals to
generate Tyrp1-Cretg/0;β-cateninfloxdel/FL embryos (referred to generally as
mutant embryos). Littermate β-cateninfloxdel/FL mice served as controls. For
timed pregnancies, counting started on the day a vaginal plug was detected
as E0.5. We observed subtle pigment irregularities in Tyrp1-Cretg/0;β-
catenin+/+ RPE at P0, which were not accompanied with any of the defects
observed in Tyrp1-Cretg/0;β-cateninfloxdel/FL RPE, such as transdifferentiation
(not shown). For genotyping, the primers and cycling parameters have been
described elsewhere (Brault et al., 2001; Soriano, 1999). For detecting lacZ,
the following primers were used: 5�-GCAGACCGTTTTCGCTCGG-3�; 5�-
CGACCGCATGGTCAGAAGC-3�.
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Histology, in situ hybridization, immunohistochemistry and cell
counts
For X-Gal labeling, tissue was fixed for 20 minutes and then postfixed in 4%
paraformaldehyde. For histological analysis, eponate resin-embedded
embryos were sectioned (500 nm) and stained with Toluidine Blue. Whole-
mount in situ hybridization was performed as previously described
(Fuhrmann et al., 2009). For immunohistochemistry on coronal sections, the
following primary antibodies were used: Mitf (Exalpha), Vsx2 (N-terminal,
Exalpha), Otx2 (Chemicon), Tuj1/acTubb3 (Covance), Neurod (1:300,
Santa Cruz), Pou4f/Brn3b (Santa Cruz), β-catenin (Sigma), Neurofilament
M (Chemicon), Conductin (Santa Cruz), β-galactosidase (Cappel, or gift
from Tom Glaser, University of Michigan, Ann Arbor, MI, USA), ZO-1
(Zymed). Antigen retrieval with citrate buffer or 1% Triton X-100 was
performed when necessary. Alexa 488/568/647-conjugated secondary
antibodies (Molecular Probes), donkey-anti-goat TRITC (Jackson
ImmunoResearch), Alexa Fluor 488/568 phalloidin (Molecular Probes),
VECTASTAIN Elite ABC and VECTOR Peroxidase Substrate kits (Vector
Laboratories) were used. Epifluorescence images were taken with an upright
Olympus BX51 microscope and a Microfire CCD camera (Optronics) and,
if necessary, background subtraction was applied. Confocal images were
taken with an Olympus FV1000 and processed using ImageJ (NIH) and
Photoshop CS2 (Adobe). β-galactosidase-labeled cells were counted from
alternating sections in the dorsal and ventral E11 RPE based on their position
from a line drawn from the center of the lens through the optic nerve. The
total number was combined, averaged by the number of sections per eye and
subjected to Student’s t-test.

Chromatin immunoprecipitation (ChIP)
ChIP on RPE from C57BL/6 embryos was carried out as described (Clark
et al., 2008). Pre-cleared supernatant was incubated overnight at 4°C with
12 μg of anti-β-catenin antibody (BD Laboratories), 12 μg of mouse IgG
(Jackson Laboratories), or no antibody (input). Immunopurified DNA en-
compassing the six potential TCF/LEF binding sites in the Mitf-D enhancer
(–1393, –1389, –389, –364, –321 and –132) was PCR-amplified with the
following primers: 1 (–1224 to –1434), 5�-CCCTGTGTTTGTTCCGT -

TCT-3� and 5�-AAGGAGCTGTGGCATAATCG-3�; 2 (–359 to –563),
5�-TGGTGAGCCAGGCTAAGAAT-3� and 5�-CAAAGCTCAGCTAA -
TT GACAGC-3�; and 3 (+18 to –202), 5�-TGAAGCCTTAGTGAG -
CTTGC-3� and 5�GATCTCGAGAGGTCCCAACA-3�. A region of the
Mitf-D open-reading frame was amplified using the primers 5�-AGC -
TCAGAGGCACCAGGTAA-3� and 5�-TGGAGTTAAGAGTGAGCAT -
A GCC-3�. The following primers were used on the Otx2 T0 enhancer to
amplify the region flanking the putative TCF/LEF binding site: (–4 to
–200), 5�-AGAAAACGTGAGCTCCCAAA-3� and 5�-CGAGTTTCGG -
CCTCTGAGTA-3�. 5�-GTGTTGGTGTGACCACGTTC-3� and 5�-CTC -
CCACCTTTTCCAAACAA-3� were used to amplify a region in the Otx2
open-reading frame.

Luciferase assays
A 2248bp-fragment of the RPE-specific Mitf-D enhancer (Bharti et al.,
2008) was cloned from mouse BAC DNA (RP23-9A13) and inserted into
pGL3B. HEK293T cells were transfected with 1 ng pRL-TK and 50 ng
reporter construct (MitfD>luc, MitfDMS>luc, Otx2T0>luc,
Otx2T0MS>luc), 50 ng constitutively active β-catenin (Yost et al., 1996),
50 ng dominant-negative TCF3 (ΔTCF3) (Molenaar et al., 1996) or empty
vector (pCMS-EGFP), using lipofectamine/lipofectaminePLUS according
to the manufacturer’s instructions (Invitrogen). Firefly and renilla luciferase
activities were measured 24 hours post-transfection using a Modulus
Microplate Multimode plate reader (Turner Biosystems) after injecting
either 100 μl D-luciferin or coelenterazine (Biotum). Data are presented as
mean±s.e.m. from four separate experiments.

RESULTS AND DISCUSSION
TCF/LEF activation in the embryonic RPE is
dependent on β-catenin expression
To investigate the temporal pattern of Wnt/β-catenin activity during
mouse RPE development, we analyzed mice transgenic for
multimerized TCF/LEF consensus sites driving a lacZ reporter gene
(BATgal; Maretto et al., 2003). TCF/LEF activation is detectable in
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Fig. 1. TCF/LEF activity in the developing RPE in
mouse is dependent on β-catenin. (A-C) X-gal
staining marks TCF/LEF-responsive cells (arrows) in
BATgal RPE at E9.5 (26 somites; A), E15.5 (B) and P16
(C). (D-F) Colocalization of β-galactosidase (D; green;
DAPI in blue) and Otx2 (E, red) in the dorsal (arrows) and
ventral (arrowheads) RPE at E12.5. (F) Merge of D and E.
(G,H) β-galactosidase-labeled cells in E11 BATgal control
(G, green, arrow) and Tyrp1-Cretg/0;β-cateninfloxdel/FL RPE
(H, between dashed lines, arrow). Arrowheads indicate
the optic nerve. (I) Quantification of β-galactosidase-
labeled cells in dorsal and ventral RPE of control and
mutant embryos. Note the statistically significant
reduction in TCF/LEF-responsive cells in dorsal RPE
(P=0.039), but not in ventral, non-transdifferentiated RPE
(P=0.089), of mutant embryos. Scale bars: 50μm.
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the dorsal optic vesicle at embryonic day (E) 9.5 (Fig. 1A), in the
peripheral and dorsal RPE in the optic cup at E12.5 (Fig. 1D-F), and
in scattered cells at embryonic and postnatal ages (Fig. 1B,C);
however, activation ceases after postnatal day 30 (P30; not shown).
RPE-specific reporter activation was confirmed up to P16 by
colocalization of β-galactosidase and Otx2 expression (Fig. 1D-F;
see also Fig. S1 in the supplementary material; data not shown).
Although this is consistent with chick and zebrafish transgenic Wnt
pathway reporters (Cho and Cepko, 2006; Dorsky et al., 2002),
particular mouse TCF/LEF reporters show differences in activity in
the developing RPE (this study) (Fuhrmann et al., 2009; Liu et al.,
2006). These differences might be due to positional effects of
transgene insertion sites, caused by β-catenin-independent
activation, or due to context-specific usage of the distinct minimal
promoters of the various Wnt reporters (Fuhrmann et al., 2009; Hsu
et al., 1998; Labbe et al., 2000). To confirm that β-catenin is required
for BATgal activity, we disrupted β-catenin expression in the
embryonic RPE by using Tyrp1-Cre, which is active in the dorsal
optic vesicle by E9.5, earlier than previously reported (see Fig. S1A
in the supplementary material) (Mori et al., 2002). In mutant mice
(Tyrp1-Cretg/0;β-cateninfloxdel/FL), loss of β-catenin expression is first
observed in the dorsal RPE at E10.75, whereas the ventral RPE has
not yet undergone Cre-mediated recombination (see Fig. S2 in the
supplementary material). Importantly, in Tyrp1-Cretg/0;β-
cateninfloxdel/FL RPE, a significant reduction of reporter expression
is observed in the dorsal optic cup (nearly 3-fold; P=0.037; Fig. 1G-
I), suggesting that β-catenin operates through activating TCF/LEF
factors. To further confirm Wnt/β-catenin activity in the embryonic
RPE, we observed that expression of the universal target gene Axin2
starts in the periphery and extends into central regions (see Fig.
S1G,I in the supplementary material) (Burns et al., 2008; Fuhrmann
et al., 2009; Jho et al., 2002).

Loss of β-catenin results in severe ocular defects
and mislocalization of adherens junction proteins
in mutant RPE
Conditional disruption of β-catenin in the RPE results in severe
ocular defects (Fig. 2). Pigmentation is absent or dramatically
reduced in Tyrp1-Cretg/0;β-cateninfloxdel/FL RPE, indicating that β-
catenin is required for pigment synthesis (Fig. 2B,F,J). The mutant
RPE becomes hypercellular, starting dorsally and later extending
ventrally (Fig. 2D,H,L). This is likely to be due to the delayed

expression of Cre in the ventral optic vesicle, although we cannot
exclude that cell non-autonomous mechanisms contribute to the
propagation of RPE defects in the ventral optic cup. In Tyrp1-
Cretg/0;β-cateninfloxdel/FL eyes, the optic fissure fails to close,
resulting in a coloboma (see Fig. S3B in the supplementary
material). Postnatal mutant eyes are microphthalmic (n=18; not
shown), show abnormal folding in the RPE (Fig. 2L) and exhibit
defective optic nerve formation, and ganglion cells fail to exit the
retina in a normal manner (compare Fig. S3C and S3D in the
supplementary material). We also observed retinal defects that
include disorganization, and abnormal folding and bridge formation
between the retinal surface and the mutated RPE (Fig. 2H,L). These
defects are similar to those described in mice with a mutation in Mitf,
with ablation of the RPE or with retina-specific inactivation of β-
catenin (Fu et al., 2006; Raymond and Jackson, 1995; Scholtz and
Chan, 1987), and are consistent with a requirement of the RPE for
proper morphogenesis and lamination of the retina.

Analysis of Tyrp1-Cretg/0;β-cateninfloxdel/FL eyes harboring the
ROSA26R reporter show that β-galactosidase-positive cells
(inactivated for β-catenin) become progressively excluded and are
replaced by cells expressing β-catenin, which appear to originate
from the endogenous retina (see Fig. S4 in the supplementary
material). As β-catenin localizes in adherens junctions, we examined
whether the expression patterns of F-actin and ZO-1 (Tjp1 – Mouse
Genome Informatics), which are initially associated with adherens
junctions in the RPE (Rizzolo, 2007), are altered. In mutant RPE,
subtle changes start to appear at E11 (not shown), and significant
mislocalization was obvious at E12.5 (Fig. 3). The highest
concentration of F-actin and ZO-1 is normally observed at the apical
surface of the retina and the RPE in a uniform line, which is
composed of a honeycomb-like network (Fig. 3A,C,E,G). In Tyrp1-
Cretg/0;β-cateninfloxdel/FL RPE, however, expression of F-actin and
ZO-1 is discontinuous along the apical surface and mislocalized to
rosette structures (Fig. 3B,D,F,H) indicating that β-catenin is crucial
for the proper localization of adherens junction proteins along the
apical border of the RPE.

Upon β-catenin deletion, the RPE
transdifferentiates into neural retina
Tyrp1-Cretg/0;β-cateninfloxdel/FL eyes show phenotypical changes that
strikingly resemble those in mice homozygous for a mutation in Mitf
(Mi/Mi) or with compound mutations of the Otx1 and Otx2 genes;
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Fig. 2. Severe eye defects induced by RPE-
specific deletion of β-catenin. Lateral views of
control (A,E,I) and Tyrp1-Cretg/0;β-cateninfloxdel/FL

mutant (B,F,J) eyes at E11.5 (A,B), E15.5 (E,F) and
P0 (I,J). (C,D,G,H,K,L) Toluidine Blue staining of
coronal sections of control (C,G,K) and mutant
(D,H,L) eyes at E11.5 (C,D), E15.5 (G,H) and P0
(K,L). Note the absence of pigment (B,F,J; arrows)
and hypercellularity (arrowheads in D,H,L) of the
RPE. The disorganized retina forms bridges to the
mutant RPE (open arrowhead in H). Arrows in C,G,K
indicate control RPE. (L) At P0, the RPE and retinal
layers in mutant eyes are folded extensively. Scale
bars: 50μm.
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the RPE transdifferentiates into retina, accompanied with a loss of
RPE-specific morphology and gene expression, hyperproliferation,
and an upregulation of retina-specific genes expressed in an inverse
orientation (Bumsted and Barnstable, 2000; Nguyen and Arnheiter,
2000; Martinez-Morales et al., 2001). To determine whether
transdifferentiation occurs in Tyrp1-Cretg/0;β-cateninfloxdel/FL RPE,
we assessed changes in RPE and retina-specific gene expression. At
E11, Mitf is normally expressed throughout the RPE, and expression
of the earliest marker of retinal progenitor cells, Vsx2 (formerly
known as Chx10) (Burmeister et al., 1996; Clark et al., 2008), is
restricted to the retina (Fig. 4A). In mutant RPE, expression of Mitf

and Otx2 is downregulated and replaced by that of Vsx2, starting at
29 somites (Fig. 4B,D; not shown). The dorsal portion comprises
almost exclusively cells that have undergone recombination and do
not express β-catenin or Mitf (see Fig. S2 in the supplementary
material), suggesting that depletion of β-catenin results in a loss of
the RPE cell fate. To analyze the extent of transdifferentiation,
double labeling with retinal cell type-specific markers at E12.5 was
performed. Acetylated class III β-tubulin (acTubb3) is normally
restricted to the presumptive ganglion cell layer; however, in Tyrp1-
Cretg/0;β-cateninfloxdel/FL RPE, acTubb3 expression is upregulated in
an inverse orientation (Fig. 4E,F). Ectopic expression of the
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Fig. 3. Cell adhesion is perturbed in Tyrp1-
Cretg/0;β-cateninfloxdel/FL RPE. At E12.5, F-actin
(A-D) and ZO-1 (E-H) are enriched in apical adherens
junctions in the retina and RPE in control (A,C,E,G)
and in Tyrp1-Cretg/0;β-cateninfloxdel/FL (B,D,F,H) retinas.
In mutant RPE, F-actin and ZO-1 are mislocalized to
rosette structures (D, arrowhead) and are absent at
the apical border (D,H, arrows). Boxes in A,B,E,F mark
areas magnified in C,D,G,H, counter-labeled with
DAPI (red). Brackets delineate the RPE. Scale bars:
50μm.

Fig. 4. RPE-specific loss of β-catenin induces
transdifferentiation into retina. (A,B) Mitf
(green) is present throughout the RPE in E11
controls (A, arrow) and in the ventral Tyrp1-
Cretg/0;β-cateninfloxdel/FL RPE (B, arrow). The dorsal
mutant RPE is devoid of Mitf (B, arrowhead).
Vsx2 is normally detected in the retina (A, red)
and ectopically expressed in mutant RPE (B,
arrowhead). (C,D) At E11.5, Otx2 is expressed
throughout the RPE in controls (C, arrow) and in
a few cells in the ventral RPE of mutant embryos
(D, arrow), but is undetectable in the dorsal
portion (D, arrowhead) of the RPE in mutant
embryos. (E-H) Retinal neurogenesis occurs in
E12.5 Tyrp1-Cretg/0;β-cateninfloxdel/FL RPE.
(E) Normally, acTubb3 (green, arrow) is expressed
in ganglion cell precursors, and Neurod (red) in
amacrine and photoreceptor precursors. (F) Both
markers are ectopically expressed in an inverse
orientation in the transdifferentiated RPE (arrow).
(G,H) Pou4f2 labels ganglion cells at the basal
surface (arrows). Arrowhead in G marks the RPE.
Dotted lines in F and H indicate the retina and
RPE boundary; dashed line indicates the RPE and
choroid boundary. (I, top) ChIP was performed on
primary E12.5 mouse RPE using a β-catenin
antibody (β-cat Ab). β-catenin associates with
regions of the Mitf-D enhancer containing
putative TCF/LEF sites. Locations of the amplicons
are indicated to the right. (Bottom) An Mitf-D
pGL3B reporter construct (MitfD>luc) is activated
by constitutively active β-catenin (β-cat) in HEK293T cells. Cotransfection with ΔTCF3 or mutation of TCF/LEF sites (MitfDMS>luc) diminishes
reporter activation. (J, top) β-catenin associates with the Otx2 T0 enhancer in vivo as shown by ChIP. (Bottom) β-catenin activates an Otx2 pGL3B
reporter construct (Otx2T0>luc), whereas ΔTCF3 or mutation of TCF/LEF sites (Otx2T0MS>luc) reduces reporter activation. Input, amplification from
non-immunoprecipitated chromatin. Negative controls used were mouse IgG, H2O (no DNA) or open-reading frame primers (ORF). The ChIP assays
were independently repeated four times (twice using whole E9.5 embryos and twice using E12.5 RPE). The transactivation assays were repeated a
minimum of four times and representative examples are shown. pCMS is an empty vector. Scale bars: 50μm. D
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amacrine and photoreceptor precursor marker Neurod is as
widespread in the RPE as it is in the retina, suggesting that the time-
course of neurogenesis occurs similarly in both tissues (Fig. 4E,F).
Furthermore, the differentiation of ganglion cells is induced, as
shown by ectopic expression of Pou4f2/Brn3b (Fig. 4H). Together,
our results demonstrate that RPE-specific disruption of β-catenin
results in transdifferentiation into retina. Because cell adhesion
defects are prominent after downregulation of Mitf, they are less
likely to underlie the change in cell fate we observed in the Tyrp1-
Cretg/0;β-cateninfloxdel/FL RPE.

β-catenin binds near and activates putative
TCF/LEF sites in the Mitf and Otx2 enhancers
Expression of both Otx2 and Mitf proteins is rapidly downregulated
in Tyrp1-Cretg/0;β-cateninfloxdel/FL RPE; therefore, we asked whether
β-catenin associates with their enhancers in vivo. We identified six
putative TCF/LEF binding sites (Hallikas et al., 2006) in a 2248bp-
fragment of the RPE-specific Mitf-D enhancer, positioned at –1393,
–1389, –389, –364, –321 and –132 relative to the transcriptional start
site. β-catenin binds at or near these sites, as determined by ChIP
using native RPE lysate from E12.5 embryos (Fig. 4I). To examine
whether β-catenin can transcriptionally activate Mitf, the Mitf-D
enhancer was cloned into the pGL3B luciferase reporter. β-catenin
produced an 8-fold increase in luciferase activity, and this activation
was reduced by co-transfection with ΔTCF3 or by mutation of all
potential TCF/LEF binding sites (Fig. 4I). Furthermore, one putative
TCF/LEF binding site was identified in the T0 enhancer of Otx2
(Martinez-Morales et al., 2003), within in a region that is amplified
by PCR after immunoprecipitation with a β-catenin antibody (Fig.
4J). β-catenin also produced an 8.5-fold increase in Otx2-pGL3B
luciferase reporter activity, which was repressed by co-transfection
with ΔTCF3 or by mutating the putative TCF/LEF binding site (Fig.
4J). These results support our model that β-catenin, in association
with TCF/LEF factors, mediates the transcriptional activation of
Mitf-D and Otx2 in the RPE.

A few other factors have been shown to promote RPE
development; for example, TGFβ/activin and sonic hedgehog
signaling (Fuhrmann et al., 2000; Huh et al., 1999; Sakami et al.,
2008; Zhang and Yang, 2001). RPE-promoting signals could exert
different functions depending on location and timing; an activin-
like factor and sonic hedgehog might specify the RPE fate in the
dorsal and ventral optic vesicle, respectively, while Wnt/β-catenin
ensures proper RPE differentiation in the optic cup. The source of
the actual Wnt ligand could be the RPE itself, the adjacent retina or
the extraocular mesenchyme (e.g. Wnt2b, Wnt3, Wnt5a, Wnt7b)
(Liu et al., 2003). However, targeted inactivation of the RPE-
specific factors Tcf1 (Tcf7 – Mouse Genome Informatics) and/or
Lef1 leads either to early embryonic lethality or does not appear to
cause obvious eye defects, which might be due to functional
redundancy (Galceran et al., 1999; Galceran et al., 2000; van
Genderen et al., 1994; Verbeek et al., 1995). Interestingly, ectopic
activation of Wnt/β-catenin in the presumptive retina is not
sufficient to promote a change into RPE-like tissue, suggesting that
additional factors are required (Cho and Cepko, 2006; Fu et al.,
2006).

In conclusion, our report is the first to show a direct role for an
extracellular signaling pathway in controlling development of the
mammalian RPE. Although we cannot rule out that cell adhesion
defects can independently interfere with RPE differentiation, our
results strongly suggest that β-catenin, via TCF/LEF activation, is
essential for maintaining cell fate in the developing RPE by the
direct regulation of Mitf and Otx2 expression. Thus, this mechanism

of Mitf regulation appears to be evolutionary conserved between the
RPE and neural crest-derived melanocytes. It remains to be
determined what the source(s) of the actual ligand(s) is and how
Wnt/β-catenin signaling integrates with other putative regulatory
pathways to control RPE development.
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