
1771

Non-coding RNAs (ncRNAs) that regulate gene expression in cis
or in trans are a shared feature of prokaryotic and eukaryotic
genomes. In mammals, cis-acting functions are associated with
macro ncRNAs, which can be several hundred thousand
nucleotides long. Imprinted ncRNAs are well-studied macro
ncRNAs that have cis-regulatory effects on multiple flanking
genes. Recent advances indicate that they employ different
downstream mechanisms to regulate gene expression in
embryonic and placental tissues. A better understanding of
these downstream mechanisms will help to improve our general
understanding of the function of ncRNAs throughout the
genome.

Introduction
In recent years, tiling-array analyses (see Glossary, Box 1) and
genome-wide cDNA sequencing have shown not only that most of
the mammalian genome is transcribed, but also that the majority of
the mammalian transcriptome consists of non-coding (nc) RNAs
(Carninci et al., 2005; Engstrom et al., 2006; Kapranov et al., 2002;
Katayama et al., 2005; Okazaki et al., 2002). Because a full
classification system for ncRNAs is still outstanding, they are
generally described according to their mature length, location and
orientation with respect to the nearest protein-coding gene. For
example, a new group called large intervening non-coding (linc)
RNAs comprise ncRNAs that lie outside annotated genes in the
mouse genome (Guttman et al., 2009). When their function is
known, ncRNAs can also be classified by whether they act in cis or
trans (see Glossary, Box 1). Trans-acting functions are associated
with short ncRNAs, such as short interfering (si) RNAs (21 nt),
micro (mi) RNAs (~22 nt), piwi-interacting RNAs (26-31 nt) and
short nucleolar (sno) RNAs (60-300 nt). By contrast, cis-acting
functions have so far only been associated with macro ncRNAs (see
Glossary, Box 1), which can be up to several hundred thousand
nucleotides long. Interestingly, whereas the number of protein-
coding genes is no indication of an organism’s morphological
complexity, macro ncRNA number increases with complexity,
indicating a potential functional role in gene regulation (Amaral and
Mattick, 2008). In support of this hypothesis, many ncRNAs show
distinct cell-type-specific and developmental-stage-specific
expression profiles (Dinger et al., 2008; Mercer et al., 2008). To date,
however, only a few macro ncRNAs have been analysed in detail
and shown to have functional gene-regulatory roles (Yazgan and
Krebs, 2007; Prasanth and Spector, 2007).

The best-known functional mammalian macro ncRNAs are the
inactive X-specific transcript (Xist) and X (inactive)-specific
transcript, antisense (Tsix), which are overlapping transcripts
required for X chromosome inactivation in female mammals – an
epigenetic dosage-compensation mechanism (see Glossary, Box 1)

that equalises X-linked gene expression between the sexes. Xist is
expressed from, and localises to, the inactive X chromosome and,
by an unknown mechanism, targets repressive chromatin
modifications and gene silencing to this chromosome. Tsix overlaps
with the entire Xist gene in an antisense orientation and silences Xist
on the active X chromosome (reviewed by Wutz and Gribnau,
2007). The next-best-studied mammalian macro ncRNAs are those
involved in genomic imprinting (see Glossary, Box 1; Box 2). To
date, 90 genes show imprinted expression in the mouse
(http://www.har.mrc.ac.uk/research/genomic_imprinting), and their
imprinted status is mostly conserved in humans
(www.otago.ac.nz/IGC). Imprinted genes mostly occur in clusters
that contain 2-12 genes, and in most of these clusters at least one
gene is a macro ncRNA. So far, two of the three tested imprinted
macro ncRNAs have been shown to be required for the imprinted
expression of the whole cluster (Barlow and Bartolomei, 2007).
Thus, imprinted macro ncRNAs are able to regulate small clusters
of autosomal genes in cis and offer an excellent model system not
only to investigate how ncRNAs regulate genes epigenetically, but
also to investigate the general biology of ncRNA transcripts.

In this review, we focus on six well-studied mouse imprinted
clusters and their associated macro ncRNAs (Fig. 1) and review
three main areas: first, how imprinted macro ncRNAs are
themselves epigenetically regulated by DNA methylation imprints,
and their role in inducing imprinted expression and epigenetic
modifications in imprinted clusters; second, what is currently known
about the organisation and the transcriptional biology of imprinted
macro ncRNAs; and third, why developmental and tissue-specific
variation in imprinted expression indicates that multiple
mechanisms might operate downstream of imprinted ncRNAs.

Imprinted macro ncRNAs are epigenetically
regulated
A key feature of imprinted gene clusters is the presence of an imprint
control element (ICE) (see Glossary, Box 1), which has been
genetically defined by deletion experiments in mice or through the
mapping of minimal naturally occurring deletions in humans (Table
1). The ICE is epigenetically modified on only one parental
chromosome by a DNA methylation ‘imprint’, which is acquired
during maternal or paternal gametogenesis and is maintained on the
same parental chromosome in the diploid embryo. As the other
parental chromosome lacks ICE DNA methylation, this region in a
diploid cell is also known as a gametic differentially methylated
region (gDMR). The unmethylated ICE controls the imprinted
expression of the whole cluster; upon its deletion, imprinted genes
are no longer expressed in a parental-specific pattern (Bielinska et
al., 2000; Fitzpatrick et al., 2002; Lin et al., 2003; Thorvaldsen et al.,
1998; Williamson et al., 2006; Wutz et al., 1997). Note that the term
‘imprinted’ refers to the presence of DNA methylation on the ICE
and not to gene expression status and that the above-mentioned
deletion experiments show that only the unmethylated ICE is active.
Four of the six well-studied imprinted clusters in the mouse (Igf2r,
Kcnq1, Pws/As, Gnas) are maternally imprinted and thus gain their
ICE DNA methylation imprint during oogenesis. This imprint is
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maintained only on the maternal chromosome in diploid cells (Fig.
1A-D). The remaining two clusters (Igf2, Dlk1) are paternally
imprinted and gain their ICE DNA methylation imprint during
spermatogenesis. This imprint is maintained only on the paternal
chromosome in diploid cells (Fig. 1E,F).

In the Igf2r, Kcnq1 and Gnas clusters, the ICE contains a
promoter for a macro ncRNA [Airn (108 kb), Kcnq1ot1 (91 kb) and
Nespas (~30 kb), respectively] that has an overlap in the antisense
direction with only one gene in each imprinted cluster (for
references, see Table 2). In the Pws/As cluster, the provisionally
named Snrpn-long-transcript (Snrpnlt, also known as Lncat) is an
unusually long macro ncRNA that could cover 1000 kb of genomic
sequence. The Snrpnlt ncRNA overlaps in antisense orientation with
the Ube3a gene, which is located 720 kb downstream. The size of
the ICE in this cluster has not been precisely determined in the
mouse, as the smallest available ICE deletion only shows a partial
or mosaic imprinting defect (Bressler et al., 2001). In the paternally
imprinted Igf2 and Dlk1 clusters, the ICE is found 5-14 kb upstream
of the H19 macro ncRNA (2.2 kb) and the provisionally named
Gtl2-long-transcript (Gtl2lt; length unknown), respectively. H19
lacks any known transcriptional overlap with the other genes in the
cluster, whereas Gtl2lt overlaps with Rtl1. In short, although the
organisation of these six well-studied imprinted clusters appears to
be complex, they generally follow two simple rules: (1) an
unmethylated ICE is required for macro ncRNA expression; and (2)
most imprinted mRNA genes are not expressed from the
chromosome from which the macro ncRNA is expressed.

Imprinted macro ncRNAs can host short ncRNAs
The length of the macroRNAs of the imprinted clusters, i.e. Airn,
Kcnq1ot1, Nespas, Snrpnlt, H19 and Gtl2lt, ranges from 2.2-1000
kb (Table 2). Intriguingly, as shown in Fig. 1, the majority of these
imprinted macroRNAs, with the possible exception of Kcnq1ot, also
serve as host transcripts for trans-acting short RNAs, such as
siRNAs, which are involved in gene silencing by the RNA
interference pathway (reviewed by Mattick and Makunin, 2006),
miRNAs, which function as translational gene repressors (reviewed
by Cannell et al., 2008), and snoRNAs, which are involved in rRNA
processing (reviewed by Brown et al., 2008). For example, siRNAs
encoded by the Au76 pseudogene region lie within the Airn ncRNA
in the Igf2r cluster and are found in oocytes (Watanabe et al., 2008).
In the Pws/As cluster, two snoRNA clusters (Snord115, Snord116)
are located within the Snrpnlt macro ncRNA (Cavaille et al., 2000;
Huttenhofer et al., 2001). In the Gnas cluster, two miRNAs are
located within the Nespas macro ncRNA (Holmes et al., 2003). In
the Igf2 cluster, both the H19 ncRNA and the protein-coding Igf2
gene contain a miRNA within their transcriptional unit (Cai and
Cullen, 2007; Landgraf et al., 2007). In the Dlk1 cluster, four
separate macro ncRNAs have been described [Gtl2 (Meg3), Rtl1as,
Rian, Mirg] that might be contained within the Gtl2lt ncRNA. Gtl2,
Rtl1as and Mirg contain multiple miRNAs, whereas Rian contains
multiple snoRNAs (Cavaille et al., 2002; Houbaviy et al., 2003;
Huttenhofer et al., 2001; Kim et al., 2004; Lagos-Quintana et al.,
2002; Seitz et al., 2004; Seitz et al., 2003). Interestingly, miRNAs
generated from Rtl1as have been shown to be involved in the trans-
silencing of Rtl1 through an siRNA-mediated pathway (Davis et al.,
2005). Few of the small ncRNAs in these clusters have been
analysed in detail and most probably have trans-acting functions,
which indicates that they are unlikely to be involved in regulating
imprinted gene expression that depends on a cis-acting mechanism.
However, their presence suggests a functional link between macro
ncRNAs and short ncRNAs.
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Box 1. Glossary

Cis-acting function
The ability of a DNA sequence or transcript to regulate the
expression of one or more genes on the same chromosome. This
contrasts with trans-acting function (see below).

CTCF
A CCCTC-binding factor that is an 11-zinc-finger protein that binds
insulator elements.

Differentially methylated region (DMR)
A CG-dinucleotide-rich genomic region that, in diploid cells, is
methylated on one parental chromosome and unmethylated on the
other. Gametic DMRs acquire their parental-specific DNA
methylation during gametogenesis, either in the developing haploid
oocyte or sperm, whereas somatic DMRs acquire their parental-
specific DNA methylation in somatic diploid cells.

DNA/RNA FISH
A fluorescence in situ hybridisation technique that uses a
complementary DNA or RNA strand to determine the localisation of
DNA sequences or RNA transcripts in cell nuclei.

Dosage compensation
An epigenetic regulatory mechanism present in mammals, flies and
worms that equalises the expression of genes on the X chromosome
between XY/X0 males and XX females.

Epigenetics
Modifications of DNA or chromatin proteins that alter the ability of
DNA to respond to external signals.

Gene regulation in cis
See cis-acting function.

Gene regulation in trans
See trans-acting function.

Genomic imprinting
An epigenetic mechanism that induces parental-specific gene
expression in diploid mammalian cells (see Box 2).

Imprint control element (ICE)
A short DNA sequence [also known as an ICR (imprint control
region) or IC (imprinting centre)] that controls the imprinted
expression of multiple genes in cis. All known ICEs are also gametic
DMRs; however, their identification requires the in vivo analysis of a
deletion of the DMR.

Insulator element
A genetic boundary element that binds insulator proteins to
separate a promoter on one side of the insulator element from the
activating effects of an enhancer located on the other side.

Macro ncRNAs
ncRNAs that can be as short as a few hundred nucleotides or as long
as several hundred thousand nucleotides, the function of which
does not depend on processing into short or micro RNAs.

Tiling-array analysis
Commercial chips containing 25-60 nt oligonucleotide probes
designed to continuously cover a genomic region that are used to
produce unbiased maps of histone modifications following
chromatin immunoprecipitation (ChIP-chip), or of DNA methylation
following methylated DNA immunoprecipitation (MeDIP-chip), or of
gene expression following cDNA hybridisation (RNA-chip).

Trans-acting function
The ability of a DNA sequence or transcript to regulate the
expression of one or more genes on different chromosomes or to
regulate mature RNAs in the cytoplasm.
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Imprinted ncRNAs – atypical mammalian
transcripts?
An unusual feature of many imprinted ncRNAs is that they are
unspliced or spliced with a low intron/exon ratio, in contrast to the
majority of mammalian mRNA-encoding genes, which are intron
rich. Notably, the export of ncRNAs to the cytoplasm correlates with
splicing (Table 2). The H19 ncRNA is fully spliced and exported to
the cytoplasm (Brannan et al., 1990; Pachnis et al., 1984), whereas
the Kcnq1ot1 ncRNA is unspliced and retained in the nucleus
(Pandey et al., 2008). The Airn ncRNA produces unspliced and
spliced transcripts at a ratio of 19:1, and only the spliced transcripts
are exported to the cytoplasm (Seidl et al., 2006). In the Gnas cluster,
both Exon1A and Nespas ncRNAs are also found as spliced and
unspliced forms, but their cellular localisation is unknown (Holmes
et al., 2003; Li et al., 1993; Liu et al., 2000; Williamson et al., 2002).
Both Airn and Kcnq1ot1 were shown by RNA fluorescence in situ
hybridisation (RNA FISH; see Glossary, Box 1) to form RNA
‘clouds’ at their site of transcription (Braidotti et al., 2004; Nagano
et al., 2008; Terranova et al., 2008). We do not yet know whether
these ncRNA ‘clouds’ explain their ability to repress flanking genes
or whether this ‘cloud-like’ appearance is a consequence of a lack of
splicing, as mRNA genes mutated to inhibit splicing also show
nuclear retention and intranuclear RNA focus formation (Custodio
et al., 1999; Ryu and Mertz, 1989).

Although not all imprinted macro ncRNAs have been studied in
sufficient detail, at least some have been shown to have unusual
transcriptional features that are not generally associated with
mammalian mRNA genes, such as reduced splicing potential or low
intron/exon ratio, nuclear retention and accumulation at the site of
transcription. Investigations into the control of these unusual
transcriptional features, and into their role in the functional
properties of imprinted ncRNAs, are only just beginning. An
obvious genetic element that might account for unusual
transcriptional features is the promoter. It was recently shown in
fission yeast that splicing regulation is promoter driven (Moldon et
al., 2008). It was therefore surprising to find that the endogenous
Airn promoter does not control the low splicing capacity of the Airn
ncRNA (Stricker et al., 2008), and further work is required to
determine how these unusual macro ncRNA features arise.

Macro ncRNAs are functional in imprinted
expression
The presence of macro ncRNAs in imprinted clusters raises the
question of whether they play a functional role in imprinting. In the
case of the two paternally expressed imprinted macro ncRNAs Airn
and Kcnq1ot1, experiments in which the ncRNA was truncated by
the homologous insertion of a polyadenylation cassette have
demonstrated that these ncRNAs are indeed necessary for imprinted
expression. Paternal chromosomes that carry a truncated Airn or
Kcnq1ot1 ncRNA lose the repression of all protein-coding genes in
the imprinted cluster in both embryonic and placental tissues,
whereas maternal alleles are unaffected (Mancini-Dinardo et al.,
2006; Shin et al., 2008; Sleutels et al., 2002). These experiments
showed that these macro ncRNAs act by repressing multiple
flanking genes in cis in both embryonic and placental tissues.
Nespas is similar to Airn and Kcnq1ot1 in that it is transcribed from
a promoter contained within the unmethylated ICE on the paternal
allele and has an antisense orientation with respect to the imprinted
protein-coding Nesp gene. However, it is not yet known whether
Nespas has a cis-silencing role similar to Airn and Kcnq1ot1. By
contrast, the maternally expressed H19 ncRNA is known to be
dispensable for the imprinted expression of Igf2 (Schmidt et al.,

1999). Instead, a methylation-sensitive insulator element (see
Glossary, Box 1) contained in the ICE regulates the ability of
enhancers that lie downstream of H19 to interact physically with the
upstream H19 and Igf2 promoters (Fig. 1E). On the unmethylated
maternal allele, CTCF (see Glossary, Box 1) binds the ICE and
restricts the access of enhancers to the H19 promoter. On the
methylated paternal allele, CTCF cannot bind, and the enhancers
interact preferentially with the Igf2 promoter, facilitating its
transcription (Bell and Felsenfeld, 2000; Hark et al., 2000). An
additional mechanism to induce imprinted expression is present in
the newly described H13 imprinted cluster on mouse chromosome
2 (Wood et al., 2007) (not shown in Fig. 1). The H13
(histocompatibility 13 antigen) (Graff et al., 1978) gene contains an
intronic, maternally methylated gDMR. The transcription of full-
length functional H13 from the maternal chromosome depends on
the methylation of this gDMR. On the paternal allele, the
unmethylated gDMR acts as a promoter for the Mcts2 retrogene, and
Mcts2 expression correlates with the premature polyadenylation of
H13 (Wood et al., 2008). To date, it is unknown whether the Mcts2
retrogene is coding or non-coding, nor whether Mcts2 expression or
the unmethylated gDMR is required to block the production of full-
length H13 transcripts.

Thus, two out of the three tested imprinted macro ncRNAs act
in cis to induce the imprinted expression of flanking genes. These
macro ncRNAs might also possess additional functions. For
example, as their promoter is contained in the ICE, they could
play a role in acquiring the gametic DNA methylation imprint.
However, a recent publication indicates that the transcription of
overlapping imprinted protein-coding genes, rather than of
ncRNAs, is needed to acquire methylation imprints in the Gnas
cluster (Chotalia et al., 2009). This work shows that a truncation
of the Nesp mRNA transcript (Fig. 1D) by the insertion of a
polyadenylation cassette, which abolishes transcription through
the ICE, impairs acquisition of the ICE methylation mark in
oocytes. This might represent a common theme for oocyte-

Box 2. Genomic imprinting: basic biology, history and
clinical implications
Mammals are diploid organisms whose cells contain two matched
sets of chromosomes, one inherited from the mother and one from
the father. Thus, mammals have two copies of every gene with the
same potential to be expressed in any cell. Genomic imprinting is an
epigenetic mechanism that affects ~1% of genes and restricts their
expression early in development to one of the two parental
chromosomes. Genes that show parental-specific expression were
hypothesised to exist in mammals following a series of landmark
observations that began to accumulate thirty years ago. These
included the failure of embryos to develop by parthenogenesis in the
absence of fertilisation, the phenotype of embryos that had inherited
two copies of one parental chromosome in the absence of the other
parental copy, and the inability to generate viable embryos that
contained two maternal or paternal pronuclei through oocyte
nuclear transfer experiments. This hypothesis was corroborated in
1991 by the discovery of three imprinted genes: the maternally
expressed Igf2r gene, the paternally expressed Igf2 gene and the
maternally expressed H19 ncRNA. Whereas genomic imprinting now
offers one of the best models in which to investigate epigenetic gene
regulation in mammals, it also has considerable implications for
modern molecular medicine in the management of genetic diseases
that map to autosomes but are only inherited from one parent, and
in the efforts to apply assisted reproductive or cloning technologies
to human reproduction.
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Fig. 1. Six well-studied imprinted
clusters. (A-F) The genomic
organisation of six well-studied mouse
imprinted clusters. The maternal
chromosome is shown as a pink bar,
the paternal chromosome as a blue
bar. Protein-coding genes are shown
as boxes: solid red box, maternally
expressed gene on the expressed
allele; transparent red box, maternally
expressed gene on the repressed
allele; solid blue box, paternally
expressed gene on the expressed
allele; transparent blue box, paternally
expressed gene on the repressed
allele. Macro ncRNAs are shown as
wavy lines: red for maternally
expressed, blue for paternally
expressed. Arrows indicate
transcriptional direction: solid arrows,
strong transcription; dashed arrows,
weak transcription. Note that many of
the indicated genes show tissue- or
temporal-restricted gene expression
(not indicated). See key for further
details. chr., chromosome; ICE, imprint
control element; miRNA, microRNA;
siRNA, short interfering RNA; snoRNA,
short nucleolar RNA.
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specific DNA methylation imprints, given that an overlapping
mRNA gene has been reported to be transcribed through five
other maternal gDMRs in oocytes, but not in sperm. Perhaps
surprisingly, ncRNA transcription might play a role in
maintaining the unmethylated state of the ICE in the early
embryo. This is indicated by experiments in which the Airn
promoter was deleted from the paternal chromosome in
embryonic stem (ES) cells, which resulted in the methylation of
the normally unmethylated paternal ICE (Stricker et al., 2008).

In summary, macro ncRNAs have been shown to function in
inducing parental-specific gene expression in the Igf2r and
Kcnq1ot1 imprinted clusters. In the Igf2 imprinted cluster, the
ncRNA is expressed from the parental chromosome, which silences
the protein-coding genes but does not itself play a functional role in
the silencing. The functions of ncRNAs in the other imprinted
clusters shown in Fig. 1 are yet to be tested.

Developmental and tissue-specific imprinted
expression
How might developmental or tissue-specific imprinted expression
arise? In this section, we discuss mechanisms that might
differentially regulate imprinted expression, and describe recently
developed in vitro model systems that provide an excellent tool with
which to study these mechanisms (Fig. 2). Genomic imprinting
consists of a cycle of events that begins when the ICE DNA
methylation imprint is established on one parental allele during
gametogenesis. After fertilisation, when the embryo is diploid, the
ICE methylation imprint is maintained on the same parental allele
through the action of the DNA methyltransferase DNMT1 (Li et al.,
1993). In subsequent developmental or tissue-specific regulated
steps, imprinted expression can be maintained by additional
epigenetic modifications or lost in the absence of such factors. In the
examples already discussed, temporal- and tissue-specific imprinted
expression could be achieved by regulating ncRNA expression and
function (for the Igf2r and Kcnq1 clusters) or by regulating insulator
formation (for the Igf2 cluster). To complete the genomic imprinting
life cycle, the ICE methylation imprint and any secondary epigenetic
modifications are erased during early germ cell development to
allow the parental gametes to acquire a maternal or paternal DNA
methylation imprint ready for the next generation (reviewed by
Barlow and Bartolomei, 2007).

There are several examples in which differential imprinted
expression correlates with differential ncRNA expression. In the
mouse brain, the imprinted expression of the Ube3a gene in the
Pws/As cluster is seen in neurons that express the Ube3a-ats
transcript, which might be continuous with Snrpnlt (Fig. 1C), but it
is not seen in glial cells that lack this antisense RNA (Yamasaki et
al., 2003). Glial cells show imprinted expression of Igf2r and express
the Airn ncRNA, but neurons lack Airn and show non-imprinted
Igf2r expression (Yamasaki et al., 2005). Imprinted expression of
Igf2r also correlates with Airn expression in embryonic
development. Preimplantation embryos lack Airn and express Igf2r
from both parental chromosomes, whereas post-implantation
embryos express Airn only from the paternal chromosome and Igf2r
only from the maternal chromosome (Sleutels et al., 2002; Szabo
and Mann, 1995). In terms of in vitro models for studying
imprinting, it was shown recently for the Igf2r cluster that ES cell
differentiation mimics the onset of imprinted expression and the gain
of epigenetic modifications seen in the developing embryo (Latos et
al., 2009). This work establishes the utility of ES cells to study the
imprinted expression that is typical for embryonic tissue. However,
as the imprinted expression of the Slc22a2 and Slc22a3 genes in the
Igf2r cluster is restricted to the placenta labyrinth layer (Fig. 2A),
this cannot be analysed in ES cells, which arise from a cell lineage
that does not contribute to this tissue. Trophoblast stem (TS) cells
are an obvious ES cell analogue for the study of genes that show
imprinted expression only in placental tissues (Fig. 2B). However,
differentiated TS cells appear to be an unsuitable model for the later
stages of placental development, as the expression patterns and
histone modifications detected in vivo are not recapitulated in vitro
(Lewis et al., 2006).

The placenta provides a good example of tissue-specific
variation in imprinted expression, as the majority of imprinted
genes in the mouse only show imprinted expression in the
placenta (Wagschal and Feil, 2006). This occurs because in many
imprinted clusters a small number of centrally positioned genes
show ‘ubiquitous’ imprinted expression (i.e. in embryo, placenta
and adult), whereas additional genes in the cluster that extend
upstream or downstream have imprinted expression only in the
placenta (Fig. 1). As experiments that involve either ICE deletion
or ncRNA truncation (as described above) show that imprinted
expression in the embryo and the placenta are controlled by the

Table 1. Imprint control elements of six well-studied imprinted clusters

Associated histone modifications

Imprinted cluster

ICE (a gametic DMR)
Genomic position (UCSC mm9) DNA methylated ICE Unmethylated ICE

Igf2r Region 21,2

Chr17: 12934307-12935355
Maternal:3

H3K9me3, H4K20me3
Paternal:3

H3K4me3, H3K4me2, H3K9ac
Igf2 H19 DMD4

Chr7: 149766154-149767791
Paternal:5,6

H3K9me3, H4K20me3
Maternal:5,6

H3K4me2, H3K4me3, H3ac
Kcnq1 KvDMR17

Chr7: 150481310-150482463
Maternal:5,8

H3K9me, H3K27me
Paternal:5,8

H3K4me, H3K9ac, H3K14ac, H3ac,
H4ac

Pws/As Part may be contained in 4.8 kb9, which is
orthologous to the human PWS-IC

Chr7: 67147668-67152741

Maternal:5,10

H3K9me3, H4K20me3,
H3K27me3 (ES only)

Paternal:5,10

H3K4me2, H3K4me3, H3ac, H4ac

Gnas Nespas DMR11

Chr2: 174117482-174125568
Overlapping H3K4me3/H3K9me3 peaks in ES cells, H3K4me3

paternal bias (unmethylated ICE)12

Dlk1 IG-DMR13

Chr12: 110765047-110769203
Paternal:5,6

H3K9me, H4K20me3
Maternal:5,6

H3K4me3, H3K4me2, H3ac, H4ac
ac, acetylation; Chr, mouse chromosome; DMR, differentially methylated region; H3, histone 3; H4, histone 4; ICE, imprint control element; K, lysine; me2, dimethylation;
me3, trimethylation; PWS-IC, Prader-Willi imprint control element; UCSC, University of California Santa Cruz genome browser.
References: 1(Wutz et al., 1997), 2(Wutz et al., 2001), 3(Regha et al., 2007), 4(Thorvaldsen et al., 1998), 5(Verona et al., 2008), 6(Delaval et al., 2007), 7(Fitzpatrick et al.,
2002), 8(Umlauf et al., 2004), 9(Bressler et al., 2001), 10(Wu et al., 2006), 11(Williamson et al., 2006), 12(Mikkelsen et al., 2007), 13(Lin et al., 2003).
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Table 2. Non-coding RNAs in imprinted clusters in the mouse genome

Imprinted cluster
(mouse
chromosome)

Macro
ncRNA Published size

Unspliced or
spliced/subcellular

localisation Cis-silencing function Host for small RNAs
Igf2r
(17)

Airn1,* 108 kb2 95% unspliced (N)
5% spliced to ~1 kb

(C)3

Yes4 Au76 siRNA5

Kcnq1
(7)

Kcnq1ot16 ~90 kb7 Unspliced7,8 (N)9,‡ Yes8,10

Spliced11-13 n.d.Snrpnlt†

(Lncat)11
Numerous splice

variants11-13

Genomic size:
1000 kb11

Might contain all ncRNAs listed below

Snurf U
exons11

n.d. n.d. n.d.

Pwcr118 2.2 kb18 Unspliced18 n.d.
Ipw19 0.5-12 kb19

Genomic size:
60 kb

Several splice
variants19

mainly (N)13,§

n.d.

Pws/As
(7)

Ube3a-
ats20

n.d. Spliced/unspliced
n.d.

mainly (N)13,§

n.d.

Snord64 MBII-1314,15

Snord115 MBII-5214,15

Snord116 MBII-8516,17

Nespas21 Unspliced at least
3.35 kb22

Spliced 1.4-15.8
kb22,23

Genomic size: at
least 30 kb23

Several spliced
and unspliced

versions22-24

n.d. mmu-mir-29625

mmu-mir-29825
Gnas
(2)

Exon1A26 Unspliced >1.1
kb23

Spliced >1.4 kb26

Genomic size:
19 kb

Spliced and
unspliced23,26

n.d.

H1927 2.2 kb28

Genomic size:
2.5 kb

Spliced28 (C)29 no30 mmu-mir-67531Igf2
(7)

Igf2as32 4.8 kb32

Genomic size:
10.7 kb

Alternative
promoters, spliced32

n.d.

Mico133 2 kb33 Unspliced33 n.d. In silico predicted precursor
miRNA33

Mico1os33 2 kb33 Unspliced33 n.d. In silico predicted precursor
miRNA33

Gtl2lt† Genomic size:
208 kb

Hypothetical transcript; might contain all
ncRNAs listed below34-36

Gtl243 1.9-7 kb43-45

Genomic size:
30.7 kb

Several splice
variants43

mainly (N)43,§

n.d.

Rtl1as40 n.d. Processed40 miRNAs involved
in trans silencing

of Rtl146

Rian47 5.4 kb47

Genomic size:
6.1 kb

Spliced47

mainly (N)47,‡
n.d.

Dlk1
(12)

Mirg40 1.3 kb40

Genomic size:
14.5 kb

Spliced40 n.d.

mmu-mir:
770/673/493/337/540/665/431/433/1
27/434/136/341/1188/370/882/379/4
11/299/380/1197/323/758/329/494/6
79/1193/543/495/667/376c/654/376b
/376a/300/381/487b/539/544/352/13
4/668/485/435/154/496/377/541/409/

412/369/4134,37-40

MBII-48(5), MBII-49(4), ImsnoRNA1,
MBII-426(1), ImsnoRNA2, MBII-
343(1), ImsnoRNA3, MBII-78(1),

MBII-19(3)15,41,42

The six well-studied imprinted clusters and their associated ncRNAs are listed with the macro ncRNA name, sizes of unspliced and spliced variants, genomic size if
different from the longest unspliced version, and cellular localisation [note that nuclear localisation was sometimes inferred from RNA FISH (see Glossary, Box 1) data that
did not exclude export to the cytoplasm]. Silencing function and hosted small ncRNAs are indicated. References: 1(Wutz et al., 1997), 2(Lyle et al., 2000), 3(Seidl et al.,
2006), 4(Sleutels et al., 2002), 5(Watanabe et al., 2008), 6(Smilinich et al., 1999), 7(Pandey et al., 2008), 8(Mancini-Dinardo et al., 2006), 9(Terranova et al., 2008), 10(Shin et
al., 2008), 11(Landers et al., 2004), 12(Gerard et al., 1999), 13(Le Meur et al., 2005), 14(Cavaille et al., 2000), 15(Huttenhofer et al., 2001), 16(Skryabin et al., 2007), 17(Ding et
al., 2005), 18(de los Santos et al., 2000), 19(Wevrick and Francke, 1997), 20(Chamberlain and Brannan, 2001), 21(Wroe et al., 2000), 22(Williamson et al., 2002), 23(Holmes et
al., 2003), 24(Li et al., 2000), 25(Royo et al., 2006), 26(Liu et al., 2000), 27(Pachnis et al., 1984), 28(Pachnis et al., 1988), 29(Brannan et al., 1990), 30(Schmidt et al., 1999),
31(Cai and Cullen, 2007), 32(Moore et al., 1997), 33(Labialle et al., 2008), 34(Seitz et al., 2004), 35(da Rocha et al., 2008), 36(Tierling et al., 2006), 37(Lagos-Quintana et al.,
2002), 38(Houbaviy et al., 2003), 39(Kim et al., 2004), 40(Seitz et al., 2003), 41(Cavaille et al., 2002), 42(Xiao et al., 2006), 43(Schuster-Gossler et al., 1998), 44(Schmidt et al.,
2000), 45(Miyoshi et al., 2000), 46(Davis et al., 2005), 47(Hatada et al., 2001).
C, cytoplasmic; ImsnoRNA, snoRNAs at the Irm locus; MBII, mouse brain 2; mmu-mir, Mus musculus microRNA; N, nuclear; n.d., not determined.
*Renamed from Air by HUGO nomenclature committee.
†Provisional name.
‡By RNA FISH.
§By whole-mount in situ hybridisation. D
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same elements, there are two possible explanations for this
phenomenon: either the ICE or the ncRNA acts differently in
these two tissues to repress genes; or the placenta allows
spreading of the basic mechanism that operates in embryonic
tissue. The mouse placenta is a highly invasive organ, and a
complete separation of embryonic and maternal tissue is not
possible (Fig. 2A). This maternal contamination means that the
placenta might not be a reliable tissue for analysing imprinted
expression and epigenetic modifications. The placenta is an extra-
embryonic tissue, which means that it is an embryonic tissue that
does not contribute to the embryo itself. If ‘placental-specific’
imprinted expression were a general feature of extra-embryonic
tissues, it might be more easily analysed in the extra-embryonic
membranes (amnion, parietal and visceral yolk sac), which can be
isolated without the presence of contaminating maternal tissue
(Fig. 2A). The imprinted expression of some genes in the Igf2 and
Kcnq1 imprinted clusters has been demonstrated in the visceral
yolk sac (Davis et al., 1998; Frank et al., 1999); however, as the
lineages of the extra-embryonic membranes and placenta differ,
it remains to be determined whether the ‘placental-specific’
imprinted expression pattern is conserved in all extra-embryonic
tissues.

DNA methylation represses a cis-acting repressor
As described above, deletion experiments show that only the
unmethylated ICE is active in inducing the silencing of flanking
protein-coding genes, either by activating a ncRNA promoter or
by forming an insulator (see also Fig. 1). Thus, the ICE can be
viewed as a cis-acting repressor and DNA methylation as a
modification to repress this repressor. The analysis of ICE

methylation can therefore offer insights into how this epigenetic
modification is attracted to specific sequences and how it is used
to inhibit ncRNA transcription and insulator function. In the
maternal germline, the DNA methyltransferase-like protein
DNMT3L, in concert with the DNA methyltransferase DNMT3A,
are crucial players in the establishment of ICE germline DNA
methylation (Bourc’his and Proudhon, 2008). The subsequent
maintenance of ICE methylation requires the DNMT1 family of
DNA methyltransferases (Hirasawa et al., 2008). Additional
proteins, such as the Krüppel-associated box zinc-finger protein
ZFP57, are also required for acquiring ICE methylation in the
Pws/As cluster and for maintaining ICE methylation in Dlk1 (as
well as in three other imprinted clusters not shown in Fig. 1), but
play no role in the Igf2 and Igf2r clusters (Li et al., 2008).
Although the exact mechanism by which ZFP57 acts is unknown,
this finding raises the possibility that each ICE requires different
additional factors for the acquisition and maintenance of germline
DNA methylation. Exactly how de novo DNA methylation
enzymes recognise ICE sequences is unclear. Many ICEs contain
a run of tandem direct repeats that have been suggested to form a
secondary structure that induces DNA methylation (Neumann and
Barlow, 1996). Tandem direct repeat sequences from the Igf2r and
Kcnq1 cluster ICEs are able to induce maternal germline
methylation in a transgenic model (Reinhart et al., 2006). The role
of these repeats in the endogenous Igf2r ICE is not yet known;
however, the in vivo deletion of a subset of tandem repeats from
the Kcnq1ot1 ICE or of direct repeats that flank the Igf2 ICE did
not change ICE DNA methylation (Lewis et al., 2004; Mancini-
Dinardo et al., 2006). By contrast, a mouse strain-specific loss of
methylation was observed following the deletion of a repeat

Fig. 2. Embryonic and extra-
embryonic tissues in vivo and in
vitro. (A) Lineage relationships during
embryonic development. (a) A
blastocyst at 3.5 days post-coitum
(dpc). The trophectoderm (blue)
contributes to the parietal yolk sac
(PYS) and the placenta of the 12.5 dpc
embryo as depicted in b. The inner cell
mass (ICM, green) gives rise to the
embryo proper and contributes to the
visceral yolk sac (VYS) and amnion
extra-embryonic membranes. The
primitive endoderm (red) differentiates
into the endoderm layer of the PYS
and VYS. (b) A 12.5 dpc embryo and
its extra-embryonic tissues. The embryo
(green) is surrounded by the amnion,
which consists of ICM-derived
ectoderm and mesoderm. The middle
extra-embryonic membrane is the VYS,
which consists of ICM-derived
mesoderm (green) and endoderm (red).
The outer membrane, the PYS, is lost
after 13.5 dpc and consists of ICM-
derived parietal endoderm (red) and trophoblast giant cells (blue), which are not ICM derived. The placenta consists of distinct layers: the inner
labyrinth (green), the spongiotrophoblast (blue) and giant cells (blue). The outermost part of the placenta, the deciduas basalis (pink), is derived
from maternal tissue. The intermingling of maternal blood vessels with the placenta is indicated. (B) In vitro model systems to study genomic
imprinting. Undifferentiated embryonic stem (ES) cells are considered to mimic the blastocyst ICM, whereas undifferentiated trophoblast stem (TS)
and extra-embryonic endoderm (XEN) cells mimic the blastocyst trophectoderm and primitive endoderm, respectively (Rossant, 2007). The
differentiated derivatives of ES, TS and XEN cells might provide models for studying imprinting in post-implantation embryonic and extra-embryonic
tissues, but care should be taken to ensure that the in vitro situations recapitulate what is observed in vivo.
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region in the paternally imprinted Rasgrf1 cluster located on
mouse chromosome 9 (not shown in Fig. 1) (Yoon et al., 2002).
Thus, further work is needed to determine exactly how the
methylation machinery in oocytes targets ICE sequences.
Although the analysis of imprinted genes highlights one of the
few reported cases of a functional role for DNA methylation in
gene silencing, it should be noted that its silencing effect is
directed towards the ncRNA. As shown in Fig. 1, imprinted
protein-coding genes are expressed from the parental

chromosome that carries the methylated ICE. Thus, in imprinted
clusters, DNA methylation acts by repressing a repressor of
imprinted protein-coding genes.

Histone modifications associated with imprinted
gene clusters
The previous section described how DNA methylation directly
regulates ICE activity, but does not directly silence imprinted
protein-coding genes. Here, we discuss current progress in
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Fig. 3. Allele-specific histone
modifications at the Igf2r and
Kcnq1 clusters. Active and repressive
histone modifications on the maternal
or paternal allele are shown for the (A)
Igf2r and (B) Kcnq1 clusters for embryo
and placenta. For simplicity, histone
modifications are combined into three
groups: repressive constitutive
heterochromatin (H3K9me2/3,
H4K20me3), repressive facultative
heterochromatin (H3K27me3) and
active euchromatin (H3K9ac,
H3K4me2/3). In both clusters, only the
indicated positions were assayed in the
placenta, with the exception of one
ChIP-chip mapping of H3K27me3
(orange lines). (A) In the Igf2r cluster,
an unbiased continuous genome-wide
location (ChIP-chip) analysis was
performed in the embryo, with the
indicated positions showing
enrichment. (B) In the Kcnq1 cluster, all
positions shown in the placenta were
also assayed in the embryo, and only
the indicated positions show allele-
specific enrichment. Blue shaded
ellipses indicate histone-modifying
enzymes, and the solid blue arrows
extending from the ellipses indicate the
involvement of the respective enzyme
in the setting or maintaining of a
histone mark. Both Airn (A) and
Kcnq1ot1 (B) ncRNAs bind to histone-
modifying enzymes. Dashed arrows (B)
indicate binding of Kcnq1ot1 ncRNA to
chromatin. Gene expression marked by
an asterisk is inferred from the
presence of active histone
modifications (Mikkelsen et al., 2007).
References: Igf2r in the placenta
(Nagano et al., 2008); Igf2r in the
embryo (Regha et al., 2007); Kcnq1 in
the placenta: all histone modifications
without a numbered reference (Umlauf
et al., 2004); others: 1(Green et al.,
2007), 2(Lewis et al., 2004),
3(Mikkelsen et al., 2007), 4(Pandey et
al., 2008), 5(Pannetier et al., 2008),
6(Regha et al., 2007), 7(Umlauf et al.,
2004), 8(Wagschal et al., 2008). ac,
acetylation; H3, histone 3; H4, histone
4; ICE, imprint control element; K,
lysine; me2, dimethylation; me3,
trimethylation.
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understanding the potential roles played by histone modifications in
restricting expression of macro ncRNAs to one parental allele and
imprinted protein-coding genes to the other allele. Recent studies
have shown that the ICE carries histone modifications that are
specific to the DNA-methylated or the DNA-unmethylated allele
(Fig. 3 and Table 1). Genome-wide sequencing and oligonucleotide
tiling-array analyses have been used to show that the DNA-
methylated ICE is marked by focal repressive histone modifications
of the type found in constitutive centromeric and telomeric
heterochromatin (Table 3), such as H3K9me3, H4K20me3 and the
presence of HP1 (Mikkelsen et al., 2007; Regha et al., 2007). The
discovery of focal repressive heterochromatin changed our general
understanding of chromatin, which has traditionally been classified
as either heterochromatin or euchromatin and considered to
represent, respectively, transcriptionally repressed and active regions
(Huisinga et al., 2006). As the ICE is often located within
transcribed genes (Fig. 3), it is now clear that focal heterochromatin
can exist inside actively transcribed regions without blocking RNA
polymerase II (RNAPII) elongation. In the Igf2r and Kcnq1 clusters,
the repressive H3K27me3 mark is present on the methylated ICE
only in undifferentiated ES cells. In the Igf2r cluster, H3K27me3 is
absent from embryonic fibroblasts (Fig. 3A), but in the Kcnq1
cluster it is present in both embryo and placenta (Fig. 3B) (Latos et
al., 2009; Lewis et al., 2006; Lewis et al., 2004; Umlauf et al., 2004).
The unmethylated ICE lacks repressive modifications but carries
active histone modifications, such as H3K4me and H3/H4
acetylation. The presence of active and repressive histone
modifications on the same DNA sequence in diploid cells that
modify different parental chromosomes can be used to identify an
ICE (Fig. 3). The usefulness of this approach was demonstrated in a
genome-wide study of diploid ES cells that identified short regions
that carry both repressive H3K9me3 and active H3K4me3
modifications on the ICE of the six imprinted clusters shown in Fig.
1 (Mikkelsen et al., 2007).

The histone modification profiles established so far show that
repressive marks are associated with the DNA-methylated ICE,
whereas active histone marks are associated with the unmethylated
ICE. Although it has proven to be relatively straightforward to
assign a function to DNA methylation in regulating ICE activity, a

general function for histone modifications has not yet been
identified. Repressive H3K9me3 modifications are regulated by
three known histone methyltransferases, SUV39H1, SUV39H2
(also known as KMT1A and KMT1B) and ESET (KMT1E,
SETDB1), whereas the repressive H4K20me3 modification is
regulated by SUV4-20H1 and SUV4-20H2 (KMT5B and KMT5C)
(Table 3). The repressive H3K9me3 mark is maintained and even
enhanced on the ICE in embryonic fibroblasts that lack SUV39H1
and SUV39H2, whereas the repressive H4K20me3 is reduced in
embryonic cells that lack SUV4-20H1 and SUV4-20H2 without
removing either the repressive H3K9me3 mark or DNA methylation
(Pannetier et al., 2008; Regha et al., 2007). The ESET
methyltransferase was found to bind to the Igf2r ICE; however, its
role could not be tested directly because ESET-deficient cells are not
viable at any developmental stage (Dodge et al., 2004; Regha et al.,
2007). Thus, suitable genetic systems are not yet available to test the
role of the repressive H3K9me3 and H4K20me3 modifications in
regulating ICE activity.

In contrast to the lack of a defined role for histone-modifying
enzymes in regulating ICE activity, several reports describe a role
for these enzymes in regulating placental, but not embryonic,
imprinted expression. The Polycomb group protein EED, which
is required for repressive H3K27me3 modifications, has been
shown to repress the paternal allele of four out of 18 tested
imprinted genes in embryos 7.5 days post-coitus (dpc), which
mainly consist of extra-embryonic tissue at this stage (Mager et
al., 2003). The affected genes were located in three different
imprinted clusters, in which the majority of genes maintained
correct imprinted expression. This indicates that EED does not
play a general role in regulating imprinted expression, but is
attracted to specific genes. The G9A (KMT1C, EHMT2) histone
lysine methyltransferase, which dimerises with G9A-like protein
(GLP; KMT1D, EHMT1) to induce repressive H3K9me2
modifications (Table 3), is necessary for the paternal repression
of some genes in the Kcnq1 and Igf2r clusters in the placenta, but
not in the embryo (Nagano et al., 2008; Wagschal et al., 2008).
As mentioned above, in embryonic tissue, repressive
heterochromatin (H3K9me3, H4K20me3, HP1), but not
repressive H3K27me3, modifies the DNA-methylated ICE in a

Table 3. Epigenetic modifications associated with imprinted genes in the mouse genome

Gene expression Modification Modifying enzyme or complex

De novo DNA methylation,
i.e. CpG to meCpG

DNMT3A, DNMT3B, DNMT3L

DNA methylation of hemi-
methylated DNA

DNMT1, UHRF1

HP1
H3K27me3 PRC2 containing EED, EZH2 and SUZ12
H3K9me2 G9A (KMT1C, EHMT2); functions as a heterodimer with

GLP (KMT1D, EHMT1)
H3K9me3 SUV39H1 (KMT1A), SUV39H2 (KMT1B), ESET (KMT1E,

SETDB1)

H4K20me1 PR-SET7 (KMT5A, SETD8)

Modifications associated with
repressed genes and/or pericentric
and telomeric heterochromatin

H4K20me3 SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C)

H3K4me2 and H3K4me3 Multiple lysine methyltransferases (KMT2A-G)Modifications associated with
expressed genes Acetyl groups at several lysines in

the tail of histone H3 (K9, K14, K18,
K23) and H4 (K5, K8, K16)

Multiple lysine acetyltransferases (KAT1-13)

CpG, CG dinucleotide; DNMT, DNA methyltransferase; EED, embryonic ectoderm development; ESET, ERG-associated protein with a SET domain 7; EZH2, enhancer of
zeste homolog 2; GLP, GATA-like protein 1; H3, histone 3; H4, histone 4; HP1, heterochromatin protein 1; K, lysine; KAT, lysine acetyltransferase; KMT, lysine
methyltransferase; me2, dimethylation; me3, trimethylation; meCpG, methylated CG dinucleotide; PRC2, Polycomb repressor complex 2; PR-SET7, PR/SET domain-
containing protein; SUV, suppressor of variegation; SUZ12, suppressor of zeste 12; UHRF1, ubiquitin-like containing PHD and RING finger domains 1. References: (Allis et
al., 2007a; Allis et al., 2007b; Kouzarides, 2007). D
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focal manner. Not all of these repressive modifications have been
mapped throughout the imprinted clusters in the placenta, but
repressive H3K9me2/3 and H3K27me3 marks were found at the
promoters of silenced mRNA genes in the Igf2r cluster (Nagano
et al., 2008) (Fig. 3A). By contrast, these repressive marks were
found to be more widespread in the placenta on the chromosome
that carries the silenced mRNA genes in the Kcnq1 cluster (Fig.
3B). In one study in the placenta (Nagano et al., 2008), both active
and repressive histone modifications were found on genes that
showed placental-specific imprinted expression. Although this
might indicate the existence of ‘bivalent’ domains (Bernstein et
al., 2006), care should be taken in interpreting these results owing
to the risk of maternal tissue contamination in placental samples
(Fig. 2).

In summary, the analysis of histone modifications shows that the
same active and repressive histone modifications that correlate with
expressed and silent genes also modify imprinted genes in an allele-
specific manner. Further work is needed to determine which
modifications reflect the cause as opposed to the consequence of
imprinted expression. Although there is currently no indication that
histone modifications co-operate with DNA methylation to restrict
macro ncRNA expression to one parental allele, there is emerging
data that, in the placenta, histone modifications might play a role in
repressing imprinted mRNA genes in cis. As discussed in the next
section, there might even be a link between macro ncRNA function
and the establishment of histone modifications.

In the placenta, ncRNAs might target repressive
histone marks
In both placental and embryonic tissue, the repression of multiple
genes in the Igf2r and Kcnq1 clusters on the paternal chromosome
depends on the Airn and Kcnq1ot1 macro ncRNAs (Mancini-
Dinardo et al., 2006; Shin et al., 2008; Sleutels et al., 2002).
However, the mechanism by which these ncRNAs induce repression
is unknown. One significant open question is whether it is the
ncRNA itself, or the act of its transcription, that is required for
silencing (Pauler et al., 2007). Two recent studies indicate that the
Airn and Kcnq1ot1 ncRNAs are themselves directly involved in
silencing genes in the placenta. Kcnq1ot1 was found to localise
physically to several silent genes on the paternal allele that lay
hundreds of kb away from the Kcnq1ot1 promoter (Pandey et al.,
2008). This finding is supported by RNA/DNA FISH, which showed
partial overlap between the Kcnq1ot1 RNA and the flanking
imprinted genes in the Kcnq1 cluster in the trophectoderm cells of
early embryos, which contribute to the placenta (Terranova et al.,
2008). Furthermore, Kcnq1ot1 also directly interacts with Polycomb
group proteins, which are necessary for establishing the repressive
H3K27me3 mark, and with G9A, which is involved in setting the
repressive H3K9me2 mark (Pandey et al., 2008). Together, this
indicates that in the placenta the Kcnq1ot1 ncRNA localises to
chromatin and targets histone methyltransferases to the whole
imprinted cluster. Notably, embryos that are deficient for G9A and
for the Polycomb proteins EZH2 and RNF2 show a loss of paternal
repression for some of the placental-specific imprinted genes in the
Kcnq1 cluster (Terranova et al., 2008; Wagschal et al., 2008).
Similarly, in the placenta, the Airn ncRNA in the Igf2r cluster lies in
close proximity to the silent Slc22a3 promoter and has been shown
to bind G9A. In addition, G9a-null embryos show a loss of placental
imprinted expression for Slc22a3, but maintain Igf2r imprinted
expression (Nagano et al., 2008). An RNA FISH study of the Airn
and Kcnq1ot1 ncRNAs in TS cells and in preimplantation
trophectoderm cells has also shown that both these ncRNAs are

located in nuclear domains that are characterised by a high density
of repressive H3K27me3 and by a lack of active histone
modifications and RNAPII (Terranova et al., 2008). In summary, the
evidence so far indicates that the Airn and Kcnq1ot1 ncRNAs induce
imprinted expression by an RNA-directed targeting mechanism in
the placenta that only affects genes that show placental-specific
imprinted expression (Fig. 1). We present a model (Fig. 4A)
according to which the ncRNA expressed from the unmethylated
ICE is maintained at the site of transcription and associates with
chromatin in cis. The ncRNA could localise throughout the cluster
(Fig. 4A, Kcnq1ot1) or to specific promoters by looping (Fig. 4A,
Airn), and might subsequently attract specific histone modifications
that repress the transcription of multiple genes located at some
distance from the ncRNA gene itself.
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B  Embryo: promoter-specific/regulator transcription interference
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Fig. 4. Models of gene silencing by imprinted macro ncRNAs.
Imprinted macro ncRNAs might use different modes of silencing in
embryonic and placental tissues. Only the paternal chromosome is
shown (blue bar). The positions and names of silent imprinted genes
are indicated in black font and by pale red boxes. Imprinted macro
ncRNAs are indicated in blue font and by blue wavy arrows. (A) In the
placenta, Kcnq1ot1 in the Kcnq1 cluster is transcribed from the
paternal allele and localises to the whole imprinted domain by an
unknown mechanism, inducing the recruitment of repressive histones,
which leads to gene silencing. In the Igf2r cluster, Airn either locates to
the silent Slc22a3 promoter, or the promoter forms a three-dimensional
(3D) loop (indicated by a blue arch) to the Airn gene, similarly recruiting
repressive histone modifications that silence Slc22a3. In both cases, the
ncRNA itself is involved in the silencing process. (B) In embryonic
tissues, only a few genes are silenced by the ncRNA in the Kcnq1 and
Igf2r clusters. No localisation of the ncRNA to chromatin has been
reported in the embryo. It is therefore possible that the transcription of
the ncRNA is sufficient to silence all genes by interfering with the
binding of essential transcription factors (black ellipse), thereby
inducing gene silencing by interrupting enhancer interactions (dashed
arrows). D
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Is ncRNA transcription more important in
embryonic cells?
As described above, recent work suggests that in the placenta it is the
ncRNA transcript itself that mediates gene silencing. However,
imprinted ncRNAs exert different effects in the mouse embryo than
in the placenta, as only a subset of the genes in the imprinted gene
clusters show imprinted expression in embryonic and adult somatic
tissue (Fig. 1, Fig. 4B). In the Igf2r cluster, the Airn ncRNA represses
Igf2r in embryos, but represses Igf2r, Slc22a2 and Slc22a3 in the
placenta. In the Kcnq1 cluster, the Kcnq1ot1 ncRNA silences Kcnq1,
Cdkn1c, Slc22a18 and Phlda2 in the embryo, but an additional six
genes in the placenta. A further indication of the differences between
the embryo and the placenta is that G9A and EED, which are required
for repressive H3K9me2 and H3K27me3 modifications, respectively,
and for the imprinted expression of some placental genes, appear to
play no role in the imprinted expression in the Igf2r and Kcnq1
clusters in embryonic tissues (Mager et al., 2003; Nagano et al., 2008;
Wagschal and Feil, 2006). We have proposed previously that the Airn
ncRNA might silence Igf2r because of transcriptional interference,
and that Airn might act solely by transcription per se (Pauler et al.,
2007). According to this model, ncRNA transcription either interferes
directly with transcriptional initiation or with the activity of essential
cis-regulatory elements (Fig. 4B). Several lines of evidence support a
model in which Airn silences Igf2r by transcriptional interference in
embryonic tissue. First, Airn has a short half-life of ~90 minutes,
which argues against a function for the ncRNA in targeting repressive
chromatin, as this would require it to be stable for at least one cell
cycle (Seidl et al., 2006). Second, Airn does not induce widespread
repressive chromatin in embryos (Regha et al., 2007). Third, the
ability of Airn to silence Igf2r is dependent on promoter strength, a
feature associated with transcriptional interference (Shearwin et al.,
2005; Stricker et al., 2008). The Igf2r and Kcnq1 clusters differ in that
the Kcnq1ot1 ncRNA represses multiple genes in the embryo, and as
it is contained entirely within Kcnq1 (Pandey et al., 2008), it does not
overlap with a promoter (Fig. 4B). However, it is possible to propose
a transcriptional interference mode of silencing for this ncRNA by
postulating the existence of crucial cis-regulatory elements that are
overlapped by Kcnq1ot1. Although there is less evidence to support a
transcriptional interference model for Kcnq1ot1, the lack of
widespread repressive chromatin marks on genes in this cluster that
show imprinted expression in the embryo (Pandey et al., 2008;
Umlauf et al., 2004), as well as the absence of a role for G9A and EED
(Mager et al., 2003; Wagschal et al., 2008), indicate that RNA-
mediated targeting does not operate in embryonic tissues.

Conclusions
Mammalian macro ncRNAs, which comprise the majority of the
transcriptome, have been suggested to play a role in the epigenetic
regulation of gene expression, mainly on the basis of their
expression patterns. In contrast to the uncertainty surrounding the
function of most mammalian macro ncRNAs, imprinted macro
ncRNAs have clearly been shown to regulate flanking genes
epigenetically. Thus, imprinted genes offer a valuable in vivo and
in vitro model not only to decipher the transcriptional biology of
macro ncRNAs themselves and their regulation by DNA
methylation, but also to shed light on the epigenetic mechanisms
that underlie the macro ncRNA-mediated repression of flanking
genes.
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