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Notch signaling augments the canonical Wnt pathway to
specify the size of the otic placode

Chathurani S. Jayasena'*, Takahiro Ohyama’, Neil Segil?> and Andrew K. Groves®*

The inner ear derives from a patch of ectoderm defined by expression of the transcription factor Pax2. We recently showed that this
Pax2* ectoderm gives rise not only to the otic placode but also to the surrounding cranial epidermis, and that Wnt signaling
mediates this placode-epidermis fate decision. We now present evidence for reciprocal interactions between the Wnt and Notch
signaling pathways during inner ear induction. Activation of Notch1 in Pax2* ectoderm expands the placodal epithelium at the
expense of cranial epidermis, whereas loss of Notch1 leads to a reduction in the size of the otic placode. We show that Wnt
signaling positively regulates Notch pathway genes such as Jag7, Notch1 and Hes1, and we have used transgenic Wnt reporter mice
to show that Notch signaling can modulate the canonical Wnt pathway. Gain- and loss-of-function mutations in the Notch and Wnt
pathways reveal that some aspects of otic placode development — such as Pax8 expression and the morphological thickening of the
placode — can be regulated independently by either Notch or Wnt signals. Our results suggest that Wnt signaling specifies the size

of the otic placode in two ways, by directly upregulating a subset of otic genes, and by positively regulating components of the
Notch signaling pathway, which then act to augment Wnt signaling.
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INTRODUCTION

Inner ear development is an excellent example of how a Darwinian
‘organ of extreme perfection and complication’ can arise from simple
origins. The inner ear derives from a patch of thickened ectoderm,
the otic placode, lying next to the posterior hindbrain. Signals that
induce the otic placode are present in the hindbrain and cranial
paraxial mesoderm, although the relative contribution of these tissues
to the induction process varies between species (Barald and Kelley,
2004; Groves, 2005; Riley and Phillips, 2003; Torres and Giraldez,
1998). Members of the fibroblast growth factor (FGF) family play a
crucial role in inducing the otic placode in all vertebrates examined
(Friesel and Brown, 1992; Ladher et al., 2005; Leger and Brand,
2002; Mackereth et al., 2005; Maroon et al., 2002; Phillips et al.,
2001; Vendrell et al., 2000; Wright et al., 2004; Wright and Mansour,
2003). FGF signaling induces the expression of genes, such as Pax2
and Pax8, in a broad region of cranial ectoderm stretching from
rhombomeres 3 to 6 (Maroon et al., 2002; Martin and Groves, 2006;
Wright and Mansour, 2003). Evidence from lineage tracing in chick
(Streit, 2002) and mouse (Ohyama and Groves, 2004b; Ohyama et
al., 2006) suggest that this broad Pax2" domain, which we have
referred to as the ‘pre-otic field’, contains cells fated to become otic
and epibranchial placodes, as well as cranial epidermis.

We recently showed that Wnt signaling plays an important role in
defining the size of the otic placode within this Pax2* pre-otic field.
Whnt signaling is activated in a medial subset of the Pax2* domain
closest to the hindbrain (Ohyama et al., 2006). Inactivation of Wnt
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signaling in Pax2" cells by conditional deletion of the B-catenin
gene (Ctnnb1; also known as Catnb) leads to a large reduction in the
size of the otic placode and a corresponding expansion of cranial
epidermis. Conversely, activation of Ctnnb1 in Pax2" cells expands
the otic placode at the expense of cranial epidermis (Ohyama et al.,
2006). To date, however, it is not clear how Wnt signals direct
cranial ectoderm towards an otic fate. It is possible that Lef/Tcf/B-
catenin transcriptional complexes activated by Wnt signaling
directly regulate otic genes. Alternatively, Wnt signals might act
indirectly by upregulating short-range signals that partition cranial
ectoderm into otic placode and epidermis.

There is growing evidence that Wnt and Notch signaling pathways
co-operate during cell fate determination in many tissues (Crosnier
et al., 2006; Estrach et al., 2006; Fre et al., 2005). Notch signaling
plays various roles in patterning the inner ear, ranging from
specification of neurons and prosensory patches to the generation of
the stereotypical pattern of mechanosensory hair cells and supporting
cells (Adam et al., 1998; Brooker et al., 2006; Daudet et al., 2007;
Daudet and Lewis, 2005; Haddon et al., 1998; Kiernan et al., 2005;
Lanford et al., 1999; Shi et al., 2005). Both the Notch 1 receptor and
several of its ligands, such as jagged 1 (Jag/) and delta-like 1 (DIl1),
are expressed in the otic placode from very early stages (Abello et al.,
2007; Adam et al., 1998; Daudet et al., 2007; Groves and Bronner-
Fraser, 2000; Haddon et al., 1998). Notch signaling might therefore
also have an early function during otic placode development. We now
provide evidence that elements of the Notch pathway are positively
regulated by Wnt signaling, and that Notch1 signaling can in turn
modulate the canonical Wnt signaling pathway. We also show that
while some aspects of otic placode identity are regulated only by Wnt
signals, other features of placodal differentiation can be regulated
independently by Wnt or Notch pathways.

MATERIALS AND METHODS

Genetically modified mice

The following lines of mice were used in this study: Pax2-Cre (Ohyama and
Groves, 2004b) (available from the Mutant Mouse Regional Resource
Center; www.mmrrc.org/strains/10569/010569.html);  conditionally



2252 RESEARCH ARTICLE

Development 135 (13)

activated Notchl intracellular domain [¢N1ICD (Murtaugh et al., 2003)];
Notchi-null mutants (Conlon et al., 1995); conditionally activated -catenin
Catnb'*®3 [cAct (Harada et al., 1999)]; conditional B-catenin™**? mutants
[B-cat-CKO (Brault et al., 2001)]; Tcf/Lef Wnt reporter (Mohamed et al.,
2004); conditional Rbpj/Rbsuh mutants (Tanigaki et al., 2002); and a GFP-
expressing Cre reporter [Z/EG (Novak et al., 2000)]. To generate cN1ICD
animals, NIICD"**¢ homozygotes were crossed with Pax2-Cre animals.
Age-matched heterozygotes and wild types were used as controls for Notch 1
mutant embryos. Detailed mating strategies for cAct and B-cat-CKO mice
have been described previously (Ohyama et al., 2006). To generate Notchl;
cAct mutants, a line that was heterozygous for Notchl,; Pax2-Cre was
crossed to animals that were heterozygous for Notchl; cAct. To generate
¢NI1ICD; B-cat-CKO mutants, a line that was heterozygous for -cat-null;
Pax2-Cre was crossed to animals that were heterozygous for N//CD and
homozygous for a floxed allele of B-catenin. For each mutant genotype, at
least three embryos were analyzed, except for Notchl,; cAct mutants (n=2).
All animal experiments were done in accordance with the guidelines of the
institution’s Animal Care and Use Committee.

Whole-mount in situ hybridization, immunostaining and
detection of -galactosidase

Whole-mount in situ hybridization was performed as previously described
(Ohyama et al., 2006). The following probes were used: Notchl (Jeftrey
Nye), DIll (Achim Gossler), Jagl (Tim Mitsiadu), Hes! and Hes5
(Ryoichiro Kageyama), lunatic fringe (Lfing; Thomas Vogt) and Wnt6
(Andrew McMahon). Probes for Pax2, Pax8, Foxi2, Dix5, Krox20, Hoxb1,
Fgf3, and Epha4 have been previously described (Ohyama et al., 2006).
Embryos were embedded in 15% sucrose and 7% gelatin in phosphate-
buffered saline (PBS), as previously described (Groves and Bronner-Fraser,
2000), and 15- to 30-um thick sections cut using a Leica CM 1850 cryostat.
Immunostaining and detection of 3-galactosidase on cryostat sections and
embryos was performed as previously described (Ohyama et al., 2006). The
following primary antibodies were used: B-catenin (Zymed) at 1:200;
activated Caspase-3 (R&D Systems) at 1:1000; green fluorescent protein
(GFP) conjugated to fluorescein (Abcam) at 1:250 to 1:500; B-galactosidase
(ICN/MP Biochemicals) at 1:100; jagged 1 (Jagl; Santa Cruz) at 1:50 to
1:100; Pax2 (Zymed) at 1:500; and phospho-histone-H3 (PH3;
Upstate/Millipore) at 1:1000. Secondary goat anti-rabbit antibody
conjugated to Alexa 594 (Molecular Probes) was used at 1:200. Sections
were counterstained with the nuclear marker DAPI (Molecular Probes). All
images were captured using a Zeiss Axiocam digital camera and Axiophot2
or M? Bio microscopes, and were processed using Adobe Photoshop CS
software.

Quantification of thickened placode and average placode cell
density in Notch1 mutants

The thickened otic placode was defined as the two- to three-cell layer
of ectoderm located adjacent to rhombomere 5/6 (as identified
morphologically with DAPI staining and/or by lack of for Foxi2
expression). Quantifications of placode size were made from 15-pum serial
sections from Notchl mutants and age-matched control embryos. Length
measurements were made using Image J software. To allow for direct
comparisons along the anteroposterior (AP) axis of control and mutant
mice, measurements were binned into five categories: 0-20% (being the
most anterior sections), 21-40%, 41-60%, 61-80% and 81-100% (being the
most posterior sections). For a given genotype, each bin consisted of
multiple sections from several embryos. The mean and standard error of the
mean (s.e.m.) were calculated for each bin. Non-parametric Mann-Whitney
U-tests were performed to test for significance between genotypes. The
cranial region of Notchl mutants was comparable in size to controls. To
confirm this, we measured the dorsoventral (DV) length of the neural tube
adjacent to the otic placode. The measurements were processed as
described for the otic placode. We found no differences in neural tube
length between Notch mutants and controls (data not shown). For average
density measurements, serial 15-um thick sections stained with DAPI
and/or hybridized with DIx5 or Foxi2 probes were used. The cell density
for each section was calculated as follows: number of cells/um?X 500 and
was pooled for each genotype.

Quantification of cell proliferation, otic cup length and Wnt
reporter domain length in cN7/CD mutants

Cell proliferation counts were performed as described previously (Ohyama
et al., 2006). To account for variations in the staging of embryos, the
mediolateral length of the otic cup or Wnt domain was standardized against
the DV neural tube length adjacent to the otic cup and expressed as a
percentage. Only mid-sections from otic cups were used for quantification
and Student’s t-tests were performed to test for significance between
genotypes.

RESULTS

Notch pathway genes are expressed during early
otic placode development

The pre-otic field destined to give rise to the otic placode and
surrounding epidermis is marked by Pax2 expression from the 0
somite stage [Oss; E8 in the mouse (Ohyama and Groves, 2004b;
Ohyama et al., 2006)]. Pax2 expression later becomes restricted to
the otic placode, which is morphologically visible as a thickening
patch of ectoderm next to rhombomeres 5 and 6 from the 8ss (ES8.5)
onwards (Ohyama and Groves, 2004b). To see whether elements of
the Notch pathway were expressed at an appropriate place and time
to participate in otic placode induction, we compared the expression
patterns of Notchl, Jagl, DIl1, Hesl, Lfng and Hes5 to Pax2 (Fig.
1). At 0-1ss, no Notch pathway transcripts were detected in the pre-
otic field (Fig. 1B,C). Onset of Notchl expression was observed as
early as the 4ss, becoming stronger by 5-7ss (Fig. 1C). Scattered
cells in the anterior Pax2 domain adjacent to the neural tube
expressed the Notch ligand Jag! from around Sss, although posterior
cells did not express Jag! until 8-9ss (arrowhead, Fig. 1C,D). DIl]
was also expressed adjacent to the neural tube at 4-5ss (Fig. 1B,C),
and was restricted to the otic placode from 9ss (Fig. 1C). Between
12 and 14ss, DIll expression was gradually restricted to
differentiating neuroblasts in the anteroventral placode (data not
shown) (Adam et al., 1998). We were unable to detect Lfng at the
pre-otic field and placode stages in whole mounts (data not shown),
although, at later otic vesicle stages, Lfing is expressed in the
anteroventral portion of the otic cup destined to produce the
vestibuloacoustic ganglion and the utricular and saccular maculae
(Morsli et al., 1998; Raft et al., 2004).

Hes1 and Hes5 are effectors of the Notch pathway that function
in many processes, including in the regulation of cell fate decisions
(Bray, 1998; Kageyama et al., 2007; Lai, 2004). Hes1 expression
was scattered throughout the pre-otic field and by 10-11ss was
restricted to the otic placode (Fig. 1C). We found no evidence for
Hes5 expression in the pre-otic field (data not shown). These data
suggest that at least some transcriptional targets of the Notch
pathway are expressed during early phases of otic placode
development.

We previously used a transgenic Wnt reporter mouse line
(Mohamed et al., 2004) to show that the canonical Wnt signaling
pathway is activated in the pre-otic field between 3 and 5ss (Ohyama
et al., 2006). Several Wnt family members are expressed in an
appropriate location to trigger the observed Wnt reporter activity —
for example, WntS8 is expressed in thombomere 4 (Ohyama et al.,
2006). We also observed Wnt6 expression in the Pax2" pre-otic field
at 0ss. It continues to be expressed in the neural folds at 5-7ss and in
the dorsal-most region of the otic placode at 11ss (Fig. 1C) (Lillevali
etal.,2006). As the onset of Notch pathway gene expression closely
corresponded to Wnt reporter activity in the pre-otic field (Fig.
1B,C), we hypothesized that the Notch1 pathway might interact with
the canonical Wnt signaling pathway in mediating the fate decision
between otic placode and epidermis.
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Notch pathway components are positively
regulated by canonical Wnt signaling in the
developing otic placode

Previous studies suggest that Notch pathway components can be
regulated by B-catenin (e.g. Estrach et al., 2006; Katoh and Katoh,
2006). We therefore examined expression of Notch pathway genes
in embryos carrying gain- or loss-of-function mutations of the
canonical Wnt pathway in the Pax2" pre-otic field. We crossed
Pax2-Cre transgenic mice (Ohyama and Groves, 2004b) with mice
in which B-catenin is constitutively activated in Cre-expressing cells
[cAct (Harada et al., 1999)], and examined expression of Jagl,
Notchl and Hesl. In cAct mutants, Jagl expression was expanded
ventrally to the level of the pharynx at the 9-10ss (bracket, Fig. 2A)
and this ectopic expression continued until at least E9.0. Jag! is
thought to be a direct target of B-catenin, as its promoter region
contains five, three and six consensus Tcf/Lef-binding sites in
mouse, human and rat, respectively (Estrach et al., 2006; Katoh and
Katoh, 2006). The domain of Notchl and Hes1 expression was also
expanded, although only after a delay (from the 14-15ss; Fig. 2A,
brackets). Such a delayed induction of Notchl and Hes! relative to
Jagl has also been observed in epidermis in which B-catenin is
activated (Ambler and Watt, 2007). Other Notch pathway genes,
such as DIl1, Hes5 and Lfng, were not expressed in cAct mutants
(data not shown).

Jag1, DIIT and Hes1 with respect to
Pax2 (red) and the Wnt reporter
(blue). Arrowheads mark the pre-otic
field. Brackets mark the extent of the
otic placode. (D) Top row, Jag1
expression in the anterior and
posterior pre-otic field; bottom row,
consecutive serial sections through
the pre-otic field immunostained
with anti-Pax2 and anti-Jag1
antibodies, respectively. Scale bars:
50 um.

To determine whether Wnt signaling is necessary for the
expression of Notch pathway components, we analyzed the
expression of Jagl, Notchl and Hes! in the Pax2" pre-otic field of
mice lacking B-catenin [3-cat-CKO (Brault et al., 2001)]. The Jag!
domain was significantly reduced at 10-11ss, as we have previously
reported for Pax2 and Pax8 (Ohyama et al., 2006). Many cells
within the vestigial S-cat-CKO otic vesicle were B-catenin—;Jagl™,
suggesting that Wnt signaling is directly responsible for Jag/
induction in the placode (bracket, Fig. 2B). Close examination of the
vestigial mutant vesicles at E9-E9.5 revealed that cells expressing
Jagl were B-catenin’ and had therefore failed to undergo Cre
recombination (Fig. 2B). The domains of Notchl and Hesl were
also significantly reduced, although the resolution of the whole-
mount in situ technique made it difficult to determine whether all
Notchl- and Hes I-expressing cells also expressed B-catenin protein
(Fig. 2B).

Wnt and Notch signaling pathways differentially
regulate expression of otic markers

The expression of Notch pathway genes in the pre-otic field and
otic placode, together with the regulation of these genes by Wnt
signaling suggested that Notch signaling might participate in the
fate decision between otic placode and epidermis. To test this, we
conditionally activated Notch1 in the pre-otic field using mice in
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Fig. 2. The canonical Wnt pathway positively regulates
components of the Notch pathway in the otic placode. (A) Jag7,
Notch1, and HesT domains are ectopically expanded in cAct embryos
(bracket). Insets show corresponding whole mounts. Arrowheads
indicate normal (top row) or ectopic (bottom row) expression; dotted
outline demarcates the otic area. (B) Jag?, Notch1 and Hes1 domains
are reduced in B-cat-CKO embryos. (Top panels) Anti-Jag1 (red) and B-
catenin (B-cat, green) co-immunostaining. Bracket indicates B-catenin;
Jag1~ cells. Inset shows Jag7 expression at E9.5 in whole mount. (Lower
panels) Sections of Notch1- and Hes1-hybridized embryos. Scale bar:
50 um.

which the active, intracellular domain of Notchl receptor
(N1ICD) was knocked into the ROSA26 locus with a
transcriptional STOP cassette flanked by LoxP sites (Murtaugh et
al., 2003). We drove expression of NIICD in the Pax2" pre-otic
field using Pax2-Cre mice (Ohyama and Groves, 2004b). The
Pax2-Cre mouse line expresses Cre recombinase in the midbrain
and rhombomere 1 (R1) of the hindbrain (Ohyama and Groves,
2004b). Conditionally activated NIICD (cN1ICD) mutants
displayed an open neural tube phenotype at the level of the

midbrain-R1 region, which is likely to result from
overproliferation of precursor cells induced by Notch activation.
However, the patterning of the posterior hindbrain next to the ear
was normal at E8.5-E9.5, based on the expression of Hoxbl
(rthombomere 4), Fgf3 (thombomeres 5 and 6), Epha4 and Krox20
(thombomeres 3 and 5; see Fig. SIB in the supplementary
material), suggesting that any otic placode phenotype in cN/ICD
mutants is not due to changes in the adjacent hindbrain.

We examined embryos inheriting both the Cre-inducible
NI1ICD and Pax2-Cre transgenes for otic placode and epidermal
markers. The NIICD transgene also harbors an IRES-nGFP
sequence, allowing the visualization of N//CD-expressing cells
by GFP fluorescence. GFP-expressing cells were observed
throughout the pre-otic field from 5-6ss (data not shown). E9.5
¢NI1ICD mutant embryos displayed GFP expression throughout a
thickened placode-like structure that expanded to the level of the
ventral pharynx (see Fig. S1A in the supplementary material). The
analysis of ¢cN1ICD embryos at 10-11ss revealed that the Pax8
domain was expanded ventrally (arrowheads and brackets, Fig.
3A,A"). We previously showed that Foxi2 is an epidermal marker
expressed in a complementary manner to Pax2 and Pax8 during
otic placode development (Ohyama and Groves, 2004a). By
E8.75-E9, Foxi2 expression was reduced dramatically in cN1/CD
mutants when compared with controls (dotted outline and
brackets, Fig. 3C,C"), complementing the expansion of the
thickened epidermis. To determine whether cell proliferation was
responsible for the expanded placode, we examined expression of
the M-phase marker phosphohistone-3 (PH3) in ¢N/ICD embryos
(n=10 placodes) and control embryos (n=8 placodes) produced by
crossing the Pax2-Cre line with the Cre-inducible Z/EG GFP-
expressing line (Novak et al., 2000). We saw no significant
differences in total PH3* or PH3";GFP" cell counts per section
(see Fig. S1D in the supplementary material).

The expansion of Pax§ at the expense of Foxi2 in ¢cNI1ICD
embryos is strikingly similar to that seen in embryos in which the
canonical Wnt pathway is activated [cAct embryos (Ohyama et al.,
2006)]. However, in contrast to cAct embryos, we saw only a modest
expansion of the Pax2 domain (bracket and arrowhead, Fig. 3B,B’;
see also Fig. S1C in the supplementary material), and no expansion
of the otic markers Gbx2 or Sox9 (Fig. 3D). Finally, a marker of the
dorsolateral otocyst, Hmx3, which does not require either Wnt or
Hedgehog signaling for its expression (Ohyama et al., 2006;
Riccomagno et al., 2002) was also not expanded in ¢cN7/I/CD mutants
(Fig. 3D).

These results suggest that different aspects of otic placode
development are differentially regulated by Wnt and Notch
signaling. Placode markers such as Pax2, Gbx2 and Sox9 appear to
be regulated by Wnt signaling (Ohayama et al., 2006; Saint-Germain
et al., 2004), but not Notch signaling, whereas markers such as Pax$,
the morphological thickening of epithelium and the repression of the
epidermal marker Foxi2 can be regulated by both Notch and Wnt
signals. To determine whether Notch signaling can regulate these
markers independently of Wnt signaling, we analyzed B-cat-
CKO;cNI1ICD mutant embryos in which B-catenin was inactivated
and Notch1ICD was activated throughout the pre-otic field. Mutant
embryos displayed greatly expanded regions of thickened placode-
like epithelium that expressed both Pax8 and Jag! (Fig. 3E). This
expanded region of thickened epithelium was largely devoid of
Foxi2 expression (Fig. 3E), although occasional Foxi2" patches of
cells could sometimes be detected. These results show that Notch
and Wnt signals can independently regulate some aspects of otic
placode development.
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Fig. 3. Some, but not all otic markers are
expanded at the expense of epidermis in
conditionally activated Notch1 (cN7/CD) embryos.
(A-C') Expanded otic placode in cN7/CD embryos
hybridized with probes for Pax8 (A,A’), Pax2 (B,B’) and
the epidermal marker Foxi2 (C,C’). Arrowheads
indicate ectopic expression. Dotted outline in C
indicates the invaginating otic cup (controls) or
expanded otic region (cN1ICD mutants).

(A'-C’") Corresponding transverse sections. Brackets
indicate the lateral ectopic placode region. Scale bars:
100 um. (D) Hmx3, Sox9 and Gbx2 otic markers are

D ) not expanded in cN7/CD mutants. (E) In B-cat-CKO;
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Inactivation of Notch1 reduces the size of the otic
placode

Our results show that Notch1 activation throughout the Pax2" pre-
otic field expands some otic placode markers at the expense of
epidermis. In complementary experiments, we examined Notchl
mutants, in which a substantial portion of the Notchl gene is deleted
[amino acids 1056-2049 (Conlon et al., 1995)]. This deletion
encompasses RAM and Ankyrin repeats required for RBPJx
signaling (Conlon et al., 1995; Fortini and Artavanis-Tsakonas,
1994; Kurooka et al., 1998a; Kurooka et al., 1998b; Lamar et al.,
2001; Nam et al., 2003; Tani et al., 2001). We confirmed that
posterior hindbrain patterning was normal in Notchl mutants by
assaying for Hoxb1, Fgf3 and Krox20 expression (see Fig. S2A in
the supplementary material). All three genes were expressed

normally, suggesting that any defects observed in otic placode
development are due to deficiency in Notchl signaling in the
placode, rather than in the hindbrain.

To determine whether Notch signaling was necessary for the
expression of otic markers, we examined Pax2 and Pax§ expression
in Notchl mutants. By 9-11ss there was a dramatic downregulation
of Pax2 expression in mutants in both the otic region and the
epibranchial placodes (Fig. 4A). Although the anteroposterior limits
of Pax8 expression in the otic region was reduced, expression in the
hyoid arch was relatively unchanged (Fig. 4B). In Notchl mutant
whole mounts, the limits of the Pax2 and Pax8 domains in the
anteroposterior axis were reduced (brackets, Fig. 4). Sections
through Notchl mutants also revealed a reduction in the
mediolateral extent of Pax2 and Pax8 expression (brackets, Fig. 4).
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Fig. 4. Domains of Pax2 and Pax8 are reduced in Notch1 mutants.
(A, B) Dorsal and lateral whole-mount views of Pax2 (A) and Pax8 (B)
expression. Anterior and posterior sections through control and Notch1
mutant placodes are also shown. Brackets indicate otic expression. e,
epibranchial placode; h, hyoid arch. Scale bars: 50 um.

The reduction in the size of the otic placode in Notchl mutants
may result from increased apoptosis, increased cell density or a
change in cell fate. We measured the size of the placode by
examining Foxi2 expression, which is precisely excluded from the
thickened placode region. The Notchl mutant otic placode was
indeed smaller at 9-13ss, on the basis of Foxi2 expression (dotted
outline, Fig. 5A,B). We compared the mediolateral extent of the
thickened otic placode in Notchl mutants and controls at 9-11ss and
12-13ss (see Materials and methods; Fig. 5C,D) Notchl mutants (9-
11ss, n=25 placodes; 12-13ss, n=10 placodes) had significantly
smaller placodes than did controls (9-11ss, n=13 placodes; 12-13ss,
n=06 placodes), regardless of the axial level of the section (P<0.05-
0.005; Fig. 5C,D). There were no significant changes in placode cell
density at 9-11ss (r=10 mutant placodes; n=6 control placodes) and
12-13ss (n=5 mutant placodes; n=4 control placodes; P>0.05; Fig.
5F), or in apoptosis when analyzed for activated caspase 3
expression (Fig. 5G) (Conlon et al., 1995; Del Monte et al., 2007).
We also confirmed that the smaller placode was not caused by the
precocious generation of neurons by analyzing Ngnl expression
(data not shown).

Collectively, our data show that many otic placode precursors
undergo a fate change to epidermis in NotchI-deficient embryos. It
is possible that the other Notch receptors are active during otic
placode development in addition to Notchl. We confirmed our
results by examining conditional mutants of Rbpj/Rbsuh, a
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transcriptional co-factor of NICD. The otic placode still forms in
these mice (see Fig. S2C in the supplementary material) (see also
Oka et al., 1995; de la Pompa et al., 1997), confirming that Notch
signaling can modulate the size of the otic placode but is not
necessary for its induction.

Daudet and colleagues recently suggested that initiation, but not
maintenance, of Jagl expression in the chick otic placode is
regulated independently of Notch1 signaling (Daudet et al., 2007).
We confirmed this result in mice: Jag/ continued to be expressed in
the placode of Notchl mutants, but the intensity of expression was
reduced when compared with controls (see Fig. S2B in the
supplementary material). It has been previously reported that Jag/
continues to be expressed in a morphologically distinct otic placode
in mice carrying mutations of Pofutl, an O-fucosyltransferase
essential for Notch signaling (Shi and Stanley, 2003). We confirmed
that Jagl and Hes! expression can be initiated in the absence of
canonical Notch signaling by examining conditional mutants of
Rbpj/Rbsuh. Both genes continue to be expressed in a
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morphologically visible otic cup, although HesI was expressed at
significantly reduced levels compared with controls (see Fig. S2C
in the supplementary material). This is consistent with Hes/
expression being initiated by Notch signaling, but Jag! expression
being initiated independently of Notch signaling.

Notch1 augments canonical Wnt signaling in the
otic placode

Canonical Wnt signaling plays an important role in defining the size
of the otic placode by driving medial Pax2" pre-otic cells towards
an otic rather than a cranial epidermis fate (Ohyama et al., 2006).
Similarly, conditional activation of Notch1 in the Pax2" pre-otic
field expands some, but not all, otic markers at the expense of
epidermis (Fig. 3). Additionally, Notch pathway gene expression can
be activated by canonical Wnt signaling (Fig. 2). These results
suggested the possibility of reciprocal interactions between the
Notch and Wnt pathways. To test whether Wnt signaling is
modulated by the Notch pathway in the developing otic placode, we
crossed Wnt reporter mice expressing a [3-galactosidase reporter
gene under the control of six Tef/Lef DNA-binding sites (Mohamed
et al., 2004) to either cN1ICD or Notchl mutant lines.

Surprisingly, although the thickened Pax8" placode was
dramatically expanded to the level of the pharynx in ¢NI1ICD
embryos (Fig. 3A), Wnt reporter activity showed a much more
modest expansion, extending a little beyond the lateral edge of the
otic cup (Fig. 6A). We observed similar results with DIx5, a known
Whnt-responsive marker of the otic placode (bracket, Fig. 6A). To
verify these results, we made use of the fact that cN1/CD mutants
also express nuclear GFP after Cre recombination (Murtaugh et al.,
2003). We co-immunostained cNIICD; Wnt reporter embryos with
anti-B-galactosidase and anti-GFP antibodies to mark the extent of
the Wnt reporter and the expanded otic placode, respectively (Fig.
6B). By E9-E9.25, Wnt activity was elevated in the lateral regions
of the mutant otic cup, which normally demonstrate moderate or low
Wht activity (red arrowhead; Fig. 6A). Furthermore, the otic cup
region was larger in ¢cN/ICD mutants than in controls (see Fig. S3
in the supplementary material, =13 mutant placodes, n=14 control
placodes; P<0.005). However, the ectopic placode region lateral to
the otic cup, which expressed N1ICD and GFP, did not express -
galactosidase (bracket, Fig. 6B). These results suggest that Notch
signaling can augment Wnt signaling, but that the active Notchl
ICD does not directly regulate Wnt-responsive genes containing
Tctf/Lef DNA-binding sites.

To test whether Wnt signaling can also be modulated by loss of
Notchl activity, we examined Notchl mutant mice crossed to a Wnt
reporter mouse background. As expected, Wnt reporter activity was
detected in Notchl mutant placodes (Fig. 6C). However, the
intensity of Wnt activity, as measured by time-matched B-
galactosidase reactions was weaker than in controls. Additionally,
the mediolateral extent of the Wnt reporter and expression of the
Wnt-responsive gene DIx5 was slightly reduced (Fig. 6C), reflecting
the observed reduction in the placode size caused by Notchl
deficiency (Fig. 4). Taken together with our data showing that Wnt
signaling can upregulate Notch pathway components, our results are
consistent with a model in which the Wnt pathway can positively
regulate components of the Notch pathway, and can, in turn, be
augmented by Notch signaling. One prediction of this model is that
maximal activation of Wnt signaling by a constitutively activated -
catenin mutation will be unaffected by a Notchl mutation. To test
this, we analyzed Pax8 and Foxi2 expression in Notchl mutant
embryos that also carried the activated B-catenin (cAcf) mutation.
As expected, the size of the expanded Pax8 domain seen in cAct

embryos was not significantly different from that in Notchl; cAct
mutants (Fig. 6D). Similarly, the reduced domain of epidermal Foxi2
expression seen in cAct mutants was not significantly different from
that in Notchl; cAct mutants (Fig. 6D).

DISCUSSION

Notch signaling plays multiple roles in inner ear patterning, from the
specification of neurons and prosensory patches to the generation of
the stereotypical pattern of hair cells (Adam et al., 1998; Brooker et
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mounts and corresponding mid-placode transverse sections. Dotted
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expanded placode expresses the Wnt reporter. The inset shows anti-B-
galactosidase staining in a normal Wnt reporter mouse. Brackets in A
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Whnt reporter and DIx5. (C) Wnt reporter and DIx5 expression is
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Fig. 7. Model of how Wnt and Notch pathways A Stage 1: FGF signaling: induction of pre-otic field B
SE

NE
¥ Pax2

interact to regulate the size of the otic placode.
(A) The generation of the otic placode can be
divided into three stages. Pax2 in the pre-otic field is
induced by FGFs (arrows). A gradient of Wnts (light
blue) determines the size of the otic field: above a
certain threshold, Wnts drive cells towards an otic
fate (dark blue), and, below the threshold, cranial
epidermis is formed (Foxi2) (Ohyama et al., 2006).
Notch1 signaling is superimposed on the Wnt
gradient (pink-blue) and acts to augment the otic
fate imposed by Wnts. NE, neuroectoderm; SE,
surface ectoderm. (B) The Wnt pathway is the
primary signal (denoted by bold lettering) that
controls otic fate (blue region) by positively
regulating (green arrows) the expression of Dix5,
Sox9, Gbx2, Pax2, Pax8 and components of the
Notch1 pathway, such as Notch7 and Hes1 (Figs 1,

Stage 2: Wnt signaling: placode-epidermis fate decision

Stage 3: Notch?1 signaling: reinforcement of otic fate
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2). Jag1 expression is initiated by Wnts (striped
green arrow; see Fig. 2). Notch1 acts to: (1) C
augment Wnt and Notch1 activity within otic cells "cmc placade
(pink arrow; plus sign); and (2) co-operate with Wnt - W (Pax2E)
to negatively regulate Foxi2 (red) and positively activity Placode threshold
regulate Pax8 (dark green), and to maintaina [ 7" e I o
thickened otic placode. (C) A model summarizing b ‘ } Epidermis
the various otic placode phenotypes observed in this QL (Foxi2)
study. A gradient of Wnt activity emanating from L : - — .
the midline is established across the mediolateral ) il Il
axis of the pre-otic field. Cells exposed to a certain w, N

Notch1 mutant Epidermis |

threshold of Wnt signals express Jag7 and
differentiate as otic placode (blue). Below this
threshold, cells differentiate as epidermis (gray).
Jag1-Notch1 signaling augments Wnt signals in the
medial region of the otic placode, whereas more
lateral regions are not exposed to Notch1 signals

1
(% Notch1 activity)

and Whnt signaling is not augmented. In the absence of Notch1 (brown line), the gradient of Wnt signaling becomes weaker, resulting in a smaller
placode and more epidermis. When Notch1 is activated in the pre-otic field (green line), the Wnt gradient is augmented further. Some Wnt-
dependent markers (DIx5) are expressed only in the expanded Wnt domain, whereas markers such as Pax8 are expressed throughout the pre-otic
field (marked as Pax8* placode). When B-catenin is activated in the entire pre-otic field (purple line), all cells differentiate as otic placode (Ohyama et

al., 2006).

al., 2006; Daudet et al., 2007; Daudet and Lewis, 2005; Haddon et
al., 1998; Kiernan et al., 2005; Lanford et al., 1999; Shi et al., 2005).
Here, we have uncovered new roles for Notch and Wnt signaling in
the early development of the ear. Conditional activation of Notchl
in the Pax2" pre-otic field causes the expansion of some, but not all,
otic markers at the expense of epidermis. Conversely, in the absence
of Notchl signaling, the otic placode is significantly smaller. We
have also shown that Wnt signaling regulates components of the
Notch pathway, such as Jag!, and that Notch signaling positively
regulates Wnt signaling. Our results suggest that Notch augments
the Wnt signaling pathway to help define the size of the otic placode.

The expression of Notch signaling pathway
components in the otic placode - a role for Wnt
signaling

Our expression data show that several components of the Notch
signaling pathway — Notchl, Jagl, DIl1 and HesI — are expressed
in a medial subset of the mouse Pax2" pre-otic field from the 5ss
onwards, and that Wnt signaling initiates expression of at least
some Notch pathway components. Notchl, Jagl, DIl1 and Hes!
are all expressed in the pre-otic field after Wnt6, WntS8 and the first
signs of Wnt reporter activity (Fig. 1C) (Ohyama et al., 2006).
Expression of these Notch pathway genes occurs only within the
region of the medial Pax2" pre-otic field that responds to Wnt

signaling (Fig. 1C). Consistent with previous reports (Duncan et
al., 2005; Espinosa et al., 2003; Estrach et al., 2006), we found
that ectopic activation of the canonical Wnt pathway induced the
expression of Jagl, Notchl and Hesl (Fig. 2A), whereas
conditional deletion of B-catenin greatly reduced their expression
(Fig. 2B). Wnt signaling can control the transcription of Notch
pathway genes by directly acting on elements located in their
promoters (Duncan et al., 2005; Espinosa et al., 2003; Estrach et
al., 2006; Katoh and Katoh, 2006). In the case of the Jagl
promoter, there are multiple Tcf/Lef-binding sites that are
conserved between mouse and human (Estrach et al., 2006; Katoh
and Katoh, 2006). Putative Tcf/Lef-binding sites have also been
identified in the Notchl promoter (Galceran et al., 2004);
however, although the DI/I promoter also has Tcf/Lef-binding
sites (Galceran et al., 2004), its expression was not expanded in
embryos expressing activated P-catenin. Recent evidence
suggests that factors distinct from Notch signaling are required to
initiate Jag! expression in the chick otocyst (Daudet et al., 2007),
although maintenance of Jag! is Notch dependent. Our results
suggest that Jagl initiation in the developing ear might be
regulated directly by Wnt signaling (Fig. 2B, Fig. 7), whereas
Notchl and Hes1 expression might be initiated by Wnt signaling,
and possibly also by FGFs (Norgaard et al., 2003; Zhou and
Armstrong, 2007), in addition to by Notch signaling itself.
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Overlapping and distinct functions of Notch and
Wnt signaling in the otic placode

We recently showed that the mouse pre-otic field defined by the
expression of Pax2 undergoes a fate decision to give rise to the
cranial epidermis and the otic placode (Ohyama et al., 2006). The
placode-epidermis fate decision is mediated by the canonical Wnt
pathway, such that conditional deletion of B-catenin in Pax2" cells
drastically reduces the otic placode and expands the epidermis,
whereas conditional activation of B-catenin in Pax2” cells expands
the otic placode at the expense of epidermis (Ohyama et al., 2006).
In the light of the expression of many components of the Notch
signaling pathway in the developing otic placode (Fig. 1), we
hypothesized that Notch signaling might act with the canonical Wnt
pathway to specify otic placode identity.

The activation of Notch1 signaling in the pre-otic field leads to a
massive expansion of thickened, placode-like epithelium expressing
Pax8 at the expense of Foxi2" epidermis, in a manner very similar
to the activation of B-catenin (Fig. 3). By contrast, although Pax2
expression can be expanded by the activation of Wnt signaling
(Ohyama et al., 2006), it showed only a modest expansion in
¢N1ICD mutants compared with Pax8 (compare Fig. 3A with 3B).
Pax2 and Pax8 are known to be differentially regulated by FGF
signaling and the foxi! transcription factor during induction of the
zebrafish ear (Hans et al., 2004; Nissen et al., 2003; Solomon et al.,
2003; Solomon et al., 2004), and our results suggest that these genes
might also be differentially regulated by Notch signaling. In
particular, Pax8 can be regulated either by canonical Wnt signaling
or by Notch signaling. However, it is not clear whether the two
pathways regulate Pax$§ in entirely different ways or whether they
converge on a nodal point, such as the binding of Lef/Tcf complexes
to the Pax§ promoter (Schmidt-Ott et al., 2007). Pax8 expression
correlates with epithelial thickening in all experiments in our study.
However, further experiments are required to determine whether
Pax8 is directly responsible for regulating this morphological
change in the otic placode.

The examination of Notchl mutants consistently showed a
significant reduction in the size of the otic placode (Fig. 4B,C; Fig.
5). This small reduction is unlikely to be due to redundancy with
other Notch genes, as there is no detectable expression of Notch2-
Notch4 in the otic placode (Lewis et al., 1998; Williams et al., 1995).
A similar persistence of the otic placode is seen after treating chick
otic ectoderm with DAPT, a y-secretase inhibitor that abolishes
Notch signaling (Abello et al., 2007; Daudet et al., 2007), in mice
carrying mutations in Pofutl, an O-fucosyltransferase that is an
essential component of the Notch pathway (Shi and Stanley, 2003)
(C.S.J., unpublished), and in mice lacking Rbpj/Rbsuh/CSL (Oka
et al.,, 1995; de la Pompa et al., 1997) (see Fig. S2C in the
supplementary material). In all of these experiments, any reduction
in placode size in the absence of Notch signaling is much more
modest than that seen in mice in which Wnt signaling is blocked by
the conditional deletion of B-catenin (Ohyama et al., 2006) (Fig.
2B).

Our results suggest a model (Fig. 7B,C) in which both Notch and
Wnat signaling can specify the size of the epithelium destined to form
the otic placode by virtue of their regulation of Pax§8, Foxi2 and
Jagl, and by the induction of a thickened epithelial morphology. Our
data from mice in which Wnt signaling is activated in the absence
of Notchl (Fig. 6D), or in which Notchl1 is activated in the absence
of B-catenin (Fig. 3C), show that the two pathways can regulate
these genes independently of each other. However, unlike the Wnt
pathway, Notch signaling does not regulate the expression of otic
placode-specific genes such as Gbx2, Sox9 and Hmx3, as these are

unchanged in ¢N//CD mutants (Fig. 3D). In addition, our results,
taken together with previously published studies, suggest that Notch
signaling also acts to augment Wnt signaling during otic placode
induction, rather than being absolutely necessary for placode
induction

Notch signaling acts to augment Wnt signaling
during otic placode induction

To integrate our gain- and loss-of-function experiments with the
Notch and Wnt pathways, we propose a model in which some Notch
pathway components, such as Jag!, are induced by Wnt signaling.
Subsequently, activation of Notch1 by Jagl feeds back to augment
the Wnt response (Fig. 7B). This feedback activity has no effect on
the most medial regions of the pre-otic field — which receive the
highest levels of Wnt signaling — but acts to increase Wnt signaling
in mediolateral regions of ectoderm that receive modest to low levels
of Wnt signaling. Thus, Notch-mediated feedback serves to sharpen
and refine the initial mediolateral gradient of Wnt activity during the
pre-otic field stage (Ohyama et al., 2006) into a more binary pattern
at the otic placode stage, where Wnt signaling is either active (giving
rise to the otic placode) or silenced (giving rise to epidermis; Fig.
70).

Our data support this model in four ways. First, Notch1 deficiency
causes a reduction in the area and intensity of (-galactosidase
activity in Wnt reporter mice, and a reduction of the domain of the
Wnat-responsive gene DIx5 (Fig. 6C). However, loss of Notchl does
not abolish the expression of either marker, consistent with the
notion that Notchl signaling augments the Wnt response but does
not initiate it. Second, the reduction in Wnt signaling resulting from
the loss of Notchl (Figs 4, 5) causes a consistent reduction in the size
of the otic placode, but does not eliminate it entirely. The otic
placode also forms in mice lacking other crucial components of the
Notch pathway, such as Pofutl or Rbpj/Rbsuh/CSL (Oka et al., 1995;
de la Pompa et al., 1997; Shi and Stanley, 2003). Third, mutation of
Notchl has no effect on the size of the otic placode in embryos also
expressing constitutively active B-catenin in the entire pre-otic field
(Fig. 6D), presumably because cells expressing artificially high
levels of activated [3-catenin are not dependent on Notch1 function
for the stabilization of otic fate. Finally, artificial N1ICD activation
throughout the pre-otic field greatly expands Pax8 to the ventral
pharynx, but this is not the case for DIx5 or Wnt activity (Fig. 6A).
This suggests that ectopic activation of N1ICD in regions of the pre-
otic field that receive no Wnt signals is insufficient to augment or
initiate the Wnt response (Fig. 7C). Furthermore, Wnt reporter
expression is enhanced in regions receiving moderate levels of Wnt
activity in cN1ICD mutants (Fig. 6A). Although, the mechanism of
how Notch signaling augments Wnt activity is not clear, this result
suggests that it is unlikely that N1ICD can directly activate
transcription of Wnt-responsive genes by itself. A growing body of
evidence suggests that Wnt and Notch pathways interact during cell
fate determination (Aoyama et al., 2007; Arias and Hayward, 2006;
Crosnier et al., 2006; Estrach et al., 2006; Fre et al., 2005). Notch
signaling can act upstream of the Wnt pathway (Balint et al., 2005;
Johnston and Edgar, 1998; Neumann and Cohen, 1996), or
downstream (Estrach et al., 2006). Stimulation of the Wnt pathway
can either antagonize or activate the Notch pathway in different
contexts — for example, dishevelled can antagonize Notch signaling
(Axelrod et al., 1996), whereas the downregulation of Gsk3 activity
by Wnt signaling stimulates the Notch pathway (Espinosa et al.,
2003). The Notch receptor is also able to antagonize B-catenin
activity (Nicolas et al., 2003), sometimes in an NICD-independent
manner (Hayward et al., 2006; Hayward et al., 2005).
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Taken together, our current and previously published data suggest
a model of otic placode induction whereby FGF signaling initially
establishes a Pax2" pre-otic field that is then patterned by a gradient
of Wnt signaling arising from the midline. Wnt signaling
upregulates components of the Notch pathway, which then act
locally to augment the Wnt response and to mediate the placode-
epidermis fate decision in the pre-otic field.
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